blob: 456da3ba08c43b5900c3c1b287fd5be11f6d9c0f [file] [log] [blame]
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>apache_beam.ml.inference.pytorch_inference module &mdash; Apache Beam 2.68.0 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=b86133f3" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=2388e03a"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="apache_beam.ml.inference.sklearn_inference module" href="apache_beam.ml.inference.sklearn_inference.html" />
<link rel="prev" title="apache_beam.ml.inference.onnx_inference module" href="apache_beam.ml.inference.onnx_inference.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
Apache Beam
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="apache_beam.coders.html">apache_beam.coders package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.dataframe.html">apache_beam.dataframe package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.io.html">apache_beam.io package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.metrics.html">apache_beam.metrics package</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="apache_beam.ml.html">apache_beam.ml package</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="apache_beam.ml.html#subpackages">Subpackages</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.anomaly.html">apache_beam.ml.anomaly package</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.gcp.html">apache_beam.ml.gcp package</a></li>
<li class="toctree-l3 current"><a class="reference internal" href="apache_beam.ml.inference.html">apache_beam.ml.inference package</a><ul class="current">
<li class="toctree-l4 current"><a class="reference internal" href="apache_beam.ml.inference.html#submodules">Submodules</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.rag.html">apache_beam.ml.rag package</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.transforms.html">apache_beam.ml.transforms package</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.ts.html">apache_beam.ml.ts package</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.options.html">apache_beam.options package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.portability.html">apache_beam.portability package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.runners.html">apache_beam.runners package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.testing.html">apache_beam.testing package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.transforms.html">apache_beam.transforms package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.typehints.html">apache_beam.typehints package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.utils.html">apache_beam.utils package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.yaml.html">apache_beam.yaml package</a></li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.error.html">apache_beam.error module</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.pipeline.html">apache_beam.pipeline module</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.pvalue.html">apache_beam.pvalue module</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">Apache Beam</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item"><a href="apache_beam.ml.html">apache_beam.ml package</a></li>
<li class="breadcrumb-item"><a href="apache_beam.ml.inference.html">apache_beam.ml.inference package</a></li>
<li class="breadcrumb-item active">apache_beam.ml.inference.pytorch_inference module</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/apache_beam.ml.inference.pytorch_inference.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="module-apache_beam.ml.inference.pytorch_inference">
<span id="apache-beam-ml-inference-pytorch-inference-module"></span><h1>apache_beam.ml.inference.pytorch_inference module<a class="headerlink" href="#module-apache_beam.ml.inference.pytorch_inference" title="Link to this heading"></a></h1>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.ml.inference.pytorch_inference.</span></span><span class="sig-name descname"><span class="pre">PytorchModelHandlerTensor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="pre">state_dict_path:</span> <span class="pre">str</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">model_class:</span> <span class="pre">~collections.abc.Callable[[...],</span> <span class="pre">torch.nn.Module]</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">model_params:</span> <span class="pre">dict[str,</span> <span class="pre">~typing.Any]</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">device:</span> <span class="pre">str</span> <span class="pre">=</span> <span class="pre">'CPU',</span> <span class="pre">*,</span> <span class="pre">inference_fn:</span> <span class="pre">~collections.abc.Callable[[~collections.abc.Sequence[torch.Tensor],</span> <span class="pre">torch.nn.Module,</span> <span class="pre">torch.device,</span> <span class="pre">dict[str,</span> <span class="pre">~typing.Any]</span> <span class="pre">|</span> <span