blob: b3b1082bc90be835398701a3c41f393b3cff0b77 [file] [log] [blame]
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>apache_beam.ml.anomaly.aggregations module &mdash; Apache Beam 2.67.0 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=b86133f3" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=959b4fbe"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="apache_beam.ml.anomaly.base module" href="apache_beam.ml.anomaly.base.html" />
<link rel="prev" title="apache_beam.ml.anomaly.univariate.stdev module" href="apache_beam.ml.anomaly.univariate.stdev.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
Apache Beam
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="apache_beam.coders.html">apache_beam.coders package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.dataframe.html">apache_beam.dataframe package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.io.html">apache_beam.io package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.metrics.html">apache_beam.metrics package</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="apache_beam.ml.html">apache_beam.ml package</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="apache_beam.ml.html#subpackages">Subpackages</a><ul class="current">
<li class="toctree-l3 current"><a class="reference internal" href="apache_beam.ml.anomaly.html">apache_beam.ml.anomaly package</a><ul class="current">
<li class="toctree-l4"><a class="reference internal" href="apache_beam.ml.anomaly.html#subpackages">Subpackages</a></li>
<li class="toctree-l4 current"><a class="reference internal" href="apache_beam.ml.anomaly.html#submodules">Submodules</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.gcp.html">apache_beam.ml.gcp package</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.inference.html">apache_beam.ml.inference package</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.rag.html">apache_beam.ml.rag package</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.transforms.html">apache_beam.ml.transforms package</a></li>
<li class="toctree-l3"><a class="reference internal" href="apache_beam.ml.ts.html">apache_beam.ml.ts package</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.options.html">apache_beam.options package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.portability.html">apache_beam.portability package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.runners.html">apache_beam.runners package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.testing.html">apache_beam.testing package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.transforms.html">apache_beam.transforms package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.typehints.html">apache_beam.typehints package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.utils.html">apache_beam.utils package</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.yaml.html">apache_beam.yaml package</a></li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.error.html">apache_beam.error module</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.pipeline.html">apache_beam.pipeline module</a></li>
<li class="toctree-l1"><a class="reference internal" href="apache_beam.pvalue.html">apache_beam.pvalue module</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">Apache Beam</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item"><a href="apache_beam.ml.html">apache_beam.ml package</a></li>
<li class="breadcrumb-item"><a href="apache_beam.ml.anomaly.html">apache_beam.ml.anomaly package</a></li>
<li class="breadcrumb-item active">apache_beam.ml.anomaly.aggregations module</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/apache_beam.ml.anomaly.aggregations.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="module-apache_beam.ml.anomaly.aggregations">
<span id="apache-beam-ml-anomaly-aggregations-module"></span><h1>apache_beam.ml.anomaly.aggregations module<a class="headerlink" href="#module-apache_beam.ml.anomaly.aggregations" title="Link to this heading"></a></h1>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.LabelAggregation">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.ml.anomaly.aggregations.</span></span><span class="sig-name descname"><span class="pre">LabelAggregation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">agg_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable" title="(in Python v3.13)"><span class="pre">Callable</span></a><span class="p"><span class="pre">[</span></span><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable" title="(in Python v3.13)"><span class="pre">Iterable</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">agg_model_id</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">include_source_predictions</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">normal_label</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">outlier_label</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">missing_label</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">-2</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/anomaly/aggregations.html#LabelAggregation"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.LabelAggregation" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AggregationFn" title="apache_beam.ml.anomaly.base.AggregationFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">AggregationFn</span></code></a>, <code class="xref py py-class docutils literal notranslate"><span class="pre">_AggModelIdMixin</span></code>, <code class="xref py py-class docutils literal notranslate"><span class="pre">_SourcePredictionMixin</span></code></p>
<p>Aggregates anomaly predictions based on their labels.</p>
<p>This is an abstract base class for <cite>AggregationFn`s that combine multiple
`AnomalyPrediction</cite> objects into a single <cite>AnomalyPrediction</cite> based on
the labels of the input predictions.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>agg_func</strong> (<em>Callable</em><em>[</em><em>[</em><em>Iterable</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><em>int</em></a><em>]</em><em>]</em><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><em>int</em></a><em>]</em>) – A function that aggregates
a collection of anomaly labels (integers) into a single label.</p></li>
<li><p><strong>agg_model_id</strong> (<em>Optional</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><em>str</em></a><em>]</em>) – The model id used in aggregated predictions.
