blob: 1d81b409eb3fcb7461081c9fd95a2d66158dab9d [file] [log] [blame]
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>apache_beam.transforms.core module &mdash; Apache Beam 2.68.0 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=b86133f3" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=2388e03a"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="apache_beam.transforms.create_source module" href="apache_beam.transforms.create_source.html" />
<link rel="prev" title="apache_beam.transforms.combiners module" href="apache_beam.transforms.combiners.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
Apache Beam
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="apache_beam.coders.html">apache_beam.coders package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.dataframe.html">apache_beam.dataframe package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.io.html">apache_beam.io package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.metrics.html">apache_beam.metrics package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.ml.html">apache_beam.ml package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.options.html">apache_beam.options package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.portability.html">apache_beam.portability package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.runners.html">apache_beam.runners package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.testing.html">apache_beam.testing package</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="apache_beam.transforms.html">apache_beam.transforms package</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="apache_beam.transforms.html#subpackages">Subpackages</a></li>
<li class="toctree-l2 current"><a class="reference internal" href="apache_beam.transforms.html#submodules">Submodules</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.async_dofn.html">apache_beam.transforms.async_dofn module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.combinefn_lifecycle_pipeline.html">apache_beam.transforms.combinefn_lifecycle_pipeline module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.combiners.html">apache_beam.transforms.combiners module</a></li>
<li class="toctree-l3 current"><a class="current reference internal" href="#">apache_beam.transforms.core module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.DoFn"><code class="docutils literal notranslate"><span class="pre">DoFn</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.CombineFn"><code class="docutils literal notranslate"><span class="pre">CombineFn</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.PartitionFn"><code class="docutils literal notranslate"><span class="pre">PartitionFn</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.ParDo"><code class="docutils literal notranslate"><span class="pre">ParDo</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.FlatMap"><code class="docutils literal notranslate"><span class="pre">FlatMap()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.FlatMapTuple"><code class="docutils literal notranslate"><span class="pre">FlatMapTuple()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.Map"><code class="docutils literal notranslate"><span class="pre">Map()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.MapTuple"><code class="docutils literal notranslate"><span class="pre">MapTuple()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.Filter"><code class="docutils literal notranslate"><span class="pre">Filter()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.CombineGlobally"><code class="docutils literal notranslate"><span class="pre">CombineGlobally</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.CombinePerKey"><code class="docutils literal notranslate"><span class="pre">CombinePerKey</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.CombineValues"><code class="docutils literal notranslate"><span class="pre">CombineValues</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.GroupBy"><code class="docutils literal notranslate"><span class="pre">GroupBy</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.GroupByKey"><code class="docutils literal notranslate"><span class="pre">GroupByKey</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.Select"><code class="docutils literal notranslate"><span class="pre">Select</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.Partition"><code class="docutils literal notranslate"><span class="pre">Partition</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.Windowing"><code class="docutils literal notranslate"><span class="pre">Windowing</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.WindowInto"><code class="docutils literal notranslate"><span class="pre">WindowInto</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.Flatten"><code class="docutils literal notranslate"><span class="pre">Flatten</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.FlattenWith"><code class="docutils literal notranslate"><span class="pre">FlattenWith</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.Create"><code class="docutils literal notranslate"><span class="pre">Create</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.Impulse"><code class="docutils literal notranslate"><span class="pre">Impulse</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.RestrictionProvider"><code class="docutils literal notranslate"><span class="pre">RestrictionProvider</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="#apache_beam.transforms.core.WatermarkEstimatorProvider"><code class="docutils literal notranslate"><span class="pre">WatermarkEstimatorProvider</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.create_source.html">apache_beam.transforms.create_source module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.deduplicate.html">apache_beam.transforms.deduplicate module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.display.html">apache_beam.transforms.display module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.enrichment.html">apache_beam.transforms.enrichment module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.environments.html">apache_beam.transforms.environments module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.error_handling.html">apache_beam.transforms.error_handling module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.external.html">apache_beam.transforms.external module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.external_java.html">apache_beam.transforms.external_java module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.external_transform_provider.html">apache_beam.transforms.external_transform_provider module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.fully_qualified_named_transform.html">apache_beam.transforms.fully_qualified_named_transform module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.managed.html">apache_beam.transforms.managed module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.periodicsequence.html">apache_beam.transforms.periodicsequence module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.ptransform.html">apache_beam.transforms.ptransform module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.resources.html">apache_beam.transforms.resources module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.sideinputs.html">apache_beam.transforms.sideinputs module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.sql.html">apache_beam.transforms.sql module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.stats.html">apache_beam.transforms.stats module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.timeutil.html">apache_beam.transforms.timeutil module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.trigger.html">apache_beam.transforms.trigger module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.userstate.html">apache_beam.transforms.userstate module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.util.html">apache_beam.transforms.util module</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.transforms.window.html">apache_beam.transforms.window module</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.typehints.html">apache_beam.typehints package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.utils.html">apache_beam.utils package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.yaml.html">apache_beam.yaml package</a></li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.error.html">apache_beam.error module</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.pipeline.html">apache_beam.pipeline module</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.pvalue.html">apache_beam.pvalue module</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">Apache Beam</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item"><a href="apache_beam.transforms.html">apache_beam.transforms package</a></li>
<li class="breadcrumb-item active">apache_beam.transforms.core module</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/apache_beam.transforms.core.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="module-apache_beam.transforms.core">
<span id="apache-beam-transforms-core-module"></span><h1>apache_beam.transforms.core module<a class="headerlink" href="#module-apache_beam.transforms.core" title="Link to this heading"></a></h1>
<p>Core PTransform subclasses, such as FlatMap, GroupByKey, and Map.</p>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">DoFn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">unused_args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">unused_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.typehints.decorators.html#apache_beam.typehints.decorators.WithTypeHints" title="apache_beam.typehints.decorators.WithTypeHints"><code class="xref py py-class docutils literal notranslate"><span class="pre">WithTypeHints</span></code></a>, <a class="reference internal" href="apache_beam.transforms.display.html#apache_beam.transforms.display.HasDisplayData" title="apache_beam.transforms.display.HasDisplayData"><code class="xref py py-class docutils literal notranslate"><span class="pre">HasDisplayData</span></code></a>, <a class="reference internal" href="apache_beam.utils.urns.html#apache_beam.utils.urns.RunnerApiFn" title="apache_beam.utils.urns.RunnerApiFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">RunnerApiFn</span></code></a></p>
<p>A function object used by a transform with custom processing.</p>
<p>The ParDo transform is such a transform. The ParDo.apply
method will take an object of type DoFn and apply it to all elements of a
PCollection object.</p>
<p>In order to have concrete DoFn objects one has to subclass from DoFn and
define the desired behavior (start_bundle/finish_bundle and process) or wrap a
callable object using the CallableWrapperDoFn class.</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.ElementParam">
<span class="sig-name descname"><span class="pre">ElementParam</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">ElementParam</span></em><a class="headerlink" href="#apache_beam.transforms.core.DoFn.ElementParam" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.SideInputParam">
<span class="sig-name descname"><span class="pre">SideInputParam</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">SideInputParam</span></em><a class="headerlink" href="#apache_beam.transforms.core.DoFn.SideInputParam" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.TimestampParam">
<span class="sig-name descname"><span class="pre">TimestampParam</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">TimestampParam</span></em><a class="headerlink" href="#apache_beam.transforms.core.DoFn.TimestampParam" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.WindowParam">
<span class="sig-name descname"><span class="pre">WindowParam</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">WindowParam</span></em><a class="headerlink" href="#apache_beam.transforms.core.DoFn.WindowParam" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.WindowedValueParam">
<span class="sig-name descname"><span class="pre">WindowedValueParam</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">WindowedValueParam</span></em><a class="headerlink" href="#apache_beam.transforms.core.DoFn.WindowedValueParam" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.PaneInfoParam">
<span class="sig-name descname"><span class="pre">PaneInfoParam</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">PaneInfoParam</span></em><a class="headerlink" href="#apache_beam.transforms.core.DoFn.PaneInfoParam" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.WatermarkEstimatorParam">
<span class="sig-name descname"><span class="pre">WatermarkEstimatorParam</span></span><a class="headerlink" href="#apache_beam.transforms.core.DoFn.WatermarkEstimatorParam" title="Link to this definition"></a></dt>
<dd><p>alias of <code class="xref py py-class docutils literal notranslate"><span class="pre">_WatermarkEstimatorParam</span></code></p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.BundleFinalizerParam">
<span class="sig-name descname"><span class="pre">BundleFinalizerParam</span></span><a class="headerlink" href="#apache_beam.transforms.core.DoFn.BundleFinalizerParam" title="Link to this definition"></a></dt>
<dd><p>alias of <code class="xref py py-class docutils literal notranslate"><span class="pre">_BundleFinalizerParam</span></code></p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.KeyParam">
<span class="sig-name descname"><span class="pre">KeyParam</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">KeyParam</span></em><a class="headerlink" href="#apache_beam.transforms.core.DoFn.KeyParam" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.BundleContextParam">
<span class="sig-name descname"><span class="pre">BundleContextParam</span></span><a class="headerlink" href="#apache_beam.transforms.core.DoFn.BundleContextParam" title="Link to this definition"></a></dt>
<dd><p>alias of <code class="xref py py-class docutils literal notranslate"><span class="pre">_BundleContextParam</span></code></p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.SetupContextParam">
<span class="sig-name descname"><span class="pre">SetupContextParam</span></span><a class="headerlink" href="#apache_beam.transforms.core.DoFn.SetupContextParam" title="Link to this definition"></a></dt>
<dd><p>alias of <code class="xref py py-class docutils literal notranslate"><span class="pre">_SetupContextParam</span></code></p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.StateParam">
<span class="sig-name descname"><span class="pre">StateParam</span></span><a class="headerlink" href="#apache_beam.transforms.core.DoFn.StateParam" title="Link to this definition"></a></dt>
<dd><p>alias of <code class="xref py py-class docutils literal notranslate"><span class="pre">_StateDoFnParam</span></code></p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.TimerParam">
<span class="sig-name descname"><span class="pre">TimerParam</span></span><a class="headerlink" href="#apache_beam.transforms.core.DoFn.TimerParam" title="Link to this definition"></a></dt>
<dd><p>alias of <code class="xref py py-class docutils literal notranslate"><span class="pre">_TimerDoFnParam</span></code></p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.DynamicTimerTagParam">
<span class="sig-name descname"><span class="pre">DynamicTimerTagParam</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">DynamicTimerTagParam</span></em><a class="headerlink" href="#apache_beam.transforms.core.DoFn.DynamicTimerTagParam" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.DoFnProcessParams">
<span class="sig-name descname"><span class="pre">DoFnProcessParams</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">[ElementParam,</span> <span class="pre">SideInputParam,</span> <span class="pre">TimestampParam,</span> <span class="pre">WindowParam,</span> <span class="pre">WindowedValueParam,</span> <span class="pre">&lt;class</span> <span class="pre">'apache_beam.transforms.core._WatermarkEstimatorParam'&gt;,</span> <span class="pre">PaneInfoParam,</span> <span class="pre">&lt;class</span> <span class="pre">'apache_beam.transforms.core._BundleFinalizerParam'&gt;,</span> <span class="pre">KeyParam,</span> <span class="pre">&lt;class</span> <span class="pre">'apache_beam.transforms.core._StateDoFnParam'&gt;,</span> <span class="pre">&lt;class</span> <span class="pre">'apache_beam.transforms.core._TimerDoFnParam'&gt;,</span> <span class="pre">&lt;class</span> <span class="pre">'apache_beam.transforms.core._BundleContextParam'&gt;,</span> <span class="pre">&lt;class</span> <span class="pre">'apache_beam.transforms.core._SetupContextParam'&gt;]</span></em><a class="headerlink" href="#apache_beam.transforms.core.DoFn.DoFnProcessParams" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.RestrictionParam">
