blob: 4edfe1f3091e93d6648e45c59657f7f4a1c7cf87 [file] [log] [blame]
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
<title>Axis2/C OM Tutorial</title>
<meta name="generator" content="Bluefish 1.0.5"/>
</head>
<body>
<h1>Axis2/C OM Tutorial</h1>
<h2>Content</h2>
<ul>
<li><a href="#Introduction">Introduction</a>
<ul>
<li><a href="#What_is_OM">What is OM</a></li>
<li><a href="#For_Whom_is_This_Tutorial">For Whom is This
Tutorial</a></li>
<li><a href="#What_is_Pull_Parsing">What is Pull Parsing</a></li>
<li><a href="#Features_of_OM">Features of OM</a></li>
<li><a href="#Where_Does_SOAP_Come_into_Play?">Where does SOAP come
into play?</a></li>
</ul>
</li>
<li><a href="#Working_with_OM">Working with OM</a>
<ul>
<li><a href="#Env">Axis2/C Environment</a></li>
<li><a href="#Creation">Creation</a></li>
<li><a href="#Addition_and_Detaching_of_Nodes">Adding and Detaching
Nodes</a></li>
<li><a href="#Traversing">Traversing</a></li>
<li><a href="#Serialization">Serialization</a></li>
<li><a href="#Reader_and_Writer">Using axiom_xml_reader and axiom_xml_writer</a></li>
<li><a href="#Mem_Leaks">How to avoid memory leaks and double frees when using OM</a></li>
<li><a href="#Complete_Sample">Complete Sample</a></li>
</ul>
</li>
</ul>
<a id="Introduction"></a>
<h2>Introduction</h2>
<a id="What_is_OM"></a>
<h3>What is OM?</h3>
<p>OM stands for Object Model (a.k.a AXIOM - AXis Object Model) and refers to
the XML infoset model that is developed for Axis 2. XML infoset refers to the
information included inside the XML. For programmatical manipulation it is
convenient to have a representation of this XML infoset in a language
specific manner. DOM and JDOM are two such XML models. OM is conceptually
similar to such an XML model by its external behavior but deep down it is
very much different.</p>
<p>The objective of this tutorial is to introduce the basics of OM C and
explain best practices while using OM.</p>
<p>AXIOM C is a C implementation of AXIOM Java. We have tried to get almost
the same kind of API in C.</p>
<a id="For_Whom_is_This_Tutorial"></a>
<h3>For whom is this Tutorial?</h3>
<p>This tutorial can be used by anybody who is interested and wants to go
deeper in to OM C. Knowledge in similar object models such as DOM will be
quite helpful in understanding OM but such knowledge is not assumed. Several
links are listed in the appendix/ links section that will help understand the
basics of XML.</p>
<a id="What_is_Pull_Parsing"></a>
<h3>What is Pull Parsing ?</h3>
Pull parsing is a new trend in XML processing. The previously popular XML
processing frameworks such as DOM were "push-based", which means that the
control of parsing was with the parser itself. This approach is fine and easy
to use but it is not efficient in handling large XML documents since a
complete memory model will be generated in the memory. Pull parsing inverts
the control and hence the parser only proceeds at the users command. The user
can decide to store or discard events generated from the parser. OM is based
on pull parsing. To learn more about XML pull parsing see the <a
href="http://www.bearcave.com/software/java/xml/xmlpull.html">XML pull
parsing introduction</a>.
<a id="Features_of_OM"></a>
<h3>Features of OM</h3>
<p>OM is a lightweight, differed built XML infoset representation based on
StAX API derived form (<a
href="http://www.jcp.org/aboutJava/communityprocess/first/jsr173/">JSR
173</a>), which is the standard streaming pull parser API. OM can be
manipulated as flexibly as any other object model (such as <a
href="http://www.jdom.org/">JDOM</a>), but underneath the objects will be
created only when they are absolutely required. This leads to much less
memory intensive programming.</p>
<p>Following is a short feature overview of OM.</p>
<ul>
<li>Lightweight: OM is specifically targeted to be lightweight. This is
achieved by reducing the depth of the hierarchy, the number of methods
and the attributes enclosed in the objects. This makes the objects less
memory intensive.</li>
<li>Differed building: By far this is the most important feature of OM. The
objects are not made unless a need arises for them. This passes the
control of building to the object model itself rather than an external
builder.</li>
<li>Pull based: For a differed building mechanism a pull based parser is
required. OM is based on StAX, the standard pull parser API.