Defaults to None.</p></li>
<li><p><strong>include_source_predictions</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><em>bool</em></a>) – If True, include the input predictions in
the <cite>source_predictions</cite> of the output. Defaults to False.</p></li>
</ul>
</dd>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.LabelAggregation.apply">
<span class="sig-name descname"><span class="pre">apply</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">predictions</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable" title="(in Python v3.13)"><span class="pre">Iterable</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AnomalyPrediction" title="apache_beam.ml.anomaly.base.AnomalyPrediction"><span class="pre">AnomalyPrediction</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AnomalyPrediction" title="apache_beam.ml.anomaly.base.AnomalyPrediction"><span class="pre">AnomalyPrediction</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/anomaly/aggregations.html#LabelAggregation.apply"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.LabelAggregation.apply" title="Link to this definition"></a></dt>
<dd><p>Applies the label aggregation function to a list of predictions.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>predictions</strong> (<em>Iterable</em><em>[</em><a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AnomalyPrediction" title="apache_beam.ml.anomaly.base.AnomalyPrediction"><em>AnomalyPrediction</em></a><em>]</em>) – A collection of
<cite>AnomalyPrediction</cite> objects to be aggregated.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p><dl class="simple">
<dt>A single <cite>AnomalyPrediction</cite> object with the</dt><dd><p>aggregated label. The aggregated label is determined as follows:</p>
<ul class="simple">
<li><p>If there are any non-missing and non-error labels, the <cite>agg_func</cite> is
applied to aggregate them.</p></li>
<li><p>If all labels are error labels (<cite>None</cite>), the aggregated label is also
<cite>None</cite>.</p></li>
<li><p>If there are a mix of missing and error labels, the aggregated label
is the <cite>missing_label</cite>.</p></li>
</ul>
</dd>
</dl>
</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AnomalyPrediction" title="apache_beam.ml.anomaly.base.AnomalyPrediction">AnomalyPrediction</a></p>
</dd>
</dl>
</dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.ScoreAggregation">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.ml.anomaly.aggregations.</span></span><span class="sig-name descname"><span class="pre">ScoreAggregation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">agg_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable" title="(in Python v3.13)"><span class="pre">Callable</span></a><span class="p"><span class="pre">[</span></span><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable" title="(in Python v3.13)"><span class="pre">Iterable</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.13)"><span class="pre">float</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.13)"><span class="pre">float</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">agg_model_id</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">include_source_predictions</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/anomaly/aggregations.html#ScoreAggregation"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.ScoreAggregation" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AggregationFn" title="apache_beam.ml.anomaly.base.AggregationFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">AggregationFn</span></code></a>, <code class="xref py py-class docutils literal notranslate"><span class="pre">_AggModelIdMixin</span></code>, <code class="xref py py-class docutils literal notranslate"><span class="pre">_SourcePredictionMixin</span></code></p>
<p>Aggregates anomaly predictions based on their scores.</p>
<p>This is an abstract base class for <cite>AggregationFn`s that combine multiple
`AnomalyPrediction</cite> objects into a single <cite>AnomalyPrediction</cite> based on
the scores of the input predictions.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>agg_func</strong> (<em>Callable</em><em>[</em><em>[</em><em>Iterable</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.13)"><em>float</em></a><em>]</em><em>]</em><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.13)"><em>float</em></a><em>]</em>) – A function that aggregates
a collection of anomaly scores (floats) into a single score.</p></li>
<li><p><strong>agg_model_id</strong> (<em>Optional</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><em>str</em></a><em>]</em>) – The model id used in aggregated predictions.