<span class="sig-name descname"><span class="pre">RestrictionParam</span></span><a class="headerlink" href="#apache_beam.transforms.core.DoFn.RestrictionParam" title="Link to this definition"></a></dt>
<dd><p>alias of <code class="xref py py-class docutils literal notranslate"><span class="pre">_RestrictionDoFnParam</span></code></p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.from_callable">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_callable</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.from_callable"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.from_callable" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.unbounded_per_element">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">unbounded_per_element</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.unbounded_per_element"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.unbounded_per_element" title="Link to this definition"></a></dt>
<dd><p>A decorator on process fn specifying that the fn performs an unbounded
amount of work per input element.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.yields_elements">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">yields_elements</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.yields_elements"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.yields_elements" title="Link to this definition"></a></dt>
<dd><p>A decorator to apply to <code class="docutils literal notranslate"><span class="pre">process_batch</span></code> indicating it yields elements.</p>
<p>By default <code class="docutils literal notranslate"><span class="pre">process_batch</span></code> is assumed to both consume and produce
“batches”, which are collections of multiple logical Beam elements. This
decorator indicates that <code class="docutils literal notranslate"><span class="pre">process_batch</span></code> <strong>produces</strong> individual elements
at a time. <code class="docutils literal notranslate"><span class="pre">process_batch</span></code> is always expected to consume batches.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.yields_batches">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">yields_batches</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.yields_batches"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.yields_batches" title="Link to this definition"></a></dt>
<dd><p>A decorator to apply to <code class="docutils literal notranslate"><span class="pre">process</span></code> indicating it yields batches.</p>
<p>By default <code class="docutils literal notranslate"><span class="pre">process</span></code> is assumed to both consume and produce
individual elements at a time. This decorator indicates that <code class="docutils literal notranslate"><span class="pre">process</span></code>
<strong>produces</strong> “batches”, which are collections of multiple logical Beam
elements.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.default_label">
<span class="sig-name descname"><span class="pre">default_label</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.default_label"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.default_label" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.process">
<span class="sig-name descname"><span class="pre">process</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.process"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.process" title="Link to this definition"></a></dt>
<dd><p>Method to use for processing elements.</p>
<p>This is invoked by <code class="docutils literal notranslate"><span class="pre">DoFnRunner</span></code> for each element of a input
<code class="docutils literal notranslate"><span class="pre">PCollection</span></code>.</p>
<p>The following parameters can be used as default values on <code class="docutils literal notranslate"><span class="pre">process</span></code>
arguments to indicate that a DoFn accepts the corresponding parameters. For
example, a DoFn might accept the element and its timestamp with the
following signature:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span><span class="w"> </span><span class="nf">process</span><span class="p">(</span><span class="n">element</span><span class="o">=</span><span class="n">DoFn</span><span class="o">.</span><span class="n">ElementParam</span><span class="p">,</span> <span class="n">timestamp</span><span class="o">=</span><span class="n">DoFn</span><span class="o">.</span><span class="n">TimestampParam</span><span class="p">):</span>
<span class="o">...</span>
</pre></div>
</div>
<p>The full set of parameters is:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.ElementParam</span></code>: element to be processed, should not be mutated.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.SideInputParam</span></code>: a side input that may be used when processing.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.TimestampParam</span></code>: timestamp of the input element.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.WindowParam</span></code>: <code class="docutils literal notranslate"><span class="pre">Window</span></code> the input element belongs to.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.TimerParam</span></code>: a <code class="docutils literal notranslate"><span class="pre">userstate.RuntimeTimer</span></code> object defined by the
spec of the parameter.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.StateParam</span></code>: a <code class="docutils literal notranslate"><span class="pre">userstate.RuntimeState</span></code> object defined by the
spec of the parameter.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.KeyParam</span></code>: key associated with the element.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.RestrictionParam</span></code>: an <code class="docutils literal notranslate"><span class="pre">iobase.RestrictionTracker</span></code> will be
provided here to allow treatment as a Splittable <code class="docutils literal notranslate"><span class="pre">DoFn</span></code>. The restriction
tracker will be derived from the restriction provider in the parameter.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.WatermarkEstimatorParam</span></code>: a function that can be used to track
output watermark of Splittable <code class="docutils literal notranslate"><span class="pre">DoFn</span></code> implementations.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.BundleContextParam</span></code>: allows a shared context manager to be used
per bundle</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">DoFn.SetupContextParam</span></code>: allows a shared context manager to be used
per DoFn</p></li>
</ul>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>element</strong> – The element to be processed</p></li>
<li><p><strong>*args</strong> – side inputs</p></li>
<li><p><strong>**kwargs</strong> – other keyword arguments.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>An Iterable of output elements or None.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.process_batch">
<span class="sig-name descname"><span class="pre">process_batch</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">batch</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.process_batch"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.process_batch" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.setup">
<span class="sig-name descname"><span class="pre">setup</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.setup"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.setup" title="Link to this definition"></a></dt>
<dd><p>Called to prepare an instance for processing bundles of elements.</p>
<p>This is a good place to initialize transient in-memory resources, such as
network connections. The resources can then be disposed in
<code class="docutils literal notranslate"><span class="pre">DoFn.teardown</span></code>.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.start_bundle">
<span class="sig-name descname"><span class="pre">start_bundle</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.start_bundle"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.start_bundle" title="Link to this definition"></a></dt>
<dd><p>Called before a bundle of elements is processed on a worker.</p>
<p>Elements to be processed are split into bundles and distributed
to workers. Before a worker calls process() on the first element
of its bundle, it calls this method.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.finish_bundle">
<span class="sig-name descname"><span class="pre">finish_bundle</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.finish_bundle"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.finish_bundle" title="Link to this definition"></a></dt>
<dd><p>Called after a bundle of elements is processed on a worker.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.teardown">
<span class="sig-name descname"><span class="pre">teardown</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.teardown"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.teardown" title="Link to this definition"></a></dt>
<dd><p>Called to use to clean up this instance before it is discarded.</p>
<p>A runner will do its best to call this method on any given instance to
prevent leaks of transient resources, however, there may be situations where
this is impossible (e.g. process crash, hardware failure, etc.) or
unnecessary (e.g. the pipeline is shutting down and the process is about to
be killed anyway, so all transient resources will be released automatically
by the OS). In these cases, the call may not happen. It will also not be
retried, because in such situations the DoFn instance no longer exists, so
there’s no instance to retry it on.</p>
<p>Thus, all work that depends on input elements, and all externally important
side effects, must be performed in <code class="docutils literal notranslate"><span class="pre">DoFn.process</span></code> or
<code class="docutils literal notranslate"><span class="pre">DoFn.finish_bundle</span></code>.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.get_function_arguments">
<span class="sig-name descname"><span class="pre">get_function_arguments</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">func</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.get_function_arguments"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.get_function_arguments" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.default_type_hints">
<span class="sig-name descname"><span class="pre">default_type_hints</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.default_type_hints"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.default_type_hints" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.get_input_batch_type">
<span class="sig-name descname"><span class="pre">get_input_batch_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_element_type</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">TypeConstraint</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><span class="pre">type</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.get_input_batch_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.get_input_batch_type" title="Link to this definition"></a></dt>
<dd><p>Determine the batch type expected as input to process_batch.</p>
<p>The default implementation of <code class="docutils literal notranslate"><span class="pre">get_input_batch_type</span></code> simply observes the
input typehint for the first parameter of <code class="docutils literal notranslate"><span class="pre">process_batch</span></code>. A Batched DoFn
may override this method if a dynamic approach is required.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>input_element_type</strong> – The <strong>element type</strong> of the input PCollection this
DoFn is being applied to.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p><code class="docutils literal notranslate"><span class="pre">None</span></code> if this DoFn cannot accept batches, else a Beam typehint or
a native Python typehint.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.get_output_batch_type">
<span class="sig-name descname"><span class="pre">get_output_batch_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_element_type</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">TypeConstraint</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><span class="pre">type</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#DoFn.get_output_batch_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.DoFn.get_output_batch_type" title="Link to this definition"></a></dt>
<dd><p>Determine the batch type produced by this DoFn’s <code class="docutils literal notranslate"><span class="pre">process_batch</span></code>
implementation and/or its <code class="docutils literal notranslate"><span class="pre">process</span></code> implementation with
<code class="docutils literal notranslate"><span class="pre">&#64;yields_batch</span></code>.</p>
<p>The default implementation of this method observes the return type
annotations on <code class="docutils literal notranslate"><span class="pre">process_batch</span></code> and/or <code class="docutils literal notranslate"><span class="pre">process</span></code>. A Batched DoFn may
override this method if a dynamic approach is required.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>input_element_type</strong> – The <strong>element type</strong> of the input PCollection this
DoFn is being applied to.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p><code class="docutils literal notranslate"><span class="pre">None</span></code> if this DoFn will never yield batches, else a Beam typehint or
a native Python typehint.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.DoFn.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">context</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.transforms.core.DoFn.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">CombineFn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">unused_args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">unused_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.typehints.decorators.html#apache_beam.typehints.decorators.WithTypeHints" title="apache_beam.typehints.decorators.WithTypeHints"><code class="xref py py-class docutils literal notranslate"><span class="pre">WithTypeHints</span></code></a>, <a class="reference internal" href="apache_beam.transforms.display.html#apache_beam.transforms.display.HasDisplayData" title="apache_beam.transforms.display.HasDisplayData"><code class="xref py py-class docutils literal notranslate"><span class="pre">HasDisplayData</span></code></a>, <a class="reference internal" href="apache_beam.utils.urns.html#apache_beam.utils.urns.RunnerApiFn" title="apache_beam.utils.urns.RunnerApiFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">RunnerApiFn</span></code></a></p>
<p>A function object used by a Combine transform with custom processing.</p>
<p>A CombineFn specifies how multiple values in all or part of a PCollection can
be merged into a single value—essentially providing the same kind of
information as the arguments to the Python “reduce” builtin (except for the
input argument, which is an instance of CombineFnProcessContext). The
combining process proceeds as follows:</p>
<ol class="arabic simple">
<li><p>Input values are partitioned into one or more batches.</p></li>
<li><p>For each batch, the setup method is invoked.</p></li>
<li><p>For each batch, the create_accumulator method is invoked to create a fresh
initial “accumulator” value representing the combination of zero values.</p></li>
<li><p>For each input value in the batch, the add_input method is invoked to
combine more values with the accumulator for that batch.</p></li>
<li><p>The merge_accumulators method is invoked to combine accumulators from
separate batches into a single combined output accumulator value, once all
of the accumulators have had all the input value in their batches added to
them. This operation is invoked repeatedly, until there is only one