<p>Since different XML parsers offer different kinds of pull parser APIs,
we define an API derived from StAX. That API is defined in
<code>axiom_xml_reader.h</code>. Similarly we define an xml writer API in
<code>axiom_xml_writer.h</code>. These two APIs work as an abstarction
layer between any XML parser and OM. So any parser that is going to be
used for OM should implement the <code>axiom_xml_reader</code> API and
<code>axiom_xml_writer</code> API using a wrapper layer.</p>
<p></p>
<p>Currenly we use <code>libxml2</code> as our default XML parser.</p>
<p></p>
</li>
</ul>
<!-- Special section -->
<!--age -->
<p class="img"><img alt="" src="images/archi006.jpg" class="img" width="490"
height="282" /></p>
<!-- End of Image -->
<p>OM Builder wraps the raw xml character stream through the
<code>axiom_xml_reader</code> API. Hence the complexities of the pull event
stream are covered.</p>
<a id="Where_Does_SOAP_Come_into_Play?"></a>
<h3>Where does SOAP come into play?</h3>
<p>In a nutshell SOAP is an information exchange protocol based on XML. SOAP
has a defined set of XML elements that should be used in messages. Since Axis
is a "SOAP Engine" and OM is built for Axis, a SOAP specific API was
implemented on top of OM. We have defined a number of structs to represent
SOAP constructs like Envelope etc., which wraps general OM structures. See <a
href="http://www.w3schools.com/SOAP/soap_intro.asp">here</a> to learn more
about SOAP.</p>
<!--<p>This abstraction provides</p>
<ul>
<li>differed building support</li>
<li>Caching</li>
</ul>
<p>AXIOM has the flexibility to plug in any builder which implements the given builders interface. The upcoming sections of this tutorial deal with the creation and usage of OM for manipulating SOAP (and to some extent nonSOAP) based XML documents.</p>
-->
<a id="Working_with_OM"></a>
<h2>Working with OM</h2>
<p></p>
<a id="Env"></a>
<h3>Axis2/C Environment</h3>
<p>Before starting the discussion on OM, it is necessary to get a good
understanding of the basics of Axis2/C. Axis2/C is designed to be pluggable to
any system written in C or C++ as such, Axis2 has abstracted the
functionalities that differ from system to system into a structure
<code>axis2_env_t</code>, which we refer to as axis2 environment . The
environment holds <code>axis2_allocator_t</code> [ used for memory
allocation/deallocation ] , <code>axis2_error_t</code> [ error reporting
mechanism ], <code>axis2_log_t</code> [ logging mechanism ] and
<code>axis2_thread_t</code> [ threading mechanism ].
