| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| """A pipeline that uses RunInference API to classify MNIST data. |
| |
| This pipeline takes a text file in which data is comma separated ints. The first |
| column would be the true label and the rest would be the pixel values. The data |
| is processed and then a model trained on the MNIST data would be used to perform |
| the inference. The pipeline writes the prediction to an output file in which |
| users can then compare against the true label. |
| """ |
| |
| import argparse |
| import logging |
| import os |
| from typing import Iterable |
| from typing import List |
| from typing import Tuple |
| |
| import apache_beam as beam |
| from apache_beam.ml.inference.base import KeyedModelHandler |
| from apache_beam.ml.inference.base import PredictionResult |
| from apache_beam.ml.inference.base import RunInference |
| from apache_beam.ml.inference.sklearn_inference import ModelFileType |
| from apache_beam.ml.inference.sklearn_inference import SklearnModelHandlerNumpy |
| from apache_beam.options.pipeline_options import PipelineOptions |
| from apache_beam.options.pipeline_options import SetupOptions |
| from apache_beam.runners.runner import PipelineResult |
| |
| |
| def process_input(row: str) -> Tuple[int, List[int]]: |
| data = row.split(',') |
| label, pixels = int(data[0]), data[1:] |
| pixels = [int(pixel) for pixel in pixels] |
| return label, pixels |
| |
| |
| class PostProcessor(beam.DoFn): |
| """Process the PredictionResult to get the predicted label. |
| Returns a comma separated string with true label and predicted label. |
| """ |
| def process(self, element: Tuple[int, PredictionResult]) -> Iterable[str]: |
| label, prediction_result = element |
| prediction = prediction_result.inference |
| yield '{},{}'.format(label, prediction) |
| |
| |
| def parse_known_args(argv): |
| """Parses args for the workflow.""" |
| parser = argparse.ArgumentParser() |
| parser.add_argument( |
| '--input', |
| dest='input', |
| required=True, |
| help='text file with comma separated int values.') |
| parser.add_argument( |
| '--output', |
| dest='output', |
| required=True, |
| help='Path to save output predictions.') |
| parser.add_argument( |
| '--model_path', |
| dest='model_path', |
| required=True, |
| help='Path to load the Sklearn model for Inference.') |
| return parser.parse_known_args(argv) |
| |
| |
| def run( |
| argv=None, save_main_session=True, test_pipeline=None) -> PipelineResult: |
| """ |
| Args: |
| argv: Command line arguments defined for this example. |
| save_main_session: Used for internal testing. |
| test_pipeline: Used for internal testing. |
| """ |
| known_args, pipeline_args = parse_known_args(argv) |
| pipeline_options = PipelineOptions(pipeline_args) |
| pipeline_options.view_as(SetupOptions).save_main_session = save_main_session |
| requirements_dir = os.path.dirname(os.path.realpath(__file__)) |
| # Pin to the version that we trained the model on. |
| # Sklearn doesn't guarantee compatability between versions. |
| pipeline_options.view_as( |
| SetupOptions |
| ).requirements_file = f'{requirements_dir}/sklearn_examples_requirements.txt' |
| |
| # In this example we pass keyed inputs to RunInference transform. |
| # Therefore, we use KeyedModelHandler wrapper over SklearnModelHandlerNumpy. |
| model_loader = KeyedModelHandler( |
| SklearnModelHandlerNumpy( |
| model_file_type=ModelFileType.PICKLE, |
| model_uri=known_args.model_path)) |
| |
| pipeline = test_pipeline |
| if not test_pipeline: |
| pipeline = beam.Pipeline(options=pipeline_options) |
| |
| label_pixel_tuple = ( |
| pipeline |
| | "ReadFromInput" >> beam.io.ReadFromText(known_args.input) |
| | "PreProcessInputs" >> beam.Map(process_input)) |
| |
| predictions = ( |
| label_pixel_tuple |
| | "RunInference" >> RunInference(model_loader) |
| | "PostProcessOutputs" >> beam.ParDo(PostProcessor())) |
| |
| _ = predictions | "WriteOutput" >> beam.io.WriteToText( |
| known_args.output, shard_name_template='', append_trailing_newlines=True) |
| |
| result = pipeline.run() |
| result.wait_until_finish() |
| return result |
| |
| |
| if __name__ == '__main__': |
| logging.getLogger().setLevel(logging.INFO) |
| run() |