blob: 9746995dce77238b92d54f3df27387c517368f81 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
from operator import itemgetter
import joblib
import numpy as np
import pandas as pd
from sklearn.cluster import MiniBatchKMeans
import apache_beam as beam
from apache_beam.coders import PickleCoder
from apache_beam.coders import VarIntCoder
from apache_beam.io.filesystems import FileSystems
from apache_beam.ml.inference.base import PredictionResult
from apache_beam.ml.inference.base import RunInference
from apache_beam.ml.inference.sklearn_inference import ModelFileType
from apache_beam.ml.inference.sklearn_inference import SklearnModelHandlerNumpy
from apache_beam.transforms import core
from apache_beam.transforms import ptransform
from apache_beam.transforms.userstate import ReadModifyWriteStateSpec
class SaveModel(core.DoFn):
"""Saves trained clustering model to persistent storage"""
def __init__(self, checkpoints_path: str):
self.checkpoints_path = checkpoints_path
def process(self, model):
# generate ISO 8601
iso_timestamp = datetime.datetime.utcnow().strftime("%Y%m%dT%H%M%SZ")
checkpoint_name = f'{self.checkpoints_path}/{iso_timestamp}.checkpoint'
latest_checkpoint = f'{self.checkpoints_path}/latest.checkpoint'
# rename previous checkpoint
if FileSystems.exists(latest_checkpoint):
FileSystems.rename([latest_checkpoint], [checkpoint_name])
file = FileSystems.create(latest_checkpoint, 'wb')
if not joblib:
raise ImportError(
'Could not import joblib in this execution environment. '
'For help with managing dependencies on Python workers.'
'see https://beam.apache.org/documentation/sdks/python-pipeline-dependencies/' # pylint: disable=line-too-long
)
joblib.dump(model, file)
yield checkpoint_name
class AssignClusterLabelsFn(core.DoFn):
"""Takes a trained model and input data and labels
all data instances using the trained model."""
def process(self, batch, model, model_id):
cluster_labels = model.predict(batch)
for e, i in zip(batch, cluster_labels):
yield PredictionResult(example=e, inference=i, model_id=model_id)
class SelectLatestModelState(core.CombineFn):
"""Selects that latest version of a model after training"""
def create_accumulator(self):
# create and initialise accumulator
return None, 0
def add_input(self, accumulator, element):
# accumulates each element from input in accumulator
if element[1] > accumulator[1]:
return element
return accumulator
def merge_accumulators(self, accumulators):
# Multiple accumulators could be processed in parallel,
# this function merges them
return max(accumulators, key=itemgetter(1))
def extract_output(self, accumulator):
# Only output the tracker
return accumulator[0]
class ClusteringAlgorithm(core.DoFn):
"""Abstract class with the interface
that clustering algorithms need to follow."""
MODEL_SPEC = ReadModifyWriteStateSpec("clustering_model", PickleCoder())
ITERATION_SPEC = ReadModifyWriteStateSpec(
'training_iterations', VarIntCoder())
MODEL_ID = 'ClusteringAlgorithm'
def __init__(
self, n_clusters: int, checkpoints_path: str, cluster_args: dict):
super().__init__()
self.n_clusters = n_clusters
self.checkpoints_path = checkpoints_path
self.cluster_args = cluster_args
self.clustering_algorithm = None
def process(
self,
keyed_batch,
model_state=core.DoFn.StateParam(MODEL_SPEC),
iteration_state=core.DoFn.StateParam(ITERATION_SPEC),
*args,
**kwargs):
raise NotImplementedError
def load_model_checkpoint(self):
latest_checkpoint = f'{self.checkpoints_path}/latest.checkpoint'
if FileSystems.exists(latest_checkpoint):
file = FileSystems.open(latest_checkpoint, 'rb')
if not joblib:
raise ImportError(
'Could not import joblib in this execution environment. '
'For help with managing dependencies on Python workers.'
'see https://beam.apache.org/documentation/sdks/python-pipeline-dependencies/' # pylint: disable=line-too-long
)
return joblib.load(file)
return self.clustering_algorithm(
n_clusters=self.n_clusters, **self.cluster_args)
class OnlineKMeans(ClusteringAlgorithm):
"""Online K-Means function. Used the MiniBatchKMeans from sklearn
More information: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html""" # pylint: disable=line-too-long
MODEL_SPEC = ReadModifyWriteStateSpec("clustering_model", PickleCoder())
ITERATION_SPEC = ReadModifyWriteStateSpec(
'training_iterations', VarIntCoder())
MODEL_ID = 'OnlineKmeans'
def __init__(
self, n_clusters: int, checkpoints_path: str, cluster_args: dict):
super().__init__(n_clusters, checkpoints_path, cluster_args)
self.clustering_algorithm = MiniBatchKMeans
def process(
self,
keyed_batch,
model_state=core.DoFn.StateParam(MODEL_SPEC),
iteration_state=core.DoFn.StateParam(ITERATION_SPEC),
*args,
**kwargs):
# 1. Initialise or load states
clustering = model_state.read() or self.load_model_checkpoint()
iteration = iteration_state.read() or 0
iteration += 1
# 2. Remove the temporary assigned keys
_, batch = keyed_batch
# 3. Calculate cluster centroids
clustering.partial_fit(batch)
# 4. Store the training set and model
model_state.write(clustering)
iteration_state.write(iteration)
# checkpoint = joblib.dump(clustering, f'kmeans_checkpoint_{iteration}')
yield clustering, iteration
class ConvertToNumpyArray(core.DoFn):
"""Helper function to convert incoming data
to numpy arrays that are accepted by sklearn"""
def process(self, element, *args, **kwargs):
if isinstance(element, (tuple, list)):
yield np.array(element)
elif isinstance(element, np.ndarray):
yield element
elif isinstance(element, (pd.DataFrame, pd.Series)):
yield element.to_numpy()
else:
raise ValueError(f"Unsupported type: {type(element)}")
class ClusteringPreprocessing(ptransform.PTransform):
def __init__(
self, n_clusters: int, batch_size: int, is_batched: bool = False):
""" Preprocessing for Clustering Transformation
The clustering transform expects batches for performance reasons,
therefore this batches the data and converts it to numpy arrays,
which are accepted by sklearn. This transform also adds the same key
to all batches, such that only 1 state is created and updated during
clustering updates.