<code>axis2_allocator_t</code> has function pointers to <code>malloc</code>,
<code>realloc</code> and <code>free</code> functions and all memory
allocation and deallocation is done using the allocator. Therefore, by
pluging in a different allocator, a user can make the entire Axis2 system to
use different memory management functions.</p>
<p></p>
<p>When creating the axis2 environment, the first thing is to create the
allocator.</p>
<p><code>axis2_allocator_t *allocator = NULL;</code></p>
<p><code>allocator = axis2_allocator_init(NULL);</code></p>
<p></p>
<p>We pass <code>NULL</code> to the above function to use the default
allocator. Then the allocators function pointers point to
<code>malloc</code>, <code>realloc</code> and <code>free</code> functions. If
you have your own allocator structure, you may pass it instead.</p>
<p></p>
<p>Convenient macros <code>AXIS2_MALLOC</code>, <code>AXIS2_REALLOC</code> and
<code>AXIS2_FREE</code> are defined to use allocator functions (refer to
<code>axis2_allocator.h</code> for more information).</p>
<p></p>
<p>In a similar fashion, you can create the error and log structures.</p>
<p><code>axis2_log_t *log = NULL;</code></p>
<p><code>axis2_error_t *error = NULL;</code></p>
<p><code>log = axis2_log_create(allocator, NULL, NULL);</code></p>
<p><code>log = axis2_log_create(allocator, NULL, "mylog.log");</code></p>
<p></p>
<p>Now we can create the environment by parsing the allocator, error and log
to <code>axis2_env_create_with_error_log()</code> function.</p>
<p><code>axis2_env_t *env = NULL;</code></p>
<p><code>env = axis2_env_create_with_error_log(allocator, error,
log);</code></p>
<p></p>
<p>Apart from the above abstraction, all other library functions used are
ANSI C compliant. Further, platform dependent functions are also
abstracted.</p>
<p></p>
<p>As a rule of thumb, all "<code>create</code>" functions take a pointer to
the environment as its first argument and all other functions take pointer to
'this' struct as the first argument and a pointer to the environment as the
second argument. (Please refer to our <a
href="../coding_conventions.html">coding convention page</a> to learn more
about this)</p>
<p>Eg.</p>
<p><code>axiom_node_t *node = NULL;</code></p>
<p><code>axiom_node_t *child = NULL;</code></p>
<p><code>node = axiom_node_create(env);</code></p>
<p><code>child = AXIOM_NODE_GET_FIRST_CHILD(node, env);</code></p>
<p>Note that we are passing the node (pointer to <code>axiom_node_t</code> )
as the first argument and the pointer to the environment as the second.</p>
<p></p>
<p>All functions return a pointer to a struct or a status code [
<code>AXIS2_SUCCESS</code> , <code>AXIS2_FAILURE</code>]. So if
<code>NULL</code> is returned by a function it is either because there is
nothing to return or an error has occurred.</p>
<p></p>
<a id="Creation"></a>
<h3>Creation</h3>
<p>Creation is the first and foremost action when using an Object
representation. This part explains how OM can be built either from an
existing document or programmatically. OM provides a notion of a builder to
create objects. Since OM is tightly bound to StAX, a StAX compliant reader
should be created first with the desired input stream.</p>
<p>In our OM implementation we define a struct '<code>axiom_node_t</code>'
which acts as the container of the other structs and it maintains the links
that form the Link List OM in C.</p>
<p>To traverse this structure, the functions defined in
<code>axiom_node.h</code> must be used. To access xml information, the 'data
element' struct stored in <code>axiom_node_t</code> must be obtained using