Defaults to None.</p></li>
<li><p><strong>include_source_predictions</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><em>bool</em></a>) – If True, include the input predictions in
the <cite>source_predictions</cite> of the output. Defaults to False.</p></li>
</ul>
</dd>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.ScoreAggregation.apply">
<span class="sig-name descname"><span class="pre">apply</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">predictions</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable" title="(in Python v3.13)"><span class="pre">Iterable</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AnomalyPrediction" title="apache_beam.ml.anomaly.base.AnomalyPrediction"><span class="pre">AnomalyPrediction</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AnomalyPrediction" title="apache_beam.ml.anomaly.base.AnomalyPrediction"><span class="pre">AnomalyPrediction</span></a></span></span><a class="reference internal" href="_modules/apache_beam/ml/anomaly/aggregations.html#ScoreAggregation.apply"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.ScoreAggregation.apply" title="Link to this definition"></a></dt>
<dd><p>Applies the score aggregation function to a list of predictions.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>predictions</strong> (<em>Iterable</em><em>[</em><a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AnomalyPrediction" title="apache_beam.ml.anomaly.base.AnomalyPrediction"><em>AnomalyPrediction</em></a><em>]</em>) – A collection of
<cite>AnomalyPrediction</cite> objects to be aggregated.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p><dl class="simple">
<dt>A single <cite>AnomalyPrediction</cite> object with the</dt><dd><p>aggregated score. The aggregated score is determined as follows:</p>
<ul class="simple">
<li><p>If there are any non-missing and non-error scores, the <cite>agg_func</cite> is
applied to aggregate them.</p></li>
<li><p>If all scores are error scores (<cite>None</cite>), the aggregated score is also
<cite>None</cite>.</p></li>
<li><p>If there are a mix of missing (<cite>NaN</cite>) and error scores (<cite>None</cite>), the
aggregated score is <cite>NaN</cite>.</p></li>
</ul>
</dd>
</dl>
</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference internal" href="apache_beam.ml.anomaly.base.html#apache_beam.ml.anomaly.base.AnomalyPrediction" title="apache_beam.ml.anomaly.base.AnomalyPrediction">AnomalyPrediction</a></p>
</dd>
</dl>
</dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MajorityVote">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.ml.anomaly.aggregations.</span></span><span class="sig-name descname"><span class="pre">MajorityVote</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/anomaly/aggregations.html#MajorityVote"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MajorityVote" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#apache_beam.ml.anomaly.aggregations.LabelAggregation" title="apache_beam.ml.anomaly.aggregations.LabelAggregation"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelAggregation</span></code></a></p>
<p>Aggregates anomaly labels using majority voting.</p>
<p>This <cite>AggregationFn</cite> implements a majority voting strategy to combine
anomaly labels from multiple <cite>AnomalyPrediction</cite> objects. It counts the
occurrences of normal and outlier labels and selects the label with the
higher count as the aggregated label. In case of a tie, a tie-breaker
label is used.</p>
<p class="rubric">Example</p>
<p>If input labels are [normal, outlier, outlier, normal, outlier], and
normal_label=0, outlier_label=1, then the aggregated label will be
outlier (1) because outliers have a majority (3 vs 2).</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>normal_label</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><em>int</em></a>) – The integer label for normal predictions. Defaults to 0.</p></li>
<li><p><strong>outlier_label</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><em>int</em></a>) – The integer label for outlier predictions. Defaults to
1.</p></li>
<li><p><strong>tie_breaker</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><em>int</em></a>) – The label to return if there is a tie in votes.