accumulator value left.</p></li>
<li><p>The extract_output operation is invoked on the final accumulator to get
the output value.</p></li>
<li><p>The teardown method is invoked.</p></li>
</ol>
<p>Note: If this <strong>CombineFn</strong> is used with a transform that has defaults,
<strong>apply</strong> will be called with an empty list at expansion time to get the
default value.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.default_label">
<span class="sig-name descname"><span class="pre">default_label</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.default_label"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.default_label" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.setup">
<span class="sig-name descname"><span class="pre">setup</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.setup"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.setup" title="Link to this definition"></a></dt>
<dd><p>Called to prepare an instance for combining.</p>
<p>This method can be useful if there is some state that needs to be loaded
before executing any of the other methods. The resources can then be
disposed of in <code class="docutils literal notranslate"><span class="pre">CombineFn.teardown</span></code>.</p>
<p>If you are using Dataflow, you need to enable Dataflow Runner V2
before using this feature.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>*args</strong> – Additional arguments and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – Additional arguments and side inputs.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.create_accumulator">
<span class="sig-name descname"><span class="pre">create_accumulator</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.create_accumulator"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.create_accumulator" title="Link to this definition"></a></dt>
<dd><p>Return a fresh, empty accumulator for the combine operation.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>*args</strong> – Additional arguments and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – Additional arguments and side inputs.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.add_input">
<span class="sig-name descname"><span class="pre">add_input</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">mutable_accumulator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.add_input"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.add_input" title="Link to this definition"></a></dt>
<dd><p>Return result of folding element into accumulator.</p>
<p>CombineFn implementors must override add_input.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>mutable_accumulator</strong> – the current accumulator,
may be modified and returned for efficiency</p></li>
<li><p><strong>element</strong> – the element to add, should not be mutated</p></li>
<li><p><strong>*args</strong> – Additional arguments and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – Additional arguments and side inputs.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.add_inputs">
<span class="sig-name descname"><span class="pre">add_inputs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">mutable_accumulator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">elements</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.add_inputs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.add_inputs" title="Link to this definition"></a></dt>
<dd><p>Returns the result of folding each element in elements into accumulator.</p>
<p>This is provided in case the implementation affords more efficient
bulk addition of elements. The default implementation simply loops
over the inputs invoking add_input for each one.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>mutable_accumulator</strong> – the current accumulator,
may be modified and returned for efficiency</p></li>
<li><p><strong>elements</strong> – the elements to add, should not be mutated</p></li>
<li><p><strong>*args</strong> – Additional arguments and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – Additional arguments and side inputs.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.merge_accumulators">
<span class="sig-name descname"><span class="pre">merge_accumulators</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">accumulators</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.merge_accumulators"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.merge_accumulators" title="Link to this definition"></a></dt>
<dd><p>Returns the result of merging several accumulators
to a single accumulator value.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>accumulators</strong> – the accumulators to merge.
Only the first accumulator may be modified and returned for efficiency;
the other accumulators should not be mutated, because they may be
shared with other code and mutating them could lead to incorrect
results or data corruption.</p></li>
<li><p><strong>*args</strong> – Additional arguments and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – Additional arguments and side inputs.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.compact">
<span class="sig-name descname"><span class="pre">compact</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">accumulator</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.compact"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.compact" title="Link to this definition"></a></dt>
<dd><p>Optionally returns a more compact representation of the accumulator.</p>
<p>This is called before an accumulator is sent across the wire, and can
be useful in cases where values are buffered or otherwise lazily
kept unprocessed when added to the accumulator. Should return an
equivalent, though possibly modified, accumulator.</p>
<p>By default returns the accumulator unmodified.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>accumulator</strong> – the current accumulator</p></li>
<li><p><strong>*args</strong> – Additional arguments and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – Additional arguments and side inputs.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.extract_output">
<span class="sig-name descname"><span class="pre">extract_output</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">accumulator</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.extract_output"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.extract_output" title="Link to this definition"></a></dt>
<dd><p>Return result of converting accumulator into the output value.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>accumulator</strong> – the final accumulator value computed by this CombineFn
for the entire input key or PCollection. Can be modified for
efficiency.</p></li>
<li><p><strong>*args</strong> – Additional arguments and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – Additional arguments and side inputs.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.teardown">
<span class="sig-name descname"><span class="pre">teardown</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.teardown"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.teardown" title="Link to this definition"></a></dt>
<dd><p>Called to clean up an instance before it is discarded.</p>
<p>If you are using Dataflow, you need to enable Dataflow Runner V2
before using this feature.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>*args</strong> – Additional arguments and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – Additional arguments and side inputs.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.apply">
<span class="sig-name descname"><span class="pre">apply</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">elements</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.apply"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.apply" title="Link to this definition"></a></dt>
<dd><p>Returns result of applying this CombineFn to the input values.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>elements</strong> – the set of values to combine.</p></li>
<li><p><strong>*args</strong> – Additional arguments and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – Additional arguments and side inputs.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.for_input_type">
<span class="sig-name descname"><span class="pre">for_input_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.for_input_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.for_input_type" title="Link to this definition"></a></dt>
<dd><p>Returns a specialized implementation of self, if it exists.</p>
<p>Otherwise, returns self.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>input_type</strong> – the type of input elements.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.from_callable">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_callable</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.from_callable"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.from_callable" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.maybe_from_callable">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">maybe_from_callable</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><span class="pre">CombineFn</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Callable" title="(in Python v3.13)"><span class="pre">Callable</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">has_side_inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><span class="pre">CombineFn</span></a></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.maybe_from_callable"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.maybe_from_callable" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.get_accumulator_coder">
<span class="sig-name descname"><span class="pre">get_accumulator_coder</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineFn.get_accumulator_coder"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.get_accumulator_coder" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineFn.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">context</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.transforms.core.CombineFn.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.PartitionFn">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">PartitionFn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">unused_args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">unused_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#PartitionFn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.PartitionFn" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.typehints.decorators.html#apache_beam.typehints.decorators.WithTypeHints" title="apache_beam.typehints.decorators.WithTypeHints"><code class="xref py py-class docutils literal notranslate"><span class="pre">WithTypeHints</span></code></a></p>
<p>A function object used by a Partition transform.</p>
<p>A PartitionFn specifies how individual values in a PCollection will be placed
into separate partitions, indexed by an integer.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.PartitionFn.default_label">
<span class="sig-name descname"><span class="pre">default_label</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#PartitionFn.default_label"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.PartitionFn.default_label" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.PartitionFn.partition_for">
<span class="sig-name descname"><span class="pre">partition_for</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">T</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">num_partitions</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#PartitionFn.partition_for"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.PartitionFn.partition_for" title="Link to this definition"></a></dt>
<dd><p>Specify which partition will receive this element.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>element</strong> – An element of the input PCollection.</p></li>
<li><p><strong>num_partitions</strong> – Number of partitions, i.e., output PCollections.</p></li>
<li><p><strong>*args</strong> – optional parameters and side inputs.</p></li>
<li><p><strong>**kwargs</strong> – optional parameters and side inputs.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>An integer in [0, num_partitions).</p>
</dd>
</dl>
</dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">ParDo</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">PTransformWithSideInputs</span></code></p>
<p>A <a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a> transform.</p>
<p>Processes an input <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> by applying a
<a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> to each element and returning the accumulated results into an
output <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a>. The type of the elements is
not fixed as long as the <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> can deal with it. In reality the type
is restrained to some extent because the elements sometimes must be persisted
to external storage. See the <a class="reference internal" href="#apache_beam.transforms.core.ParDo.expand" title="apache_beam.transforms.core.ParDo.expand"><code class="xref py py-meth docutils literal notranslate"><span class="pre">expand()</span></code></a> method comments for a
detailed description of all possible arguments.</p>
<p>Note that the <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> must return an iterable for each element of the
input <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a>. An easy way to do this is to
use the <code class="docutils literal notranslate"><span class="pre">yield</span></code> keyword in the process method.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>pcoll</strong> (<a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><em>PCollection</em></a>) – a <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> to be processed.</p></li>
<li><p><strong>fn</strong> (<cite>typing.Union[DoFn, typing.Callable]</cite>) – a <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> object to be
applied to each element of <strong>pcoll</strong> argument, or a Callable.</p></li>
<li><p><strong>*args</strong> – positional arguments passed to the <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> object.</p></li>
<li><p><strong>**kwargs</strong> – keyword arguments passed to the <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> object.</p></li>
</ul>
</dd>
</dl>
<p>Note that the positional and keyword arguments will be processed in order
to detect <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> s that will be computed as
side inputs to the transform. During pipeline execution whenever the
<a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> object gets executed (its <a class="reference internal" href="#apache_beam.transforms.core.DoFn.process" title="apache_beam.transforms.core.DoFn.process"><code class="xref py py-meth docutils literal notranslate"><span class="pre">DoFn.process()</span></code></a> method gets
called) the <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> arguments will be
replaced by values from the <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> in the
exact positions where they appear in the argument lists.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.with_exception_handling">
<span class="sig-name descname"><span class="pre">with_exception_handling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="pre">main_tag='good',</span> <span class="pre">dead_letter_tag='bad',</span> <span class="pre">*,</span> <span class="pre">exc_class=&lt;class</span> <span class="pre">'Exception'&gt;,</span> <span class="pre">partial=False,</span> <span class="pre">use_subprocess=False,</span> <span class="pre">threshold=1,</span> <span class="pre">threshold_windowing=None,</span> <span class="pre">timeout=None,</span> <span class="pre">error_handler=None,</span> <span class="pre">on_failure_callback:</span> <span class="pre">~typing.Callable[[Exception,</span> <span class="pre">~typing.Any],</span> <span class="pre">None]</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">allow_unsafe_userstate_in_process=False</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.with_exception_handling"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.with_exception_handling" title="Link to this definition"></a></dt>
<dd><p>Automatically provides a dead letter output for saving bad inputs.