class="pre">None,</span> <span class="pre">str</span> <span class="pre">|</span> <span class="pre">None],</span> <span class="pre">~collections.abc.Iterable[~apache_beam.ml.inference.base.PredictionResult]]</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">default_tensor_inference_fn&gt;,</span> <span class="pre">torch_script_model_path:</span> <span class="pre">str</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">min_batch_size:</span> <span class="pre">int</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">max_batch_size:</span> <span class="pre">int</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">max_batch_duration_secs:</span> <span class="pre">int</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">large_model:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False,</span> <span class="pre">model_copies:</span> <span class="pre">int</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">load_model_args:</span> <span class="pre">dict[str,</span> <span class="pre">~typing.Any]</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">**kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.ml.inference.base.html#apache_beam.ml.inference.base.ModelHandler" title="apache_beam.ml.inference.base.ModelHandler"><code class="xref py py-class docutils literal notranslate"><span class="pre">ModelHandler</span></code></a>[<code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code>, <a class="reference internal" href="apache_beam.ml.inference.base.html#apache_beam.ml.inference.base.PredictionResult" title="apache_beam.ml.inference.base.PredictionResult"><code class="xref py py-class docutils literal notranslate"><span class="pre">PredictionResult</span></code></a>, <code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code>]</p>
<p>Implementation of the ModelHandler interface for PyTorch.</p>
<dl class="simple">
<dt>Example Usage for torch model::</dt><dd><dl class="simple">
<dt>pcoll | RunInference(PytorchModelHandlerTensor(state_dict_path=”my_uri”,</dt><dd><p>model_class=”my_class”))</p>
</dd>
</dl>
</dd>
<dt>Example Usage for torchscript model::</dt><dd><dl class="simple">
<dt>pcoll | RunInference(PytorchModelHandlerTensor(</dt><dd><p>torch_script_model_path=”my_uri”))</p>
</dd>
</dl>
</dd>
</dl>
<p>See <a class="reference external" href="https://pytorch.org/tutorials/beginner/saving_loading_models.html">https://pytorch.org/tutorials/beginner/saving_loading_models.html</a>
for details</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>state_dict_path</strong> – path to the saved dictionary of the model state.</p></li>
<li><p><strong>model_class</strong> – class of the Pytorch model that defines the model
structure.</p></li>
<li><p><strong>model_params</strong> – A dictionary of arguments required to instantiate the model
class.</p></li>
<li><p><strong>device</strong> – the device on which you wish to run the model. If
<code class="docutils literal notranslate"><span class="pre">device</span> <span class="pre">=</span> <span class="pre">GPU</span></code> then a GPU device will be used if it is available.
Otherwise, it will be CPU.</p></li>
<li><p><strong>inference_fn</strong> – the inference function to use during RunInference.
default=_default_tensor_inference_fn</p></li>
<li><p><strong>torch_script_model_path</strong><dl class="simple">
<dt>Path to the torch script model.</dt><dd><p>the model will be loaded using <cite>torch.jit.load()</cite>.</p>
</dd>
<dt><cite>state_dict_path</cite>, <cite>model_class</cite> and <cite>model_params</cite></dt><dd><p>arguments will be disregarded.</p>
</dd>
</dl>
</p></li>
<li><p><strong>min_batch_size</strong> – the minimum batch size to use when batching inputs. This
batch will be fed into the inference_fn as a Sequence of Tensors.</p></li>
<li><p><strong>max_batch_size</strong> – the maximum batch size to use when batching inputs. This
batch will be fed into the inference_fn as a Sequence of Tensors.</p></li>
<li><p><strong>max_batch_duration_secs</strong> – the maximum amount of time to buffer a batch
before emitting; used in streaming contexts.</p></li>
<li><p><strong>large_model</strong> – set to true if your model is large enough to run into
memory pressure if you load multiple copies. Given a model that
consumes N memory and a machine with W cores and M memory, you should
set this to True if N*W &gt; M.</p></li>
<li><p><strong>model_copies</strong> – The exact number of models that you would like loaded
onto your machine. This can be useful if you exactly know your CPU or
GPU capacity and want to maximize resource utilization.</p></li>
<li><p><strong>load_model_args</strong> – a dictionary of parameters passed to the torch.load
function to specify custom config for loading models.</p></li>
<li><p><strong>kwargs</strong> – ‘env_vars’ can be used to set environment variables
before loading the model.</p></li>
</ul>
</dd>
</dl>
<p><strong>Supported Versions:</strong> RunInference APIs in Apache Beam have been tested
with PyTorch 1.9 and 1.10.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.load_model">
