blob: 2e0dc18959396828fbb008f920270a861c9c56ef [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This is SideInput load test with Synthetic Source. Besides of the standard
input options there are additional options:
* number_of_counter_operations - number of pardo operations
* project (optional) - the gcp project in case of saving
metrics in Big Query (in case of Dataflow Runner
it is required to specify project of runner),
* publish_to_big_query - if metrics should be published in big query,
* metrics_namespace (optional) - name of BigQuery dataset where metrics
will be stored,
* metrics_table (optional) - name of BigQuery table where metrics
will be stored,
* input_options - options for Synthetic Sources.
To run test on DirectRunner
python setup.py nosetests \
--test-pipeline-options="
--project=big-query-project
--publish_to_big_query=true
--metrics_dataset=python_load_tests
--metrics_table=side_input
--number_of_counter_operations=1000
--input_options='{
\"num_records\": 300,
\"key_size\": 5,
\"value_size\":15,
\"bundle_size_distribution_type\": \"const\",
\"bundle_size_distribution_param\": 1,
\"force_initial_num_bundles\": 0
}'
" \
--tests apache_beam.testing.load_tests.sideinput_test
or:
./gradlew -PloadTest.args='
--publish_to_big_query=true
--project=...
--metrics_dataset=python_load_tests
--metrics_table=side_input
--input_options=\'
{"num_records": 1,
"key_size": 1,
"value_size":1,
"bundle_size_distribution_type": "const",
"bundle_size_distribution_param": 1,
"force_initial_num_bundles": 1}\'
--runner=DirectRunner' \
-PloadTest.mainClass=
apache_beam.testing.load_tests.sideinput_test \
-Prunner=DirectRunner :sdks:python:apache_beam:testing:load-tests:run
To run test on other runner (ex. Dataflow):
python setup.py nosetests \
--test-pipeline-options="
--runner=TestDataflowRunner
--project=...
--publish_to_big_query=true
--metrics_dataset=python_load_tests
--metrics_table=side_input
--staging_location=gs://...
--temp_location=gs://...
--sdk_location=./dist/apache-beam-x.x.x.dev0.tar.gz
--number_of_counter_operations=1000
--input_options='{
\"num_records\": 1,
\"key_size\": 1,
\"value_size\":1,
\"bundle_size_distribution_type\": \"const\",
\"bundle_size_distribution_param\": 1,
\"force_initial_num_bundles\": 0
}'
" \
--tests apache_beam.testing.load_tests.sideinput_test
or:
./gradlew -PloadTest.args='
--publish_to_big_query=true
--project=...
--metrics_dataset=python_load_tests
--metrics_table=side_input
--temp_location=gs://...
--input_options=\'
{"num_records": 1,
"key_size": 1,
"value_size":1,
"bundle_size_distribution_type": "const",
"bundle_size_distribution_param": 1,
"force_initial_num_bundles": 1}\'
--runner=TestDataflowRunner' \
-PloadTest.mainClass=
apache_beam.testing.load_tests.sideinput_test:SideInputTest.testSideInput \
-Prunner=TestDataflowRunner :sdks:python:apache_beam:testing:load-tests:run
"""
# pytype: skip-file
from __future__ import absolute_import
import logging
import os
import unittest
import apache_beam as beam
from apache_beam.pvalue import AsIter
from apache_beam.testing import synthetic_pipeline
from apache_beam.testing.load_tests.load_test import LoadTest
from apache_beam.testing.load_tests.load_test_metrics_utils import MeasureTime
load_test_enabled = False
if os.environ.get('LOAD_TEST_ENABLED') == 'true':
load_test_enabled = True
@unittest.skipIf(not load_test_enabled, 'Enabled only for phrase triggering.')
class SideInputTest(LoadTest):
def _getSideInput(self):
side_input = self.parseTestPipelineOptions()
side_input['numRecords'] = side_input['numRecords']
side_input['keySizeBytes'] = side_input['keySizeBytes']
side_input['valueSizeBytes'] = side_input['valueSizeBytes']
return side_input
def setUp(self):
super(SideInputTest, self).setUp()
self.iterations = self.pipeline.get_option('number_of_counter_operations')
if not self.iterations:
self.iterations = 1
self.iterations = int(self.iterations)
def testSideInput(self):
def join_fn(element, side_input, iterations):
list = []
for i in range(iterations):
for key, value in side_input:
if i == iterations - 1:
list.append({key: element[1]+value})
yield list
main_input = (self.pipeline
| "Read pcoll 1" >> beam.io.Read(
synthetic_pipeline.SyntheticSource(
self.parseTestPipelineOptions()))
| 'Measure time: Start pcoll 1' >> beam.ParDo(
MeasureTime(self.metrics_namespace))
)
side_input = (self.pipeline
| "Read pcoll 2" >> beam.io.Read(
synthetic_pipeline.SyntheticSource(
self._getSideInput()))
| 'Measure time: Start pcoll 2' >> beam.ParDo(
MeasureTime(self.metrics_namespace))
)
# pylint: disable=expression-not-assigned
(main_input
| "Merge" >> beam.ParDo(
join_fn,
AsIter(side_input),
self.iterations)
| 'Measure time' >> beam.ParDo(MeasureTime(self.metrics_namespace))
)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.DEBUG)
unittest.main()