Defaults to 0 (normal_label).</p></li>
<li><p><strong>**kwargs</strong> – Additional keyword arguments to pass to the base
<cite>LabelAggregation</cite> class.</p></li>
</ul>
</dd>
</dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MajorityVote.MajorityVote__spec_type">
<span class="sig-name descname"><span class="pre">MajorityVote__spec_type</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">'MajorityVote'</span></em><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MajorityVote.MajorityVote__spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MajorityVote.from_spec">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_spec</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">spec</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">_run_init</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Self</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><span class="pre">type</span></a><span class="p"><span class="pre">[</span></span><span class="pre">Self</span><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MajorityVote.from_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a <cite>Specifiable</cite> subclass object based on a spec.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>spec</strong> – the specification of a <cite>Specifiable</cite> subclass object</p></li>
<li><p><strong>_run_init</strong> – whether to call <cite>__init__</cite> or not for the initial instantiation</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>the <cite>Specifiable</cite> subclass object</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Self</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MajorityVote.run_original_init">
<span class="sig-name descname"><span class="pre">run_original_init</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MajorityVote.run_original_init" title="Link to this definition"></a></dt>
<dd><p>Execute the original <cite>__init__</cite> method with its saved arguments.</p>
<p>For instances of the <cite>Specifiable</cite> class, initialization is deferred
(lazy initialization). This function forces the execution of the
original <cite>__init__</cite> method using the arguments captured during
the object’s initial instantiation.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MajorityVote.spec_type">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">spec_type</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MajorityVote.spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MajorityVote.to_spec">
<span class="sig-name descname"><span class="pre">to_spec</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MajorityVote.to_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a spec from a <cite>Specifiable</cite> subclass object.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>The specification of the instance.</p>
</dd>
<dt class="field-even">Return type<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec">Spec</a></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MajorityVote.unspecifiable">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">unspecifiable</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MajorityVote.unspecifiable" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AllVote">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.ml.anomaly.aggregations.</span></span><span class="sig-name descname"><span class="pre">AllVote</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/anomaly/aggregations.html#AllVote"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AllVote" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#apache_beam.ml.anomaly.aggregations.LabelAggregation" title="apache_beam.ml.anomaly.aggregations.LabelAggregation"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelAggregation</span></code></a></p>
<p>Aggregates anomaly labels using an “all vote” (AND) scheme.</p>
<p>This <cite>AggregationFn</cite> implements an “all vote” strategy. It aggregates
anomaly labels such that the result is considered an outlier only if all
input <cite>AnomalyPrediction</cite> objects are labeled as outliers.</p>
<p class="rubric">Example</p>
<p>If input labels are [outlier, outlier, outlier], and outlier_label=1,
then the aggregated label will be outlier (1).
If input labels are [outlier, normal, outlier], and outlier_label=1,
then the aggregated label will be normal (0).</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>normal_label</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><em>int</em></a>) – The integer label for normal predictions. Defaults to 0.</p></li>
<li><p><strong>outlier_label</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><em>int</em></a>) – The integer label for outlier predictions. Defaults to
1.</p></li>
<li><p><strong>**kwargs</strong> – Additional keyword arguments to pass to the base
<cite>LabelAggregation</cite> class.</p></li>
</ul>
</dd>
</dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AllVote.AllVote__spec_type">
<span class="sig-name descname"><span class="pre">AllVote__spec_type</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">'AllVote'</span></em><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AllVote.AllVote__spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AllVote.from_spec">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_spec</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">spec</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">_run_init</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Self</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><span class="pre">type</span></a><span class="p"><span class="pre">[</span></span><span class="pre">Self</span><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AllVote.from_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a <cite>Specifiable</cite> subclass object based on a spec.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>spec</strong> – the specification of a <cite>Specifiable</cite> subclass object</p></li>
<li><p><strong>_run_init</strong> – whether to call <cite>__init__</cite> or not for the initial instantiation</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>the <cite>Specifiable</cite> subclass object</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Self</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AllVote.run_original_init">
<span class="sig-name descname"><span class="pre">run_original_init</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AllVote.run_original_init" title="Link to this definition"></a></dt>
<dd><p>Execute the original <cite>__init__</cite> method with its saved arguments.</p>
<p>For instances of the <cite>Specifiable</cite> class, initialization is deferred
(lazy initialization). This function forces the execution of the
original <cite>__init__</cite> method using the arguments captured during
the object’s initial instantiation.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AllVote.spec_type">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">spec_type</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AllVote.spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AllVote.to_spec">
<span class="sig-name descname"><span class="pre">to_spec</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AllVote.to_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a spec from a <cite>Specifiable</cite> subclass object.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>The specification of the instance.</p>
</dd>
<dt class="field-even">Return type<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec">Spec</a></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AllVote.unspecifiable">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">unspecifiable</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AllVote.unspecifiable" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AnyVote">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.ml.anomaly.aggregations.</span></span><span class="sig-name descname"><span class="pre">AnyVote</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/anomaly/aggregations.html#AnyVote"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AnyVote" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#apache_beam.ml.anomaly.aggregations.LabelAggregation" title="apache_beam.ml.anomaly.aggregations.LabelAggregation"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelAggregation</span></code></a></p>
<p>Aggregates anomaly labels using an “any vote” (OR) scheme.</p>
<p>This <cite>AggregationFn</cite> implements an “any vote” strategy. It aggregates
anomaly labels such that the result is considered an outlier if at least
one of the input <cite>AnomalyPrediction</cite> objects is labeled as an outlier.</p>
<p class="rubric">Example</p>
<p>If input labels are [normal, normal, outlier], and outlier_label=1,
then the aggregated label will be outlier (1).