<span class="sig-name descname"><span class="pre">load_model</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">torch.nn.Module</span></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor.load_model"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.load_model" title="Link to this definition"></a></dt>
<dd><p>Loads and initializes a Pytorch model for processing.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.update_model_path">
<span class="sig-name descname"><span class="pre">update_model_path</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor.update_model_path"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.update_model_path" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.run_inference">
<span class="sig-name descname"><span class="pre">run_inference</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">batch</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence" title="(in Python v3.13)"><span class="pre">Sequence</span></a><span class="p"><span class="pre">[</span></span><span class="pre">torch.Tensor</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">torch.nn.Module</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><span class="pre">dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable" title="(in Python v3.13)"><span class="pre">Iterable</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="apache_beam.ml.inference.base.html#apache_beam.ml.inference.base.PredictionResult" title="apache_beam.ml.inference.base.PredictionResult"><span class="pre">PredictionResult</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor.run_inference"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.run_inference" title="Link to this definition"></a></dt>
<dd><p>Runs inferences on a batch of Tensors and returns an Iterable of
Tensor Predictions.</p>
<p>This method stacks the list of Tensors in a vectorized format to optimize
the inference call.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>batch</strong> – A sequence of Tensors. These Tensors should be batchable, as this
method will call <cite>torch.stack()</cite> and pass in batched Tensors with
dimensions (batch_size, n_features, etc.) into the model’s forward()
function.</p></li>
<li><p><strong>model</strong> – A PyTorch model.</p></li>
<li><p><strong>inference_args</strong> – Non-batchable arguments required as inputs to the model’s
forward() function. Unlike Tensors in <cite>batch</cite>, these parameters will
not be dynamically batched</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>An Iterable of type PredictionResult.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.get_num_bytes">
<span class="sig-name descname"><span class="pre">get_num_bytes</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">batch</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence" title="(in Python v3.13)"><span class="pre">Sequence</span></a><span class="p"><span class="pre">[</span></span><span class="pre">torch.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor.get_num_bytes"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.get_num_bytes" title="Link to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>The number of bytes of data for a batch of Tensors.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.get_metrics_namespace">
<span class="sig-name descname"><span class="pre">get_metrics_namespace</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor.get_metrics_namespace"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.get_metrics_namespace" title="Link to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>A namespace for metrics collected by the RunInference transform.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.validate_inference_args">
<span class="sig-name descname"><span class="pre">validate_inference_args</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inference_args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><span class="pre">dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor.validate_inference_args"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.validate_inference_args" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.batch_elements_kwargs">
<span class="sig-name descname"><span class="pre">batch_elements_kwargs</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor.batch_elements_kwargs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.batch_elements_kwargs" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.share_model_across_processes">
<span class="sig-name descname"><span class="pre">share_model_across_processes</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor.share_model_across_processes"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.share_model_across_processes" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.model_copies">