This can allow a pipeline to continue successfully rather than fail or
continuously throw errors on retry when bad elements are encountered.</p>
<p>This returns a tagged output with two PCollections, the first being the
results of successfully processing the input PCollection, and the second
being the set of bad records (those which threw exceptions during
processing) along with information about the errors raised.</p>
<p>For example, one would write:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">good</span><span class="p">,</span> <span class="n">bad</span> <span class="o">=</span> <span class="n">inputs</span> <span class="o">|</span> <span class="n">Map</span><span class="p">(</span><span class="n">maybe_erroring_fn</span><span class="p">)</span><span class="o">.</span><span class="n">with_exception_handling</span><span class="p">()</span>
</pre></div>
</div>
<p>and <cite>good</cite> will be a PCollection of mapped records and <cite>bad</cite> will contain
tuples of the form <cite>(input, error_string</cite>) for each input that raised an
exception.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>main_tag</strong> – tag to be used for the main (good) output of the DoFn,
useful to avoid possible conflicts if this DoFn already produces
multiple outputs. Optional, defaults to ‘good’.</p></li>
<li><p><strong>dead_letter_tag</strong> – tag to be used for the bad inputs, useful to avoid
possible conflicts if this DoFn already produces multiple outputs.
Optional, defaults to ‘bad’.</p></li>
<li><p><strong>exc_class</strong> – An exception class, or tuple of exception classes, to catch.
Optional, defaults to ‘Exception’.</p></li>
<li><p><strong>partial</strong> – Whether to emit outputs for an element as they’re produced
(which could result in partial outputs for a ParDo or FlatMap that
throws an error part way through execution) or buffer all outputs
until successful processing of the entire element. Optional,
defaults to False.</p></li>
<li><p><strong>use_subprocess</strong> – Whether to execute the DoFn logic in a subprocess. This
allows one to recover from errors that can crash the calling process
(e.g. from an underlying C/C++ library causing a segfault), but is
slower as elements and results must cross a process boundary. Note
that this starts up a long-running process that is used to handle
all the elements (until hard failure, which should be rare) rather
than a new process per element, so the overhead should be minimal
(and can be amortized if there’s any per-process or per-bundle
initialization that needs to be done). Optional, defaults to False.</p></li>
<li><p><strong>threshold</strong> – An upper bound on the ratio of inputs that can be bad before
aborting the entire pipeline. Optional, defaults to 1.0 (meaning
up to 100% of inputs can be bad and the pipeline will still succeed).</p></li>
<li><p><strong>threshold_windowing</strong> – Event-time windowing to use for threshold. Optional,
defaults to the windowing of the input.</p></li>
<li><p><strong>timeout</strong> – If the element has not finished processing in timeout seconds,
raise a TimeoutError. Defaults to None, meaning no time limit.</p></li>
<li><p><strong>error_handler</strong> – An ErrorHandler that should be used to consume the bad
records, rather than returning the good and bad records as a tuple.</p></li>
<li><p><strong>on_failure_callback</strong> – If an element fails or times out,
on_failure_callback will be invoked. It will receive the exception
and the element being processed in as args. In case of a timeout,
the exception will be of type <cite>TimeoutError</cite>. Be careful with this
callback - if you set a timeout, it will not apply to the callback,
and if the callback fails it will not be retried.</p></li>
<li><p><strong>allow_unsafe_userstate_in_process</strong> – If False, user state will not be
permitted in the DoFn’s process method. This is disabled by default
because user state is potentially unsafe with exception handling
since it can be successfully stored or cleared even if the associated
element fails and is routed to a dead letter queue. Semantics around
state in this kind of failure scenario are not well defined and are
subject to change.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.with_error_handler">
<span class="sig-name descname"><span class="pre">with_error_handler</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">error_handler</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">exception_handling_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.with_error_handler"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.with_error_handler" title="Link to this definition"></a></dt>
<dd><p>An alias for <cite>with_exception_handling(error_handler=error_handler, …)</cite></p>
<p>This is provided to fit the general ErrorHandler conventions.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.default_type_hints">
<span class="sig-name descname"><span class="pre">default_type_hints</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.default_type_hints"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.default_type_hints" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.infer_batch_converters">
<span class="sig-name descname"><span class="pre">infer_batch_converters</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_element_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.infer_batch_converters"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.infer_batch_converters" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.make_fn">
<span class="sig-name descname"><span class="pre">make_fn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">has_side_inputs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.make_fn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.make_fn" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.display_data">
<span class="sig-name descname"><span class="pre">display_data</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.display_data"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.display_data" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.with_outputs">
<span class="sig-name descname"><span class="pre">with_outputs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">tags</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">main</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">allow_unknown_tags</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.with_outputs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.with_outputs" title="Link to this definition"></a></dt>
<dd><p>Returns a tagged tuple allowing access to the outputs of a
<a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a>.</p>
<p>The resulting object supports access to the
<a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> associated with a tag
(e.g. <code class="docutils literal notranslate"><span class="pre">o.tag</span></code>, <code class="docutils literal notranslate"><span class="pre">o[tag]</span></code>) and iterating over the available tags
(e.g. <code class="docutils literal notranslate"><span class="pre">for</span> <span class="pre">tag</span> <span class="pre">in</span> <span class="pre">o:</span> <span class="pre">...</span></code>).</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>*tags</strong> – if non-empty, list of valid tags. If a list of valid tags is given,
it will be an error to use an undeclared tag later in the pipeline.</p></li>
<li><p><strong>**main_kw</strong> – dictionary empty or with one key <code class="docutils literal notranslate"><span class="pre">'main'</span></code> defining the tag to
be used for the main output (which will not have a tag associated with
it).</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>An object of type
<code class="xref py py-class docutils literal notranslate"><span class="pre">DoOutputsTuple</span></code> that bundles together all
the outputs of a <a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a> transform and allows accessing the
individual <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> s for each output
using an <code class="docutils literal notranslate"><span class="pre">object.tag</span></code> syntax.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><em>DoOutputsTuple</em></p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><ul class="simple">
<li><p><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#TypeError" title="(in Python v3.13)"><strong>TypeError</strong></a> – if the <strong>self</strong> object is not a
<a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> that is the result of a
<a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a> transform.</p></li>
<li><p><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#ValueError" title="(in Python v3.13)"><strong>ValueError</strong></a> – if <strong>main_kw</strong> contains any key other than
<code class="docutils literal notranslate"><span class="pre">'main'</span></code>.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">context</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.io.iobase.html#apache_beam.io.iobase.Read.PipelineContext" title="apache_beam.io.iobase.Read.PipelineContext"><span class="pre">PipelineContext</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">extra_kwargs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Tuple" title="(in Python v3.13)"><span class="pre">Tuple</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">message.Message</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.to_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.from_runner_api_parameter">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_ptransform</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pardo_payload</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.from_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.from_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.runner_api_requires_keyed_input">
<span class="sig-name descname"><span class="pre">runner_api_requires_keyed_input</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.runner_api_requires_keyed_input"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.runner_api_requires_keyed_input" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.ParDo.get_restriction_coder">
<span class="sig-name descname"><span class="pre">get_restriction_coder</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#ParDo.get_restriction_coder"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.ParDo.get_restriction_coder" title="Link to this definition"></a></dt>
<dd><p>Returns <cite>restriction coder if `DoFn</cite> of this <cite>ParDo</cite> is a SDF.</p>
<p>Returns <cite>None</cite> otherwise.</p>
</dd></dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="apache_beam.transforms.core.FlatMap">
<span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">FlatMap</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn=&lt;function</span> <span class="pre">identity&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">*args</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">**kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#FlatMap"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.FlatMap" title="Link to this definition"></a></dt>
<dd><p><a class="reference internal" href="#apache_beam.transforms.core.FlatMap" title="apache_beam.transforms.core.FlatMap"><code class="xref py py-func docutils literal notranslate"><span class="pre">FlatMap()</span></code></a> is like <a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a> except it takes a callable to
specify the transformation.</p>
<p>The callable must return an iterable for each element of the input
<a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a>. The elements of these iterables will
be flattened into the output <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a>. If
no callable is given, then all elements of the input PCollection must already
be iterables themselves and will be flattened into the output PCollection.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>fn</strong> (<em>callable</em>) – a callable object.</p></li>
<li><p><strong>*args</strong> – positional arguments passed to the transform callable.</p></li>
<li><p><strong>**kwargs</strong> – keyword arguments passed to the transform callable.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> containing the
<a class="reference internal" href="#apache_beam.transforms.core.FlatMap" title="apache_beam.transforms.core.FlatMap"><code class="xref py py-func docutils literal notranslate"><span class="pre">FlatMap()</span></code></a> outputs.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><em>PCollection</em></a></p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#TypeError" title="(in Python v3.13)"><strong>TypeError</strong></a> – If the <strong>fn</strong> passed as argument is not a callable.