the <code>AXIOM_NODE_GET_DATA_ELEMENT</code> macro. The type of the struct
stored in the '<code>axiom_node_t'</code> struct can be obtained by
<code>AXIOM_NODE_GET_NODE_TYPE</code> macro. When we create
<code>axiom_element_t</code> , <code>axiom_text_t</code> etc., it is
required to parse a double pointer to the node struct as the last parameter
of the <code>create</code> function so that the corresponding node struct can
be referenced using that pointer.</p>
<p>Example</p>
<p><code>axiom_node_t *my_node = NULL;</code></p>
<p><code>axiom_element_t *my_ele = NULL;</code></p>
<p><code>my_ele = axiom_element_create(env, NULL, "MY_ELEMENT", NULL,
&amp;my_node);</code></p>
<p></p>
<p>Now if we call <code>AXIOM_NODE_GET_NODE_TYPE</code> macro on
'<code>my_node</code>' pointer we will get the value as
<code>AXIOM_ELEMENT</code>.</p>
<div>
<p></p>
<p><b>Code Listing 1</b></p>
</div>
<pre>axiom_xml_reader_t&nbsp;*xml_reader&nbsp;=&nbsp;NULL;<br />
axiom_stax_builder_t&nbsp;*om_builder&nbsp;=&nbsp;NULL;<br />
axiom_soap_builder_t&nbsp;*soap_builder&nbsp;=&nbsp;NULL;<br />
axiom_soap_envelope_t&nbsp;*soap_envelope&nbsp;=&nbsp;NULL;<br />
<i>/**&nbsp;create&nbsp;the&nbsp;parser&nbsp;*/</i><br />
xml_reader&nbsp;=&nbsp;axiom_xml_reader_create_for_file(env,&nbsp;"test_soap.xml",NULL);<br />
<i>/**&nbsp;create&nbsp;the&nbsp;OM&nbsp;builder&nbsp;*/</i><br />
om_builder&nbsp;=&nbsp;axiom_stax_builder_create(env,&nbsp;xml_reader);<br />
<i>/**&nbsp;create&nbsp;SOAP&nbsp;builder&nbsp;*/</i><br />
soap_builder&nbsp;=&nbsp;axiom_soap_builder_create(env,&nbsp;om_builder&nbsp;,&nbsp;AXIOM_SOAP11_SOAP_ENVELOPE_NAMESPACE_URI);<br />
<i>/**&nbsp;get&nbsp;soap&nbsp;envelope&nbsp;*/</i><br />
soap_envelope&nbsp;=&nbsp;AXIOM_SOAP_BUILDER_GET_SOAP_ENVELOPE(soap_builder,&nbsp;env);<br /></pre>
<br />
<p>As the example shows, creating an OM from <code>xml_reader</code> is
pretty straight forward. However, elements and nodes can be created
programmatically to modify the structure as well. Currently OM has two
builders, namely the <code>axiom_stax_builder_t</code> and the
<code>axiom_soap_builder_t</code>. These builders provide the necessary
information to the XML infoset model to build itself.</p>
<div>
<p></p>
<p><b>Code Listing 2</b></p>
</div>
<pre class="code">axiom_namespace_t *ns1 = NULL;
axiom_namespace_t *ns2 = NULL;
axiom_element_t* root_ele = NULL;
axiom_node_t* root_ele_node = NULL;
axiom_element_t *ele1 = NULL;
axiom_node_t *ele1_node = NULL;
ns1 = axiom_namespace_create(env, "bar", "x");
ns2 = axiom_namespace_create(env, "bar1", "y");
root_ele = axiom_element_create(env, NULL, "root", ns1, &amp;root_ele_node);
ele1 = axiom_element_create(env, root_node, "foo1", ns2, &amp;ele1_node);</pre>
<p></p>
<p>Several differences exist between a programmatically created
<code>axiom_node_t</code> and a conventionally built
<code>axiom_node_t</code>. The most important difference is that the latter
will have a pointer to its builder, where as the former does not have that
information. As stated earlier in this tutorial, since the OM is built as and
when required, each and every <code>axiom_node_t</code> struct should have a
reference to its builder. If this information is not available, it is due to
the struct being created without a builder.</p>
<p></p>
<p>The SOAP struct hierarchy is made in the most natural way for a
programmer. It acts as a wrapper layer on top of OM implementation. The SOAP
structs wraps the corresponding <code>axiom_node_t</code> structs to store
information in xml.</p>
<!-- The following illustration of the actual class diagram will be helpful in understanding this.