<span class="sig-name descname"><span class="pre">model_copies</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerTensor.model_copies"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerTensor.model_copies" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.ml.inference.pytorch_inference.</span></span><span class="sig-name descname"><span class="pre">PytorchModelHandlerKeyedTensor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="pre">state_dict_path:</span> <span class="pre">str</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">model_class:</span> <span class="pre">~collections.abc.Callable[[...],</span> <span class="pre">torch.nn.Module]</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">model_params:</span> <span class="pre">dict[str,</span> <span class="pre">~typing.Any]</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">device:</span> <span class="pre">str</span> <span class="pre">=</span> <span class="pre">'CPU',</span> <span class="pre">*,</span> <span class="pre">inference_fn:</span> <span class="pre">~collections.abc.Callable[[~collections.abc.Sequence[dict[str,</span> <span class="pre">torch.Tensor]],</span> <span class="pre">torch.nn.Module,</span> <span class="pre">torch.device,</span> <span class="pre">dict[str,</span> <span class="pre">~typing.Any]</span> <span class="pre">|</span> <span class="pre">None,</span> <span class="pre">str</span> <span class="pre">|</span> <span class="pre">None],</span> <span class="pre">~collections.abc.Iterable[~apache_beam.ml.inference.base.PredictionResult]]</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">default_keyed_tensor_inference_fn&gt;,</span> <span class="pre">torch_script_model_path:</span> <span class="pre">str</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">min_batch_size:</span> <span class="pre">int</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">max_batch_size:</span> <span class="pre">int</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">max_batch_duration_secs:</span> <span class="pre">int</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">large_model:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False,</span> <span class="pre">model_copies:</span> <span class="pre">int</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">load_model_args:</span> <span class="pre">dict[str,</span> <span class="pre">~typing.Any]</span> <span class="pre">|</span> <span class="pre">None</span> <span class="pre">=</span> <span class="pre">None,</span> <span class="pre">**kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.ml.inference.base.html#apache_beam.ml.inference.base.ModelHandler" title="apache_beam.ml.inference.base.ModelHandler"><code class="xref py py-class docutils literal notranslate"><span class="pre">ModelHandler</span></code></a>[<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><code class="xref py py-class docutils literal notranslate"><span class="pre">dict</span></code></a>[<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="xref py py-class docutils literal notranslate"><span class="pre">str</span></code></a>, <code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code>], <a class="reference internal" href="apache_beam.ml.inference.base.html#apache_beam.ml.inference.base.PredictionResult" title="apache_beam.ml.inference.base.PredictionResult"><code class="xref py py-class docutils literal notranslate"><span class="pre">PredictionResult</span></code></a>, <code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code>]</p>
<p>Implementation of the ModelHandler interface for PyTorch.</p>
<blockquote>
<div><dl class="simple">
<dt>Example Usage for torch model::</dt><dd><dl class="simple">
<dt>pcoll | RunInference(PytorchModelHandlerKeyedTensor(</dt><dd><p>state_dict_path=”my_uri”,
model_class=”my_class”))</p>
</dd>
</dl>
</dd>
</dl>
</div></blockquote>
<dl class="simple">
<dt>Example Usage for torchscript model::</dt><dd><dl class="simple">
<dt>pcoll | RunInference(PytorchModelHandlerKeyedTensor(</dt><dd><p>torch_script_model_path=”my_uri”))</p>
</dd>
</dl>
</dd>
</dl>
<p><strong>NOTE:</strong> This API and its implementation are under development and
do not provide backward compatibility guarantees.</p>
<p>See <a class="reference external" href="https://pytorch.org/tutorials/beginner/saving_loading_models.html">https://pytorch.org/tutorials/beginner/saving_loading_models.html</a>
for details</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>state_dict_path</strong> – path to the saved dictionary of the model state.</p></li>
<li><p><strong>model_class</strong> – class of the Pytorch model that defines the model
structure.</p></li>
<li><p><strong>model_params</strong> – A dictionary of arguments required to instantiate the model
class.</p></li>
<li><p><strong>device</strong> – the device on which you wish to run the model. If
<code class="docutils literal notranslate"><span class="pre">device</span> <span class="pre">=</span> <span class="pre">GPU</span></code> then a GPU device will be used if it is available.
Otherwise, it will be CPU.</p></li>
<li><p><strong>inference_fn</strong> – the function to invoke on run_inference.