Typical error is to pass a <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> instance which is supported only
for <a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a>.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="apache_beam.transforms.core.FlatMapTuple">
<span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">FlatMapTuple</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#FlatMapTuple"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.FlatMapTuple" title="Link to this definition"></a></dt>
<dd><p><a class="reference internal" href="#apache_beam.transforms.core.FlatMapTuple" title="apache_beam.transforms.core.FlatMapTuple"><code class="xref py py-func docutils literal notranslate"><span class="pre">FlatMapTuple()</span></code></a> is like <a class="reference internal" href="#apache_beam.transforms.core.FlatMap" title="apache_beam.transforms.core.FlatMap"><code class="xref py py-func docutils literal notranslate"><span class="pre">FlatMap()</span></code></a> but expects tuple inputs and
flattens them into multiple input arguments.</p>
<p>In other words</p>
<blockquote>
<div><p>beam.FlatMap(lambda start_end: range(start_end[0], start_end[1]))</p>
</div></blockquote>
<p>is equivalent to</p>
<blockquote>
<div><p>beam.FlatMapTuple(lambda start, end: range(start, end))</p>
</div></blockquote>
<p>This can be useful when processing a PCollection of tuples
(e.g. key-value pairs).</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>fn</strong> (<em>callable</em>) – a callable object.</p></li>
<li><p><strong>*args</strong> – positional arguments passed to the transform callable.</p></li>
<li><p><strong>**kwargs</strong> – keyword arguments passed to the transform callable.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> containing the
<a class="reference internal" href="#apache_beam.transforms.core.FlatMapTuple" title="apache_beam.transforms.core.FlatMapTuple"><code class="xref py py-func docutils literal notranslate"><span class="pre">FlatMapTuple()</span></code></a> outputs.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><em>PCollection</em></a></p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#TypeError" title="(in Python v3.13)"><strong>TypeError</strong></a> – If the <strong>fn</strong> passed as argument is not a callable.
Typical error is to pass a <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> instance which is supported only
for <a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a>.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Map">
<span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">Map</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Map"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Map" title="Link to this definition"></a></dt>
<dd><p><a class="reference internal" href="#apache_beam.transforms.core.Map" title="apache_beam.transforms.core.Map"><code class="xref py py-func docutils literal notranslate"><span class="pre">Map()</span></code></a> is like <a class="reference internal" href="#apache_beam.transforms.core.FlatMap" title="apache_beam.transforms.core.FlatMap"><code class="xref py py-func docutils literal notranslate"><span class="pre">FlatMap()</span></code></a> except its callable returns only a
single element.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>fn</strong> (<em>callable</em>) – a callable object.</p></li>
<li><p><strong>*args</strong> – positional arguments passed to the transform callable.</p></li>
<li><p><strong>**kwargs</strong> – keyword arguments passed to the transform callable.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> containing the
<a class="reference internal" href="#apache_beam.transforms.core.Map" title="apache_beam.transforms.core.Map"><code class="xref py py-func docutils literal notranslate"><span class="pre">Map()</span></code></a> outputs.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><em>PCollection</em></a></p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#TypeError" title="(in Python v3.13)"><strong>TypeError</strong></a> – If the <strong>fn</strong> passed as argument is not a callable.
Typical error is to pass a <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> instance which is supported only
for <a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a>.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="apache_beam.transforms.core.MapTuple">
<span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">MapTuple</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#MapTuple"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.MapTuple" title="Link to this definition"></a></dt>
<dd><p><a class="reference internal" href="#apache_beam.transforms.core.MapTuple" title="apache_beam.transforms.core.MapTuple"><code class="xref py py-func docutils literal notranslate"><span class="pre">MapTuple()</span></code></a> is like <a class="reference internal" href="#apache_beam.transforms.core.Map" title="apache_beam.transforms.core.Map"><code class="xref py py-func docutils literal notranslate"><span class="pre">Map()</span></code></a> but expects tuple inputs and
flattens them into multiple input arguments.</p>
<p>In other words</p>
<blockquote>
<div><p>“SwapKV” &gt;&gt; beam.Map(lambda kv: (kv[1], kv[0]))</p>
</div></blockquote>
<p>is equivalent to</p>
<blockquote>
<div><p>“SwapKV” &gt;&gt; beam.MapTuple(lambda k, v: (v, k))</p>
</div></blockquote>
<p>This can be useful when processing a PCollection of tuples
(e.g. key-value pairs).</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>fn</strong> (<em>callable</em>) – a callable object.</p></li>
<li><p><strong>*args</strong> – positional arguments passed to the transform callable.</p></li>
<li><p><strong>**kwargs</strong> – keyword arguments passed to the transform callable.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> containing the
<a class="reference internal" href="#apache_beam.transforms.core.MapTuple" title="apache_beam.transforms.core.MapTuple"><code class="xref py py-func docutils literal notranslate"><span class="pre">MapTuple()</span></code></a> outputs.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><em>PCollection</em></a></p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#TypeError" title="(in Python v3.13)"><strong>TypeError</strong></a> – If the <strong>fn</strong> passed as argument is not a callable.
Typical error is to pass a <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> instance which is supported only
for <a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a>.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Filter">
<span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">Filter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Filter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Filter" title="Link to this definition"></a></dt>
<dd><p><a class="reference internal" href="#apache_beam.transforms.core.Filter" title="apache_beam.transforms.core.Filter"><code class="xref py py-func docutils literal notranslate"><span class="pre">Filter()</span></code></a> is a <a class="reference internal" href="#apache_beam.transforms.core.FlatMap" title="apache_beam.transforms.core.FlatMap"><code class="xref py py-func docutils literal notranslate"><span class="pre">FlatMap()</span></code></a> with its callable filtering out
elements.</p>
<p>Filter accepts a function that keeps elements that return True, and filters
out the remaining elements.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>fn</strong> (<code class="docutils literal notranslate"><span class="pre">Callable[...,</span> <span class="pre">bool]</span></code>) – a callable object. First argument will be an
element.</p></li>
<li><p><strong>*args</strong> – positional arguments passed to the transform callable.</p></li>
<li><p><strong>**kwargs</strong> – keyword arguments passed to the transform callable.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> containing the
<a class="reference internal" href="#apache_beam.transforms.core.Filter" title="apache_beam.transforms.core.Filter"><code class="xref py py-func docutils literal notranslate"><span class="pre">Filter()</span></code></a> outputs.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><em>PCollection</em></a></p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#TypeError" title="(in Python v3.13)"><strong>TypeError</strong></a> – If the <strong>fn</strong> passed as argument is not a callable.
Typical error is to pass a <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a> instance which is supported only
for <a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a>.</p>
</dd>
</dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">CombineGlobally</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineGlobally"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.transforms.ptransform.html#apache_beam.transforms.ptransform.PTransform" title="apache_beam.transforms.ptransform.PTransform"><code class="xref py py-class docutils literal notranslate"><span class="pre">PTransform</span></code></a></p>
<p>A <a class="reference internal" href="#apache_beam.transforms.core.CombineGlobally" title="apache_beam.transforms.core.CombineGlobally"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineGlobally</span></code></a> transform.</p>
<p>Reduces a <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> to a single value by
progressively applying a <a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineFn</span></code></a> to portions of the
<a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> (and to intermediate values created
thereby). See documentation in <a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineFn</span></code></a> for details on the specifics
on how <a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineFn</span></code></a> s are applied.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>pcoll</strong> (<a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><em>PCollection</em></a>) – a <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> to be reduced into a single
value.</p></li>
<li><p><strong>fn</strong> (<em>callable</em>) – a <a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineFn</span></code></a> object that will be called to
progressively reduce the <a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> into
single values, or a callable suitable for wrapping by
<code class="xref py py-class docutils literal notranslate"><span class="pre">CallableWrapperCombineFn</span></code>.</p></li>
<li><p><strong>*args</strong> – positional arguments passed to the <a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineFn</span></code></a> object.</p></li>
<li><p><strong>**kwargs</strong> – keyword arguments passed to the <a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineFn</span></code></a> object.</p></li>
</ul>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#TypeError" title="(in Python v3.13)"><strong>TypeError</strong></a> – If the output type of the input
<a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> is not compatible
with <code class="docutils literal notranslate"><span class="pre">Iterable[A]</span></code>.</p>
</dd>
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>A single-element
<a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCollection</span></code></a> containing the main output of
the <a class="reference internal" href="#apache_beam.transforms.core.CombineGlobally" title="apache_beam.transforms.core.CombineGlobally"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineGlobally</span></code></a> transform.</p>
</dd>
<dt class="field-even">Return type<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference internal" href="apache_beam.pvalue.html#apache_beam.pvalue.PCollection" title="apache_beam.pvalue.PCollection"><em>PCollection</em></a></p>
</dd>
</dl>
<p>Note that the positional and keyword arguments will be processed in order
to detect <code class="xref py py-class docutils literal notranslate"><span class="pre">PValue</span></code> s that will be computed as side
inputs to the transform.