Need an image here -->
<a id="Addition_and_Detaching_of_Nodes"></a>
<h3>Adding and Detaching Nodes</h3>
<p>Addition and removal methods are defined in the <code>axiom_node.h</code>
header. The following are the most important in adding nodes.</p>
<div>
<p><b>Code Listing 3</b></p>
</div>
<p>Add child operation</p>
<pre class="code">axis2_status_t
axiom_node_add_child( axiom_node_t *om_node,
const axis2_env_t *env,
axiom_node_t *child_node);</pre>
<p>Detach operation</p>
<pre class="code">axiom_node_t*
axiom_node_detach (axiom_node_t *om_node,
const axis2_env_t *env);</pre>
<p>The detach operation resets the links and removes a node from OM
structure.</p>
<p></p>
<p>This code segment shows how the addition takes place. Note,that it is
related to the code segment shown in the creation section.</p>
<div>
<p><b>Code Listing 4</b></p>
</div>
<pre class="code">axiom_node_t *foo_node = NULL;
axiom_element_t *foo_ele = NULL;
axiom_node_t *bar_node = NULL;
axiom_element_t *bar_ele = NULL;
foo_ele = axiom_element_create(env, NULL, "FOO", NULL, &amp;foo_node);
bar_ele = axiom_element_create(env, NULL, "BAR", NULL. &amp;bar_node); </pre>
<p></p>
<p>Now if we want to make 'BAR' element, a child of 'FOO' element we can use
add child macro.</p>
<pre class="code"> AXIOM_NODE_ADD_CHILD(foo_node, env, bar_node); </pre>
<p></p>
<p>Or we can parse the <code>foo_node</code> as the parent node at the time
of creating to <code>bar_ele</code> as follows.</p>
<pre> bar_ele = axiom_element_create(env, foo_node, "BAR", NULL, &amp;bar_node);</pre>
<ul>
<li><code>add_child</code> function will always add the child as the first
child of the parent.</li>
<li><p>A given node can be removed from the tree by calling the
<code>detach()</code> method. A node can also be removed from the tree by
calling the <code>remove</code> method of the returned iterator which
will also call the <code>detach</code> method of the particular node
internally.</p>
</li>
<li>Namespaces are a tricky part of any XML object model and is the same in
OM. However the interface to the namespace have been made very simple.
<code>axiom_namespace_t</code> is the struct that represents a namespace
and we do not have setter functions. This makes the axiom namespace
immutable.</li>
</ul>
<p></p>
<p>The following are the important methods available in
<code>axiom_element</code> to handle namespaces.</p>
<div>
<p><b>Code Listing 5</b></p>
</div>
<pre class="code">axiom_namespace_t*
axiom_element_declare_namespace(axiom_element_t *om_ele,
const axis2_env_t *env,
axiom_node_t *om_node,
axiom_namespace_t *om_ns);
axiom_namespace_t*
axiom_element_find_namespace(axiom_element_t *om_ele,
const axis2_env_t *env,
axiom_node_t *om_node,
axis2_char_t *uri,
axis2_char_t *prefix);
axiom_namespace_t*
axiom_element_find_declared_namespace(axiom_element_t *om_element,
const axis2_env_t *env,
axis2_char_t *uri,
axis2_char_t *prefix);
axis2_status_t
axiom_element_set_namespace(axiom_element_t *om_element,
const axis2_env_t *env,
axiom_namespace_t *ns,
axiom_node_t *element_node);</pre>
<p></p>
<p>An <code>om_element</code> has a namespace list [declared namespaces] and a pointer to
its own namespace if one exists.</p>
<p>The <code>declare_namespace</code> function is straight forward. It adds a
namespace to namespace declarations section. Note that a namespace
declaration that is already added will not be added twice.</p>
<p><code>find_namespace</code> is a very handy method to locate a namespace
higher up the tree. It searches for a matching namespace in its own
declarations section and jumps to the parent if it's not found. The search