default = default_keyed_tensor_inference_fn</p></li>
<li><p><strong>torch_script_model_path</strong><dl class="simple">
<dt>Path to the torch script model.</dt><dd><p>the model will be loaded using <cite>torch.jit.load()</cite>.</p>
</dd>
<dt><cite>state_dict_path</cite>, <cite>model_class</cite> and <cite>model_params</cite></dt><dd><p>arguments will be disregarded.</p>
</dd>
</dl>
</p></li>
<li><p><strong>min_batch_size</strong> – the minimum batch size to use when batching inputs. This
batch will be fed into the inference_fn as a Sequence of Keyed Tensors.</p></li>
<li><p><strong>max_batch_size</strong> – the maximum batch size to use when batching inputs. This
batch will be fed into the inference_fn as a Sequence of Keyed Tensors.</p></li>
<li><p><strong>max_batch_duration_secs</strong> – the maximum amount of time to buffer a batch
before emitting; used in streaming contexts.</p></li>
<li><p><strong>large_model</strong> – set to true if your model is large enough to run into
memory pressure if you load multiple copies. Given a model that
consumes N memory and a machine with W cores and M memory, you should
set this to True if N*W &gt; M.</p></li>
<li><p><strong>model_copies</strong> – The exact number of models that you would like loaded
onto your machine. This can be useful if you exactly know your CPU or
GPU capacity and want to maximize resource utilization.</p></li>
<li><p><strong>load_model_args</strong> – a dictionary of parameters passed to the torch.load
function to specify custom config for loading models.</p></li>
<li><p><strong>kwargs</strong> – ‘env_vars’ can be used to set environment variables
before loading the model.</p></li>
</ul>
</dd>
</dl>
<p><strong>Supported Versions:</strong> RunInference APIs in Apache Beam have been tested
on torch&gt;=1.9.0,&lt;1.14.0.</p>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.load_model">
<span class="sig-name descname"><span class="pre">load_model</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">torch.nn.Module</span></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor.load_model"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.load_model" title="Link to this definition"></a></dt>
<dd><p>Loads and initializes a Pytorch model for processing.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.update_model_path">
<span class="sig-name descname"><span class="pre">update_model_path</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor.update_model_path"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.update_model_path" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.run_inference">
<span class="sig-name descname"><span class="pre">run_inference</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">batch</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence" title="(in Python v3.13)"><span class="pre">Sequence</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><span class="pre">dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">torch.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">torch.nn.Module</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><span class="pre">dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable" title="(in Python v3.13)"><span class="pre">Iterable</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="apache_beam.ml.inference.base.html#apache_beam.ml.inference.base.PredictionResult" title="apache_beam.ml.inference.base.PredictionResult"><span class="pre">PredictionResult</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor.run_inference"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.run_inference" title="Link to this definition"></a></dt>
<dd><p>Runs inferences on a batch of Keyed Tensors and returns an Iterable of
Tensor Predictions.</p>
<p>For the same key across all examples, this will stack all Tensors values
in a vectorized format to optimize the inference call.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>batch</strong> – A sequence of keyed Tensors. These Tensors should be batchable,
as this method will call <cite>torch.stack()</cite> and pass in batched Tensors
with dimensions (batch_size, n_features, etc.) into the model’s
forward() function.</p></li>
<li><p><strong>model</strong> – A PyTorch model.</p></li>
<li><p><strong>inference_args</strong> – Non-batchable arguments required as inputs to the model’s
forward() function. Unlike Tensors in <cite>batch</cite>, these parameters will
not be dynamically batched</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>An Iterable of type PredictionResult.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.get_num_bytes">
<span class="sig-name descname"><span class="pre">get_num_bytes</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">batch</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence" title="(in Python v3.13)"><span class="pre">Sequence</span></a><span class="p"><span class="pre">[</span></span><span class="pre">torch.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor.get_num_bytes"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.get_num_bytes" title="Link to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>The number of bytes of data for a batch of dict of Tensors.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.get_metrics_namespace">
<span class="sig-name descname"><span class="pre">get_metrics_namespace</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor.get_metrics_namespace"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.get_metrics_namespace" title="Link to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>A namespace for metrics collected by the RunInference transform.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.validate_inference_args">
<span class="sig-name descname"><span class="pre">validate_inference_args</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inference_args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><span class="pre">dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor.validate_inference_args"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.validate_inference_args" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.batch_elements_kwargs">
<span class="sig-name descname"><span class="pre">batch_elements_kwargs</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor.batch_elements_kwargs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.batch_elements_kwargs" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.share_model_across_processes">
<span class="sig-name descname"><span class="pre">share_model_across_processes</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor.share_model_across_processes"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.share_model_across_processes" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.model_copies">
<span class="sig-name descname"><span class="pre">model_copies</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/inference/pytorch_inference.html#PytorchModelHandlerKeyedTensor.model_copies"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.inference.pytorch_inference.PytorchModelHandlerKeyedTensor.model_copies" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="apache_beam.ml.inference.onnx_inference.html" class="btn btn-neutral float-left" title="apache_beam.ml.inference.onnx_inference module" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="apache_beam.ml.inference.sklearn_inference.html" class="btn btn-neutral float-right" title="apache_beam.ml.inference.sklearn_inference module" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright %Y, Apache Beam.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>