If input labels are [normal, normal, normal], and outlier_label=1,
then the aggregated label will be normal (0).</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>normal_label</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><em>int</em></a>) – The integer label for normal predictions. Defaults to 0.</p></li>
<li><p><strong>outlier_label</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><em>int</em></a>) – The integer label for outlier predictions. Defaults to
1.</p></li>
<li><p><strong>**kwargs</strong> – Additional keyword arguments to pass to the base
<cite>LabelAggregation</cite> class.</p></li>
</ul>
</dd>
</dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AnyVote.AnyVote__spec_type">
<span class="sig-name descname"><span class="pre">AnyVote__spec_type</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">'AnyVote'</span></em><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AnyVote.AnyVote__spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AnyVote.from_spec">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_spec</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">spec</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">_run_init</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Self</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><span class="pre">type</span></a><span class="p"><span class="pre">[</span></span><span class="pre">Self</span><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AnyVote.from_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a <cite>Specifiable</cite> subclass object based on a spec.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>spec</strong> – the specification of a <cite>Specifiable</cite> subclass object</p></li>
<li><p><strong>_run_init</strong> – whether to call <cite>__init__</cite> or not for the initial instantiation</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>the <cite>Specifiable</cite> subclass object</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Self</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AnyVote.run_original_init">
<span class="sig-name descname"><span class="pre">run_original_init</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AnyVote.run_original_init" title="Link to this definition"></a></dt>
<dd><p>Execute the original <cite>__init__</cite> method with its saved arguments.</p>
<p>For instances of the <cite>Specifiable</cite> class, initialization is deferred
(lazy initialization). This function forces the execution of the
original <cite>__init__</cite> method using the arguments captured during
the object’s initial instantiation.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AnyVote.spec_type">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">spec_type</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AnyVote.spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AnyVote.to_spec">
<span class="sig-name descname"><span class="pre">to_spec</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AnyVote.to_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a spec from a <cite>Specifiable</cite> subclass object.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>The specification of the instance.</p>
</dd>
<dt class="field-even">Return type<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec">Spec</a></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AnyVote.unspecifiable">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">unspecifiable</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AnyVote.unspecifiable" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AverageScore">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.ml.anomaly.aggregations.</span></span><span class="sig-name descname"><span class="pre">AverageScore</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/anomaly/aggregations.html#AverageScore"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AverageScore" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#apache_beam.ml.anomaly.aggregations.ScoreAggregation" title="apache_beam.ml.anomaly.aggregations.ScoreAggregation"><code class="xref py py-class docutils literal notranslate"><span class="pre">ScoreAggregation</span></code></a></p>
<p>Aggregates anomaly scores by calculating their average.</p>
<p>This <cite>AggregationFn</cite> computes the average of the anomaly scores from a
collection of <cite>AnomalyPrediction</cite> objects.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>**kwargs</strong> – Additional keyword arguments to pass to the base
<cite>ScoreAggregation</cite> class.</p>
</dd>
</dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AverageScore.AverageScore__spec_type">
<span class="sig-name descname"><span class="pre">AverageScore__spec_type</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">'AverageScore'</span></em><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AverageScore.AverageScore__spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AverageScore.from_spec">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_spec</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">spec</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">_run_init</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Self</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><span class="pre">type</span></a><span class="p"><span class="pre">[</span></span><span class="pre">Self</span><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AverageScore.from_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a <cite>Specifiable</cite> subclass object based on a spec.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>spec</strong> – the specification of a <cite>Specifiable</cite> subclass object</p></li>
<li><p><strong>_run_init</strong> – whether to call <cite>__init__</cite> or not for the initial instantiation</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>the <cite>Specifiable</cite> subclass object</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Self</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AverageScore.run_original_init">
<span class="sig-name descname"><span class="pre">run_original_init</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AverageScore.run_original_init" title="Link to this definition"></a></dt>