progresses up the tree until a matching namespace is found or the root has
been reached.</p>
<p><code>find_declared_namespace</code> can be used to search for a namespace
in the current element's namespace declarations section.</p>
<p><code>set_namespace</code> sets an <code>om_elements</code> own namespace. [ Note that
an element's own namespace should be declared in its own namespace
declarations section or in one of its parent elements. ] This method first
searches for a matching namespace using <code>find_namespace</code> and if a
matching namespace is not found, a namespace is declared to this om_element's
namespace declarations section before setting the own namespace reference.</p>
<p>The following sample code segment shows how the namespaces are dealt with
in OM.</p>
<div>
<p><b>Code Listing 6</b></p>
</div>
<pre class="code">axiom_namespace_t *ns1 = NULL;
axiom_namespace_t *ns2 = NULL;
axiom_namespace_t *ns3 = NULL;
axiom_node_t *root_node = NULL;
axiom_element_t *root_ele = NULL;
axiom_node_t *ele1_node = NULL;
axiom_element_t *ele1 = NULL;
axiom_node_t *text_node = NULL;
axiom_text_t *om_text = NULL;
ns1 = axiom_namespace_create(env, "bar", "x");
ns2 = axiom_namespace_create(env, "bar1", "y");
root_ele = axiom_element_create(env, NULL , "root", ns1, &amp;root_node);
ele1 = axiom_element_create(env, root_node, "foo", ns2, &amp;ele1_node);
om_text = axiom_text_create(env, ele1_node, "blah", &amp;text_node);</pre>
<p></p>
<p>Serilization of the root element produces the following XML:</p>
<pre class="xml">&lt;x:root xmlns:x="bar"&gt;
&lt;y:foo xmlns:y="bar1"&gt;
blah
&lt;/y:foo&gt;
&lt;/x:root&gt;</pre>
<p>If we want to produce</p>
<pre class="xml">&lt;x:foo xmlns:x="bar" xmlns:y="bar1"&gt;Test&lt;/x:foo&gt;</pre>
<p>we can use set_namespace and declare namespace functions as follows</p>
<pre class="code">axiom_node_t *foo_node = NULL;
axiom_element_t *foo_ele = NULL;
axiom_namespace_t *ns1 = NULL;
axiom_namespace_t *ns2 = NULL;
foo_ele = axiom_element_create(env, NULL,"foo" ,NULL, &amp;foo_node);
ns1 = axiom_namespace_create(env, "bar", "x");
ns2 = axiom_namespace_create(env, "bar1","y");
AXIOM_ELEMENT_SET_NAMESPACE(foo_ele, env, ns1, foo_node);
AXIOM_ELEMENT_DECLARE_NAMESPACE(foo_ele, env, ns2, foo_node);
AXIOM_ELEMENT_SET_TEXT(foo_ele, env, "Test", &amp;foo_node);</pre>
<p></p>
<a id="Traversing"></a>
<h3>Traversing</h3>
<p>Traversing the OM structure can be done by obtaining an iterator struct.
You can either call the appropriate function on an OM element or create the
iterator manually. OM C offers three iterators to traverse the OM structure.
They are:</p>
<ul>
<li>axiom_children_iterator_t</li>
<li>axiom_child_element_iterator_t</li>
<li>axiom_children_qname_iterator_t</li>
</ul>
<p></p>
<p>The iterator supports the 'OM way' of accessing elements and is more
convenient than a list for sequential access. The following code sample shows
how the children can be accessed. The children can be of type
<code>AXIOM_TEXT</code> or <code>AXIOM_ELEMENT</code>.</p>
<div>
<p><b>Code Listing 7</b></p>
</div>
<pre class="code">axiom_children_iterator_t *children_iter = NULL;
children_iter = AXIOM_ELEMENT_GET_CHILDREN(om_ele, env, om_node);
if(NULL != children_iter )
{
while(AXIOM_CHILDREN_ITERATOR_HAS_NEXT(children_iter, env))
{
axiom_node_t *node = NULL;
node = AXIOM_CHILDREN_ITERATOR_NEXT(children_iter, env);
if(NULL != node)
{
if(AXIOM_NODE_GET_NODE_TYPE(node, env) == AXIOM_ELEMENT)
{
/** any processing */
}
}
}
}</pre>
<p></p>
<p>Apart from this, every <code>axiom_node_t</code> struct has links to its
siblings. If a thorough navigation is needed the
<code>AXIOM_NODE_GET_NEXT_SIBLING()</code> and