During pipeline execution whenever the <a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineFn</span></code></a> object gets executed
(i.e. any of the <a class="reference internal" href="#apache_beam.transforms.core.CombineFn" title="apache_beam.transforms.core.CombineFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">CombineFn</span></code></a> methods get called), the
<code class="xref py py-class docutils literal notranslate"><span class="pre">PValue</span></code> arguments will be replaced by their
actual value in the exact position where they appear in the argument lists.</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.has_defaults">
<span class="sig-name descname"><span class="pre">has_defaults</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">True</span></em><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.has_defaults" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.as_view">
<span class="sig-name descname"><span class="pre">as_view</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">False</span></em><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.as_view" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.fanout">
<span class="sig-name descname"><span class="pre">fanout</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Optional" title="(in Python v3.13)"><span class="pre">Optional</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">None</span></em><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.fanout" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.display_data">
<span class="sig-name descname"><span class="pre">display_data</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineGlobally.display_data"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.display_data" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.default_label">
<span class="sig-name descname"><span class="pre">default_label</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineGlobally.default_label"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.default_label" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.with_fanout">
<span class="sig-name descname"><span class="pre">with_fanout</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fanout</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineGlobally.with_fanout"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.with_fanout" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.with_defaults">
<span class="sig-name descname"><span class="pre">with_defaults</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">has_defaults</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineGlobally.with_defaults"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.with_defaults" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.without_defaults">
<span class="sig-name descname"><span class="pre">without_defaults</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineGlobally.without_defaults"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.without_defaults" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.as_singleton_view">
<span class="sig-name descname"><span class="pre">as_singleton_view</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineGlobally.as_singleton_view"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.as_singleton_view" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineGlobally.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineGlobally.from_runner_api_parameter">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_ptransform</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">combine_payload</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineGlobally.from_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineGlobally.from_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">CombinePerKey</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">PTransformWithSideInputs</span></code></p>
<p>A per-key Combine transform.</p>
<p>Identifies sets of values associated with the same key in the input
PCollection, then applies a CombineFn to condense those sets to single
values. See documentation in CombineFn for details on the specifics on how
CombineFns are applied.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>pcoll</strong> – input pcollection.</p></li>
<li><p><strong>fn</strong> – instance of CombineFn to apply to all values under the same key in
pcoll, or a callable whose signature is <code class="docutils literal notranslate"><span class="pre">f(iterable,</span> <span class="pre">*args,</span> <span class="pre">**kwargs)</span></code>
(e.g., sum, max).</p></li>
<li><p><strong>*args</strong> – arguments and side inputs, passed directly to the CombineFn.</p></li>
<li><p><strong>**kwargs</strong> – arguments and side inputs, passed directly to the CombineFn.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A PObject holding the result of the combine operation.</p>
</dd>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey.with_hot_key_fanout">
<span class="sig-name descname"><span class="pre">with_hot_key_fanout</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fanout</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey.with_hot_key_fanout"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey.with_hot_key_fanout" title="Link to this definition"></a></dt>
<dd><p>A per-key combine operation like self but with two levels of aggregation.</p>
<p>If a given key is produced by too many upstream bundles, the final
reduction can become a bottleneck despite partial combining being lifted
pre-GroupByKey. In these cases it can be helpful to perform intermediate
partial aggregations in parallel and then re-group to peform a final
(per-key) combine. This is also useful for high-volume keys in streaming
where combiners are not generally lifted for latency reasons.</p>
<p>Note that a fanout greater than 1 requires the data to be sent through
two GroupByKeys, and a high fanout can also result in more shuffle data
due to less per-bundle combining. Setting the fanout for a key at 1 or less
places values on the “cold key” path that skip the intermediate level of
aggregation.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>fanout</strong> – either None, for no fanout, an int, for a constant-degree fanout,
or a callable mapping keys to a key-specific degree of fanout.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A per-key combining PTransform with the specified fanout.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey.display_data">
<span class="sig-name descname"><span class="pre">display_data</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey.display_data"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey.display_data" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey.make_fn">
<span class="sig-name descname"><span class="pre">make_fn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">has_side_inputs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey.make_fn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey.make_fn" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey.default_label">
<span class="sig-name descname"><span class="pre">default_label</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey.default_label"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey.default_label" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey.default_type_hints">
<span class="sig-name descname"><span class="pre">default_type_hints</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey.default_type_hints"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey.default_type_hints" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">context</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.io.iobase.html#apache_beam.io.iobase.Read.PipelineContext" title="apache_beam.io.iobase.Read.PipelineContext"><span class="pre">PipelineContext</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Tuple" title="(in Python v3.13)"><span class="pre">Tuple</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">beam_runner_api_pb2.CombinePayload</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey.to_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey.from_runner_api_parameter">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_ptransform</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">combine_payload</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey.from_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey.from_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombinePerKey.runner_api_requires_keyed_input">
<span class="sig-name descname"><span class="pre">runner_api_requires_keyed_input</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombinePerKey.runner_api_requires_keyed_input"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombinePerKey.runner_api_requires_keyed_input" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineValues">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">CombineValues</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.typehints.decorators.html#apache_beam.typehints.decorators.WithTypeHints" title="apache_beam.typehints.decorators.WithTypeHints"><span class="pre">WithTypeHints</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineValues"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineValues" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">PTransformWithSideInputs</span></code></p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineValues.make_fn">
<span class="sig-name descname"><span class="pre">make_fn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">has_side_inputs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineValues.make_fn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineValues.make_fn" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineValues.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineValues.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineValues.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineValues.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineValues.to_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineValues.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.CombineValues.from_runner_api_parameter">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_ptransform</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">combine_payload</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#CombineValues.from_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.CombineValues.from_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupBy">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">GroupBy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">fields</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupBy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupBy" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.transforms.ptransform.html#apache_beam.transforms.ptransform.PTransform" title="apache_beam.transforms.ptransform.PTransform"><code class="xref py py-class docutils literal notranslate"><span class="pre">PTransform</span></code></a></p>
<p>Groups a PCollection by one or more expressions, used to derive the key.</p>
<p><cite>GroupBy(expr)</cite> is roughly equivalent to</p>
<blockquote>
<div><p>beam.Map(lambda v: (expr(v), v)) | beam.GroupByKey()</p>
</div></blockquote>
<p>but provides several conveniences, e.g.</p>
<blockquote>
<div><ul class="simple">
<li><p>Several arguments may be provided, as positional or keyword arguments,
resulting in a tuple-like key. For example <cite>GroupBy(a=expr1, b=expr2)</cite>
groups by a key with attributes <cite>a</cite> and <cite>b</cite> computed by applying
<cite>expr1</cite> and <cite>expr2</cite> to each element.</p></li>
<li><p>Strings can be used as a shorthand for accessing an attribute, e.g.
<cite>GroupBy(‘some_field’)</cite> is equivalent to
<cite>GroupBy(lambda v: getattr(v, ‘some_field’))</cite>.</p></li>
</ul>
</div></blockquote>
<p>The GroupBy operation can be made into an aggregating operation by invoking
its <cite>aggregate_field</cite> method.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupBy.aggregate_field">
<span class="sig-name descname"><span class="pre">aggregate_field</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">field</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">combine_fn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dest</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupBy.aggregate_field"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupBy.aggregate_field" title="Link to this definition"></a></dt>
<dd><p>Returns a grouping operation that also aggregates grouped values.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>field</strong> – indicates the field to be aggregated</p></li>
<li><p><strong>combine_fn</strong> – indicates the aggregation function to be used</p></li>
<li><p><strong>dest</strong> – indicates the name that will be used for the aggregate in the output</p></li>
</ul>
</dd>
</dl>
<p>May be called repeatedly to aggregate multiple fields, e.g.</p>
<blockquote>
<div><dl class="simple">
<dt>GroupBy(‘key’)</dt><dd><p>.aggregate_field(‘some_attr’, sum, ‘sum_attr’)
.aggregate_field(lambda v: …, MeanCombineFn, ‘mean’)</p>
</dd>
</dl>
</div></blockquote>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupBy.force_tuple_keys">
<span class="sig-name descname"><span class="pre">force_tuple_keys</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupBy.force_tuple_keys"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupBy.force_tuple_keys" title="Link to this definition"></a></dt>
<dd><p>Forces the keys to always be tuple-like, even if there is only a single
expression.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupBy.default_label">
<span class="sig-name descname"><span class="pre">default_label</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupBy.default_label"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupBy.default_label" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupBy.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupBy.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupBy.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupByKey">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">GroupByKey</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">label</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupByKey"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupByKey" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.transforms.ptransform.html#apache_beam.transforms.ptransform.PTransform" title="apache_beam.transforms.ptransform.PTransform"><code class="xref py py-class docutils literal notranslate"><span class="pre">PTransform</span></code></a></p>
<p>A group by key transform.</p>
<p>Processes an input PCollection consisting of key/value pairs represented as a
tuple pair. The result is a PCollection where values having a common key are
grouped together. For example (a, 1), (b, 2), (a, 3) will result into
(a, [1, 3]), (b, [2]).</p>
<p>The implementation here is used only when run on the local direct runner.</p>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupByKey.ReifyWindows">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">ReifyWindows</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">unused_args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">unused_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupByKey.ReifyWindows"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupByKey.ReifyWindows" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a></p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupByKey.ReifyWindows.process">
<span class="sig-name descname"><span class="pre">process</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">window</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">WindowParam</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">timestamp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">TimestampParam</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupByKey.ReifyWindows.process"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupByKey.ReifyWindows.process" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupByKey.ReifyWindows.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupByKey.ReifyWindows.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupByKey.ReifyWindows.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupByKey.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupByKey.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupByKey.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupByKey.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupByKey.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupByKey.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupByKey.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_context</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.io.iobase.html#apache_beam.io.iobase.Read.PipelineContext" title="apache_beam.io.iobase.Read.PipelineContext"><span class="pre">PipelineContext</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Tuple" title="(in Python v3.13)"><span class="pre">Tuple</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupByKey.to_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupByKey.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupByKey.from_runner_api_parameter">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_ptransform</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unused_payload</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unused_context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupByKey.from_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupByKey.from_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.GroupByKey.runner_api_requires_keyed_input">
<span class="sig-name descname"><span class="pre">runner_api_requires_keyed_input</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#GroupByKey.runner_api_requires_keyed_input"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.GroupByKey.runner_api_requires_keyed_input" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Select">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">Select</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Select"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Select" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.transforms.ptransform.html#apache_beam.transforms.ptransform.PTransform" title="apache_beam.transforms.ptransform.PTransform"><code class="xref py py-class docutils literal notranslate"><span class="pre">PTransform</span></code></a></p>
<p>Converts the elements of a PCollection into a schema’d PCollection of Rows.</p>
<p><cite>Select(…)</cite> is roughly equivalent to <cite>Map(lambda x: Row(…))</cite> where each
argument (which may be a string or callable) of <cite>ToRow</cite> is applied to <cite>x</cite>.