<dd><p>Execute the original <cite>__init__</cite> method with its saved arguments.</p>
<p>For instances of the <cite>Specifiable</cite> class, initialization is deferred
(lazy initialization). This function forces the execution of the
original <cite>__init__</cite> method using the arguments captured during
the object’s initial instantiation.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AverageScore.spec_type">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">spec_type</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AverageScore.spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AverageScore.to_spec">
<span class="sig-name descname"><span class="pre">to_spec</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AverageScore.to_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a spec from a <cite>Specifiable</cite> subclass object.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>The specification of the instance.</p>
</dd>
<dt class="field-even">Return type<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec">Spec</a></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.AverageScore.unspecifiable">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">unspecifiable</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.AverageScore.unspecifiable" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MaxScore">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">apache_beam.ml.anomaly.aggregations.</span></span><span class="sig-name descname"><span class="pre">MaxScore</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/apache_beam/ml/anomaly/aggregations.html#MaxScore"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MaxScore" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#apache_beam.ml.anomaly.aggregations.ScoreAggregation" title="apache_beam.ml.anomaly.aggregations.ScoreAggregation"><code class="xref py py-class docutils literal notranslate"><span class="pre">ScoreAggregation</span></code></a></p>
<p>Aggregates anomaly scores by selecting the maximum score.</p>
<p>This <cite>AggregationFn</cite> selects the highest anomaly score from a collection
of <cite>AnomalyPrediction</cite> objects as the aggregated score.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>**kwargs</strong> – Additional keyword arguments to pass to the base
<cite>ScoreAggregation</cite> class.</p>
</dd>
</dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MaxScore.MaxScore__spec_type">
<span class="sig-name descname"><span class="pre">MaxScore__spec_type</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">'MaxScore'</span></em><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MaxScore.MaxScore__spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MaxScore.from_spec">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_spec</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">spec</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">_run_init</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Self</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><span class="pre">type</span></a><span class="p"><span class="pre">[</span></span><span class="pre">Self</span><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MaxScore.from_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a <cite>Specifiable</cite> subclass object based on a spec.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>spec</strong> – the specification of a <cite>Specifiable</cite> subclass object</p></li>
<li><p><strong>_run_init</strong> – whether to call <cite>__init__</cite> or not for the initial instantiation</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>the <cite>Specifiable</cite> subclass object</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Self</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MaxScore.run_original_init">
<span class="sig-name descname"><span class="pre">run_original_init</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><span class="pre">None</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MaxScore.run_original_init" title="Link to this definition"></a></dt>
<dd><p>Execute the original <cite>__init__</cite> method with its saved arguments.</p>
<p>For instances of the <cite>Specifiable</cite> class, initialization is deferred
(lazy initialization). This function forces the execution of the
original <cite>__init__</cite> method using the arguments captured during
the object’s initial instantiation.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MaxScore.spec_type">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">spec_type</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MaxScore.spec_type" title="Link to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MaxScore.to_spec">
<span class="sig-name descname"><span class="pre">to_spec</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec"><span class="pre">Spec</span></a></span></span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MaxScore.to_spec" title="Link to this definition"></a></dt>
<dd><p>Generate a spec from a <cite>Specifiable</cite> subclass object.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>The specification of the instance.</p>
</dd>
<dt class="field-even">Return type<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference internal" href="apache_beam.ml.anomaly.specifiable.html#apache_beam.ml.anomaly.specifiable.Spec" title="apache_beam.ml.anomaly.specifiable.Spec">Spec</a></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="apache_beam.ml.anomaly.aggregations.MaxScore.unspecifiable">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">unspecifiable</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#apache_beam.ml.anomaly.aggregations.MaxScore.unspecifiable" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="apache_beam.ml.anomaly.univariate.stdev.html" class="btn btn-neutral float-left" title="apache_beam.ml.anomaly.univariate.stdev module" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="apache_beam.ml.anomaly.base.html" class="btn btn-neutral float-right" title="apache_beam.ml.anomaly.base module" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright %Y, Apache Beam.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>