<code>AXIOM_NODE_GET_PREVIOUS_SIBLING()</code> macros can be used. A
restrictive set can be chosen by using
<code>AXIOM_ELEMENT_XXX_WITH_QNAME()</code> methods. The
<code>AXIOM_ELEMENT_GET_FIRST_CHILD_WITH_QNAME()</code> method returns the
first child that matches the given <code>axis2_qname_t</code> and
<code>AXIOM_ELEMENT_GET_CHILDREN_WITH_QNAME()</code> returns
<code>axiom_children_qname_iterator_t</code> which can be used to traverse all
the matching children. The advantage of these iterators are that they won't
build the whole object structure at once; it builds only what is required.</p>
<p></p>
<!-- Special section -->
<table width="100%">
<tbody>
<tr>
<td><img src="images/OM005.gif" alt="" width="35" height="57" /></td>
<td class="special-td">All iterator implementations internally stay one
step ahead of their apparent location to provide the correct value
for the <code>HAS_NEXT()</code> function . This hidden advancement
can build elements that are not intended to be built at all.</td>
<td></td>
</tr>
</tbody>
</table>
<!-- End of special section -->
<p></p>
<a id="Serialization"></a>
<h3><b>Serialization</b></h3>
<p>OM can be serialized using <code>AXIOM_NODE_SERIALIZE</code> macro .The
serialization uses <code>axiom_xml_writer.h</code> and
<code>axiom_output.h</code> APIs.</p>
<p></p>
<p>Here is an example that shows how to write the output to the console (we have
serialized the SOAP envelope created in code listing 1).</p>
<div>
<p><b>Code Listing 8</b></p>
</div>
<pre class="code">axiom_xml_writer_t *xml_writer = NULL;
axiom_output_t *om_output = NULL;
axis2_char_t *buffer = NULL;
..............
xml_writer = axiom_xml_writer_create(env, NULL, 0, 0);
om_output = axiom_output_create(env, xml_writer);
AXIOM_SOAP_ENVELOPE_SERIALIZE(envelope, env, om_output);
buffer = (axis2_char_t*)AXIS2_XML_WRITER_GET_XML(xml_writer, env);
printf("%s ", buffer);</pre>
<p></p>
<p>An easy way to serialize is to use the <code>to_string</code> function in
<code>om_element</code></p>
<p></p>
<p><b>Code Listing 9</b></p>
<pre class="code">axis2_char_t *xml_output = NULL;
axiom_node_t *foo_node = NULL;
axiom_element_t *foo_ele = NULL;
axiom_namespace_t* ns = NULL;
ns = axiom_namespace_create(env, "bar","x");
foo_ele = axiom_element_create(env, NULL, "foo", ns, &amp;foo_node);
AXIOM_ELEMENT_SET_TEXT(foo_ele, env, "EASY SERAILIZATION", foo_node);
xml_output = AXIOM_ELEMENT_TO_STRING(foo_ele, env, foo_node);
printf("%s", xml_output);
AXIS2_FREE(env-&gt;allocator, xml_output);</pre>
<p></p>
<p>Note that freeing the returned buffer is user's responsibility.</p>
<p></p>
<a id="Reader_and_Writer"></a>
<h3><b>Using axiom_xml_reader and axiom_xml_writer</b></h3>
<p><code>axiom_xml_reader</code> provides three create functions that can
be used for different xml input sources.</p>
<ul>
<li><code>axiom_xml_reader_create_for_file</code> function can be used to
read from a file.</li>
<li><code>axiom_xml_reader_create_for_io</code> uses a user defined
callback function to pull xml.</li>
<li><code>axiom_xml_reader_create_for_memory</code> can be used to read
from an xml string that is in a character buffer.</li>
</ul>
<p></p>
<p>Similarly <code>axiom_xml_writer</code> provides two create functions.</p>
<ul>
<li><code>axiom_xml_writer_create_for_file</code> can be used to write to a
file.</li>
<li><code>axiom_xml_writer_create_for_memory</code> can be used to write to
an internal memory buffer and obtain the xml string to a character buffer
as the output.</li>
</ul>
<p></p>
<p>Please refer to <code>axiom_xml_reader.h</code> and
<code>axiom_xml_writer.h</code> for more information.</p>