Example Usage::
pcoll | ClusteringPreprocessing(
n_clusters=8,
batch_size=1024,
is_batched=False)
Args:
n_clusters: number of clusters used by the algorithm
batch_size: size of the data batches
is_batched: boolean value that marks if the collection is already
batched and thus doesn't need to be batched by this transform
"""
super().__init__()
self.n_clusters = n_clusters
self.batch_size = batch_size
self.is_batched = is_batched
def expand(self, pcoll):
pcoll = (
pcoll
|
"Convert element to numpy arrays" >> beam.ParDo(ConvertToNumpyArray()))
if not self.is_batched:
pcoll = (
pcoll
| "Create batches of elements" >> beam.BatchElements(
min_batch_size=self.n_clusters, max_batch_size=self.batch_size)
| "Covert to 2d numpy array" >>
beam.Map(lambda record: np.array(record)))
return pcoll
class OnlineClustering(ptransform.PTransform):
def __init__(
self,
clustering_algorithm,
n_clusters: int,
cluster_args: dict,
checkpoints_path: str,
batch_size: int = 1024,
is_batched: bool = False):
""" Clustering transformation itself, it first preprocesses the data,
then it applies the clustering transformation step by step on each
of the batches.
Example Usage::
pcoll | OnlineClustering(
clustering_algorithm=OnlineKMeansClustering
batch_size=1024,
n_clusters=6
cluster_args={}))
Args:
clustering_algorithm: Clustering algorithm (DoFn)
n_clusters: Number of clusters
cluster_args: Arguments for the sklearn clustering algorithm
(check sklearn documentation for more information)
batch_size: size of the data batches
is_batched: boolean value that marks if the collection is already
batched and thus doesn't need to be batched by this transform
"""
super().__init__()
self.clustering_algorithm = clustering_algorithm
self.n_clusters = n_clusters
self.batch_size = batch_size
self.cluster_args = cluster_args
self.checkpoints_path = checkpoints_path
self.is_batched = is_batched
def expand(self, pcoll):
# 1. Preprocess data for more efficient clustering
data = (
pcoll
| 'Batch data for faster processing' >> ClusteringPreprocessing(
n_clusters=self.n_clusters,
batch_size=self.batch_size,
is_batched=self.is_batched)
| "Add a key for stateful processing" >>
beam.Map(lambda record: (1, record)))
# 2. Calculate cluster centers
model = (
data
| 'Cluster' >> core.ParDo(
self.clustering_algorithm(
n_clusters=self.n_clusters,
cluster_args=self.cluster_args,
checkpoints_path=self.checkpoints_path))
| 'Select latest model state' >> core.CombineGlobally(
SelectLatestModelState()).without_defaults())
# 3. Save the trained model checkpoint to persistent storage,
# so it can be loaded for further training in the next window
# or loaded into an sklearn modelhandler for inference
_ = (model | core.ParDo(SaveModel(checkpoints_path=self.checkpoints_path)))
return model
class AssignClusterLabelsRunInference(ptransform.PTransform):
def __init__(self, checkpoints_path):
super().__init__()
self.clustering_model = SklearnModelHandlerNumpy(
model_uri=f'{checkpoints_path}/latest.checkpoint',
model_file_type=ModelFileType.JOBLIB)
def expand(self, pcoll):
predictions = (
pcoll
| "RunInference" >> RunInference(self.clustering_model))
return predictions
class AssignClusterLabelsInMemoryModel(ptransform.PTransform):
def __init__(
self, model, n_clusters, batch_size, is_batched=False, model_id=None):
self.model = model
self.n_clusters = n_clusters
self.batch_size = batch_size
self.is_batched = is_batched
self.model_id = model_id
def expand(self, pcoll):
return (
pcoll
| "Preprocess data for faster prediction" >> ClusteringPreprocessing(
n_clusters=self.n_clusters,
batch_size=self.batch_size,
is_batched=self.is_batched)
| "Assign cluster labels" >> core.ParDo(
AssignClusterLabelsFn(), model=self.model, model_id=self.model_id))