For example,</p>
<blockquote>
<div><p>pcoll | beam.Select(‘a’, b=lambda x: foo(x))</p>
</div></blockquote>
<p>is the same as</p>
<blockquote>
<div><p>pcoll | beam.Map(lambda x: beam.Row(a=x.a, b=foo(x)))</p>
</div></blockquote>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Select.with_exception_handling">
<span class="sig-name descname"><span class="pre">with_exception_handling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Select.with_exception_handling"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Select.with_exception_handling" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Select.default_label">
<span class="sig-name descname"><span class="pre">default_label</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Select.default_label"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Select.default_label" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Select.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Select.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Select.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Select.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Select.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Select.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Partition">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">Partition</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.typehints.decorators.html#apache_beam.typehints.decorators.WithTypeHints" title="apache_beam.typehints.decorators.WithTypeHints"><span class="pre">WithTypeHints</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Partition"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Partition" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">PTransformWithSideInputs</span></code></p>
<p>Split a PCollection into several partitions.</p>
<p>Uses the specified PartitionFn to separate an input PCollection into the
specified number of sub-PCollections.</p>
<p>When apply()d, a Partition() PTransform requires the following:</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>partitionfn</strong> – a PartitionFn, or a callable with the signature described in
CallableWrapperPartitionFn.</p></li>
<li><p><strong>n</strong> – number of output partitions.</p></li>
</ul>
</dd>
</dl>
<p>The result of this PTransform is a simple list of the output PCollections
representing each of n partitions, in order.</p>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Partition.ApplyPartitionFnFn">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">ApplyPartitionFnFn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">unused_args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">unused_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Partition.ApplyPartitionFnFn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Partition.ApplyPartitionFnFn" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a></p>
<p>A DoFn that applies a PartitionFn.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Partition.ApplyPartitionFnFn.process">
<span class="sig-name descname"><span class="pre">process</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">partitionfn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Partition.ApplyPartitionFnFn.process"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Partition.ApplyPartitionFnFn.process" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Partition.make_fn">
<span class="sig-name descname"><span class="pre">make_fn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">has_side_inputs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Partition.make_fn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Partition.make_fn" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Partition.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Partition.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Partition.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Windowing">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">Windowing</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">windowfn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">triggerfn</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">accumulation_mode</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">timestamp_combiner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">allowed_lateness</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">environment_id</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Windowing"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Windowing" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.13)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Class representing the window strategy.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>windowfn</strong> – Window assign function.</p></li>
<li><p><strong>triggerfn</strong> – Trigger function.</p></li>
<li><p><strong>accumulation_mode</strong> – a AccumulationMode, controls what to do with data
when a trigger fires multiple times.</p></li>
<li><p><strong>timestamp_combiner</strong> – a TimestampCombiner, determines how output
timestamps of grouping operations are assigned.</p></li>
<li><p><strong>allowed_lateness</strong> – Maximum delay in seconds after end of window
allowed for any late data to be processed without being discarded
directly.</p></li>
<li><p><strong>environment_id</strong> – Environment where the current window_fn should be
applied in.</p></li>
</ul>
</dd>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Windowing.is_default">
<span class="sig-name descname"><span class="pre">is_default</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Windowing.is_default"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Windowing.is_default" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Windowing.to_runner_api">
<span class="sig-name descname"><span class="pre">to_runner_api</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">context</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.io.iobase.html#apache_beam.io.iobase.Read.PipelineContext" title="apache_beam.io.iobase.Read.PipelineContext"><span class="pre">PipelineContext</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">beam_runner_api_pb2.WindowingStrategy</span></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Windowing.to_runner_api"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Windowing.to_runner_api" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Windowing.from_runner_api">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_runner_api</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">proto</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Windowing.from_runner_api"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Windowing.from_runner_api" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WindowInto">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">WindowInto</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">windowfn</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">trigger</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">accumulation_mode</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">timestamp_combiner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">allowed_lateness</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WindowInto"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WindowInto" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#apache_beam.transforms.core.ParDo" title="apache_beam.transforms.core.ParDo"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParDo</span></code></a></p>
<p>A window transform assigning windows to each element of a PCollection.</p>
<p>Transforms an input PCollection by applying a windowing function to each
element. Each transformed element in the result will be a WindowedValue
element with the same input value and timestamp, with its new set of windows
determined by the windowing function.</p>
<p>Initializes a WindowInto transform.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>windowfn</strong> (<a class="reference internal" href="#apache_beam.transforms.core.Windowing" title="apache_beam.transforms.core.Windowing"><em>Windowing</em></a><em>, </em><a class="reference internal" href="apache_beam.transforms.window.html#apache_beam.transforms.window.WindowFn" title="apache_beam.transforms.window.WindowFn"><em>WindowFn</em></a>) – Function to be used for windowing.</p></li>
<li><p><strong>trigger</strong> – (optional) Trigger used for windowing, or None for default.</p></li>
<li><p><strong>accumulation_mode</strong> – (optional) Accumulation mode used for windowing,
required for non-trivial triggers.</p></li>
<li><p><strong>timestamp_combiner</strong> – (optional) Timestamp combniner used for windowing,
or None for default.</p></li>
</ul>
</dd>
</dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WindowInto.WindowIntoFn">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">WindowIntoFn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">windowing</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#apache_beam.transforms.core.Windowing" title="apache_beam.transforms.core.Windowing"><span class="pre">Windowing</span></a></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WindowInto.WindowIntoFn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WindowInto.WindowIntoFn" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#apache_beam.transforms.core.DoFn" title="apache_beam.transforms.core.DoFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">DoFn</span></code></a></p>
<p>A DoFn that applies a WindowInto operation.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WindowInto.WindowIntoFn.process">
<span class="sig-name descname"><span class="pre">process</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">timestamp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">TimestampParam</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">window</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">WindowParam</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WindowInto.WindowIntoFn.process"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WindowInto.WindowIntoFn.process" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WindowInto.WindowIntoFn.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WindowInto.WindowIntoFn.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WindowInto.WindowIntoFn.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WindowInto.get_windowing">
<span class="sig-name descname"><span class="pre">get_windowing</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#apache_beam.transforms.core.Windowing" title="apache_beam.transforms.core.Windowing"><span class="pre">Windowing</span></a></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WindowInto.get_windowing"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WindowInto.get_windowing" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WindowInto.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WindowInto.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WindowInto.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WindowInto.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WindowInto.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WindowInto.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WindowInto.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">context</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.io.iobase.html#apache_beam.io.iobase.Read.PipelineContext" title="apache_beam.io.iobase.Read.PipelineContext"><span class="pre">PipelineContext</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">extra_kwargs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Tuple" title="(in Python v3.13)"><span class="pre">Tuple</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">message.Message</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WindowInto.to_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WindowInto.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WindowInto.from_runner_api_parameter">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_ptransform</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">proto</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WindowInto.from_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WindowInto.from_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Flatten">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">Flatten</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Flatten"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Flatten" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.transforms.ptransform.html#apache_beam.transforms.ptransform.PTransform" title="apache_beam.transforms.ptransform.PTransform"><code class="xref py py-class docutils literal notranslate"><span class="pre">PTransform</span></code></a></p>
<p>Merges several PCollections into a single PCollection.</p>
<p>Copies all elements in 0 or more PCollections into a single output
PCollection. If there are no input PCollections, the resulting PCollection
will be empty (but see also kwargs below).</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>**kwargs</strong> – Accepts a single named argument “pipeline”, which specifies the
pipeline that “owns” this PTransform. Ordinarily Flatten can obtain this
information from one of the input PCollections, but if there are none (or
if there’s a chance there may be none), this argument is the only way to
provide pipeline information and should be considered mandatory.</p>
</dd>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Flatten.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcolls</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Flatten.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Flatten.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Flatten.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Flatten.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Flatten.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Flatten.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">context</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.io.iobase.html#apache_beam.io.iobase.Read.PipelineContext" title="apache_beam.io.iobase.Read.PipelineContext"><span class="pre">PipelineContext</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Tuple" title="(in Python v3.13)"><span class="pre">Tuple</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Flatten.to_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Flatten.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Flatten.from_runner_api_parameter">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_ptransform</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unused_parameter</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unused_context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Flatten.from_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Flatten.from_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.FlattenWith">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">FlattenWith</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">others</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#FlattenWith"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.FlattenWith" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.transforms.ptransform.html#apache_beam.transforms.ptransform.PTransform" title="apache_beam.transforms.ptransform.PTransform"><code class="xref py py-class docutils literal notranslate"><span class="pre">PTransform</span></code></a></p>
<p>A PTransform that flattens its input with other PCollections.</p>
<p>This is equivalent to creating a tuple containing both the input and the
other PCollection(s), but has the advantage that it can be more easily used
inline.</p>
<p>Root PTransforms can be passed as well as PCollections, in which case their
outputs will be flattened.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.FlattenWith.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pcoll</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#FlattenWith.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.FlattenWith.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Create">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">Create</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">values</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">reshuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Create"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Create" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.transforms.ptransform.html#apache_beam.transforms.ptransform.PTransform" title="apache_beam.transforms.ptransform.PTransform"><code class="xref py py-class docutils literal notranslate"><span class="pre">PTransform</span></code></a></p>
<p>A transform that creates a PCollection from an iterable.</p>
<p>Initializes a Create transform.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>values</strong> – An object of values for the PCollection</p>
</dd>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Create.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">context</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.io.iobase.html#apache_beam.io.iobase.Read.PipelineContext" title="apache_beam.io.iobase.Read.PipelineContext"><span class="pre">PipelineContext</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Tuple" title="(in Python v3.13)"><span class="pre">Tuple</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bytes" title="(in Python v3.13)"><span class="pre">bytes</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Create.to_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Create.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Create.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Create.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Create.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Create.get_output_type">
<span class="sig-name descname"><span class="pre">get_output_type</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Create.get_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Create.get_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Create.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pbegin</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Create.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Create.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Create.as_read">
<span class="sig-name descname"><span class="pre">as_read</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Create.as_read"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Create.as_read" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Create.get_windowing">
<span class="sig-name descname"><span class="pre">get_windowing</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#apache_beam.transforms.core.Windowing" title="apache_beam.transforms.core.Windowing"><span class="pre">Windowing</span></a></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Create.get_windowing"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Create.get_windowing" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Impulse">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">Impulse</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">label</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Impulse"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Impulse" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.transforms.ptransform.html#apache_beam.transforms.ptransform.PTransform" title="apache_beam.transforms.ptransform.PTransform"><code class="xref py py-class docutils literal notranslate"><span class="pre">PTransform</span></code></a></p>
<p>Impulse primitive.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Impulse.expand">
<span class="sig-name descname"><span class="pre">expand</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pbegin</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Impulse.expand"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Impulse.expand" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Impulse.get_windowing">
<span class="sig-name descname"><span class="pre">get_windowing</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#apache_beam.transforms.core.Windowing" title="apache_beam.transforms.core.Windowing"><span class="pre">Windowing</span></a></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Impulse.get_windowing"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Impulse.get_windowing" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Impulse.infer_output_type">
<span class="sig-name descname"><span class="pre">infer_output_type</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_input_type</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Impulse.infer_output_type"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Impulse.infer_output_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Impulse.to_runner_api_parameter">
<span class="sig-name descname"><span class="pre">to_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_context</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.io.iobase.html#apache_beam.io.iobase.Read.PipelineContext" title="apache_beam.io.iobase.Read.PipelineContext"><span class="pre">PipelineContext</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Tuple" title="(in Python v3.13)"><span class="pre">Tuple</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Impulse.to_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Impulse.to_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.Impulse.from_runner_api_parameter">
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_runner_api_parameter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">unused_ptransform</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unused_parameter</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unused_context</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#Impulse.from_runner_api_parameter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.Impulse.from_runner_api_parameter" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.RestrictionProvider">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">RestrictionProvider</span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#RestrictionProvider"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.RestrictionProvider" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.13)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Provides methods for generating and manipulating restrictions.</p>
<p>This class should be implemented to support Splittable <code class="docutils literal notranslate"><span class="pre">DoFn</span></code> in Python
SDK. See <a class="reference external" href="https://s.apache.org/splittable-do-fn">https://s.apache.org/splittable-do-fn</a> for more details about
Splittable <code class="docutils literal notranslate"><span class="pre">DoFn</span></code>.</p>
<p>To denote a <code class="docutils literal notranslate"><span class="pre">DoFn</span></code> class to be Splittable <code class="docutils literal notranslate"><span class="pre">DoFn</span></code>, <code class="docutils literal notranslate"><span class="pre">DoFn.process()</span></code>
method of that class should have exactly one parameter whose default value is
an instance of <code class="docutils literal notranslate"><span class="pre">RestrictionParam</span></code>. This <code class="docutils literal notranslate"><span class="pre">RestrictionParam</span></code> can either be
constructed with an explicit <code class="docutils literal notranslate"><span class="pre">RestrictionProvider</span></code>, or, if no
<code class="docutils literal notranslate"><span class="pre">RestrictionProvider</span></code> is provided, the <code class="docutils literal notranslate"><span class="pre">DoFn</span></code> itself must be a
<code class="docutils literal notranslate"><span class="pre">RestrictionProvider</span></code>.</p>
<p>The provided <code class="docutils literal notranslate"><span class="pre">RestrictionProvider</span></code> instance must provide suitable overrides
for the following methods:
* create_tracker()
* initial_restriction()
* restriction_size()</p>
<p>Optionally, <code class="docutils literal notranslate"><span class="pre">RestrictionProvider</span></code> may override default implementations of
following methods:
* restriction_coder()
* split()
* split_and_size()
* truncate()</p>
<p>** Pausing and resuming processing of an element **</p>
<p>As the last element produced by the iterator returned by the
<code class="docutils literal notranslate"><span class="pre">DoFn.process()</span></code> method, a Splittable <code class="docutils literal notranslate"><span class="pre">DoFn</span></code> may return an object of type
<code class="docutils literal notranslate"><span class="pre">ProcessContinuation</span></code>.</p>
<p>If restriction_tracker.defer_remander is called in the <code class="docutils literal notranslate"><span class="pre">`DoFn.process()</span></code>, it
means that runner should later re-invoke <code class="docutils literal notranslate"><span class="pre">DoFn.process()</span></code> method to resume
processing the current element and the manner in which the re-invocation
should be performed.</p>
<p>** Updating output watermark **</p>
<p><code class="docutils literal notranslate"><span class="pre">DoFn.process()</span></code> method of Splittable <code class="docutils literal notranslate"><span class="pre">DoFn``s</span> <span class="pre">could</span> <span class="pre">contain</span> <span class="pre">a</span> <span class="pre">parameter</span>
<span class="pre">with</span> <span class="pre">default</span> <span class="pre">value</span> <span class="pre">``DoFn.WatermarkReporterParam</span></code>. If specified this asks the
runner to provide a function that can be used to give the runner a
(best-effort) lower bound about the timestamps of future output associated
with the current element processed by the <code class="docutils literal notranslate"><span class="pre">DoFn</span></code>. If the <code class="docutils literal notranslate"><span class="pre">DoFn</span></code> has
multiple outputs, the watermark applies to all of them. Provided function must
be invoked with a single parameter of type <code class="docutils literal notranslate"><span class="pre">Timestamp</span></code> or as an integer that
gives the watermark in number of seconds.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.RestrictionProvider.create_tracker">
<span class="sig-name descname"><span class="pre">create_tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">restriction</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="apache_beam.io.iobase.html#apache_beam.io.iobase.RestrictionTracker" title="apache_beam.io.iobase.RestrictionTracker"><span class="pre">iobase.RestrictionTracker</span></a></span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#RestrictionProvider.create_tracker"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.RestrictionProvider.create_tracker" title="Link to this definition"></a></dt>
<dd><p>Produces a new <code class="docutils literal notranslate"><span class="pre">RestrictionTracker</span></code> for the given restriction.</p>
<p>This API is required to be implemented.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>restriction</strong> – an object that defines a restriction as identified by a
Splittable <code class="docutils literal notranslate"><span class="pre">DoFn</span></code> that utilizes the current <code class="docutils literal notranslate"><span class="pre">RestrictionProvider</span></code>.
For example, a tuple that gives a range of positions for a Splittable
<code class="docutils literal notranslate"><span class="pre">DoFn</span></code> that reads files based on byte positions.</p>
</dd>
</dl>
<p>Returns: an object of type <code class="docutils literal notranslate"><span class="pre">RestrictionTracker</span></code>.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.RestrictionProvider.initial_restriction">
<span class="sig-name descname"><span class="pre">initial_restriction</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#RestrictionProvider.initial_restriction"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.RestrictionProvider.initial_restriction" title="Link to this definition"></a></dt>
<dd><p>Produces an initial restriction for the given element.</p>
<p>This API is required to be implemented.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.RestrictionProvider.split">
<span class="sig-name descname"><span class="pre">split</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">restriction</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#RestrictionProvider.split"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.RestrictionProvider.split" title="Link to this definition"></a></dt>
<dd><p>Splits the given element and restriction initially.</p>
<p>This method enables runners to perform bulk splitting initially allowing for
a rapid increase in parallelism. Note that initial split is a different
concept from the split during element processing time. Please refer to
<code class="docutils literal notranslate"><span class="pre">iobase.RestrictionTracker.try_split</span></code> for details about splitting when the
current element and restriction are actively being processed.</p>
<p>Returns an iterator of restrictions. The total set of elements produced by
reading input element for each of the returned restrictions should be the
same as the total set of elements produced by reading the input element for
the input restriction.</p>
<p>This API is optional if <code class="docutils literal notranslate"><span class="pre">split_and_size</span></code> has been implemented.</p>
<p>If this method is not override, there is no initial splitting happening on
each restriction.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.RestrictionProvider.restriction_coder">
<span class="sig-name descname"><span class="pre">restriction_coder</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#RestrictionProvider.restriction_coder"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.RestrictionProvider.restriction_coder" title="Link to this definition"></a></dt>
<dd><p>Returns a <code class="docutils literal notranslate"><span class="pre">Coder</span></code> for restrictions.</p>
<p>Returned``Coder`` will be used for the restrictions produced by the current
<code class="docutils literal notranslate"><span class="pre">RestrictionProvider</span></code>.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>an object of type <code class="docutils literal notranslate"><span class="pre">Coder</span></code>.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.RestrictionProvider.restriction_size">
<span class="sig-name descname"><span class="pre">restriction_size</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">restriction</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#RestrictionProvider.restriction_size"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.RestrictionProvider.restriction_size" title="Link to this definition"></a></dt>
<dd><p>Returns the size of a restriction with respect to the given element.</p>
<p>By default, asks a newly-created restriction tracker for the default size
of the restriction.</p>
<p>The return value must be non-negative.</p>
<p>Must be thread safe. Will be invoked concurrently during bundle processing
due to runner initiated splitting and progress estimation.</p>
<p>This API is required to be implemented.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.RestrictionProvider.split_and_size">
<span class="sig-name descname"><span class="pre">split_and_size</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">restriction</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#RestrictionProvider.split_and_size"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.RestrictionProvider.split_and_size" title="Link to this definition"></a></dt>
<dd><p>Like split, but also does sizing, returning (restriction, size) pairs.</p>
<p>For each pair, size must be non-negative.</p>
<p>This API is optional if <code class="docutils literal notranslate"><span class="pre">split</span></code> and <code class="docutils literal notranslate"><span class="pre">restriction_size</span></code> have been
implemented.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.RestrictionProvider.truncate">
<span class="sig-name descname"><span class="pre">truncate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">restriction</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#RestrictionProvider.truncate"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.RestrictionProvider.truncate" title="Link to this definition"></a></dt>
<dd><p>Truncates the provided restriction into a restriction representing a
finite amount of work when the pipeline is
<cite>draining &lt;https://docs.google.com/document/d/1NExwHlj-2q2WUGhSO4jTu8XGhDPmm3cllSN8IMmWci8/edit#&gt; for additional details about drain.&gt;_</cite>. # pylint: disable=line-too-long
By default, if the restriction is bounded then the restriction will be
returned otherwise None will be returned.</p>
<p>This API is optional and should only be implemented if more granularity is
required.</p>
<p>Return a truncated finite restriction if further processing is required
otherwise return None to represent that no further processing of this
restriction is required.</p>
<p>The default behavior when a pipeline is being drained is that bounded
restrictions process entirely while unbounded restrictions process till a
checkpoint is possible.</p>
</dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WatermarkEstimatorProvider">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.transforms.core.</span></span><span class="sig-name descname"><span class="pre">WatermarkEstimatorProvider</span></span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WatermarkEstimatorProvider"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WatermarkEstimatorProvider" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.13)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Provides methods for generating WatermarkEstimator.</p>
<p>This class should be implemented if wanting to providing output_watermark
information within an SDF.</p>
<p>In order to make an SDF.process() access to the typical WatermarkEstimator,
the SDF author should have an argument whose default value is a
DoFn.WatermarkEstimatorParam instance. This DoFn.WatermarkEstimatorParam
can either be constructed with an explicit WatermarkEstimatorProvider,
or, if no WatermarkEstimatorProvider is provided, the DoFn itself must
be a WatermarkEstimatorProvider.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WatermarkEstimatorProvider.initial_estimator_state">
<span class="sig-name descname"><span class="pre">initial_estimator_state</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">element</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">restriction</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WatermarkEstimatorProvider.initial_estimator_state"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WatermarkEstimatorProvider.initial_estimator_state" title="Link to this definition"></a></dt>
<dd><p>Returns the initial state of the WatermarkEstimator with given element
and restriction.
This function is called by the system.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WatermarkEstimatorProvider.create_watermark_estimator">
<span class="sig-name descname"><span class="pre">create_watermark_estimator</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">estimator_state</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WatermarkEstimatorProvider.create_watermark_estimator"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WatermarkEstimatorProvider.create_watermark_estimator" title="Link to this definition"></a></dt>
<dd><p>Create a new WatermarkEstimator based on the state. The state is
typically useful when resuming processing an element.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.transforms.core.WatermarkEstimatorProvider.estimator_state_coder">
<span class="sig-name descname"><span class="pre">estimator_state_coder</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/transforms/core.html#WatermarkEstimatorProvider.estimator_state_coder"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.transforms.core.WatermarkEstimatorProvider.estimator_state_coder" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="apache_beam.transforms.combiners.html" class="btn btn-neutral float-left" title="apache_beam.transforms.combiners module" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="apache_beam.transforms.create_source.html" class="btn btn-neutral float-right" title="apache_beam.transforms.create_source module" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright %Y, Apache Beam.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>