<p></p>
<a id="Mem_Leaks"></a>
<h3><b>How to Avoid Memory Leaks and Double Frees When Using OM</b></h3>
<p>You have to be extremely careful when using OM, in order to avoid memory
leaks and double free errors. The following guidelines will be extremely useful:</p>
<p>1. <code>om_element_t</code> struct keeps a list of attributes and a list
of namespaces, when a namespace pointer is added to this list , it will be
freed when this <code>om_element</code> is freed, Therefore same pointer to a namespace or
an attribute should not be passed twice to a <code>create</code> , add or
<code>set</code> function.</p>
<p>To avoid the inconvenience, clone functions have been implemented for both
<code>axiom_namespace</code> and <code>axiom_attribute</code> structures.</p>
<p></p>
<p>2. OM returns shallow references to its string values. Therefore, when
using the returned values, <code>AXIS2_STRDUP ()</code> function should be used to avoid
double free errors, if the returned value is going to be set to another
struct.</p>
<p>Example</p>
<p><code>axiom_namespace_t *ns = NULL;</code></p>
<p><code>axis2_char_t *uri = NULL;</code></p>
<p><code>ns = axiom_namespace_create(env, "http://ws.apache.org",
"om");</code></p>
<p><code>uri = AXIOM_NAMESPACE_GET_URI(ns, env);</code></p>
<p><code>/** now uri points to the same place where namespace structs uri
pointer is pointing */</code></p>
<p><code>Therefore following will cause a double free */</code></p>
<p><code>AXIS2_FREE(env-&gt;allocator, uri);</code></p>
<p><code>AXIOM_NAMESPACE_FREE(ns, env);</code></p>
<p></p>
<p>3. When creating OM programatically , if you are declaring a namespace to
an OM element, it is advisable to find whether the namespace is already
available in the elements scope using <code>find_namespace</code> function. If available,
that pointer can be used instead of creating another namespace struct
instance to prevent memory leaks.</p>
<p></p>
<a id="Complete_Sample"></a>
<h3><b>Complete Code for the OM Based Document Building and
Serialization</b></h3>
<p>The following code segment shows how to use the OM for completely building
a document and then serializing it into text pushing the output to the
console.</p>
<div>
<p></p>
<p><b>Code Listing 10</b></p>
</div>
<pre>#include&nbsp;&lt;axiom.h&gt;
#include&nbsp;&lt;axis2_util.h&gt;
#include&nbsp;&lt;axis2_env.h&gt;
#include&nbsp;&lt;axis2_log_default.h&gt;
#include&nbsp;&lt;axis2_error_default.h&gt;
#include&nbsp;&lt;stdio.h&gt;
FILE&nbsp;*f&nbsp;=&nbsp;NULL;
int&nbsp;read_input_callback(char&nbsp;*buffer,&nbsp;int&nbsp;size,&nbsp;void*&nbsp;ctx)
{
&nbsp;&nbsp;&nbsp;&nbsp;<b>return</b>&nbsp;fread(buffer,&nbsp;<b>sizeof</b>(char),&nbsp;size,&nbsp;f);
}
int&nbsp;close_input_callback(void *ctx)
{
&nbsp;&nbsp;&nbsp;&nbsp;<b>return</b>&nbsp;fclose(f);
}
axis2_env_t&nbsp;*&nbsp;create_environment()
{
&nbsp;&nbsp;&nbsp;&nbsp;axis2_allocator_t&nbsp;*allocator&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axis2_env_t&nbsp;*env&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axis2_log_t&nbsp;*log&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axis2_error_t&nbsp;*error&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;allocator&nbsp;=&nbsp;axis2_allocator_init(NULL);
&nbsp;&nbsp;&nbsp;&nbsp;log&nbsp;=&nbsp;axis2_log_create(allocator,&nbsp;NULL,&nbsp;NULL);
&nbsp;&nbsp;&nbsp;&nbsp;error&nbsp;=&nbsp;axis2_error_create(allocator);
&nbsp;&nbsp;&nbsp;&nbsp;env&nbsp;=&nbsp;axis2_env_create_with_error_log(allocator,&nbsp;error, log);
&nbsp;&nbsp;&nbsp;&nbsp;<b>return</b>&nbsp;env;
}
build_and_serialize_om(axis2_env_t&nbsp;*env)
{
&nbsp;&nbsp;&nbsp;&nbsp;axiom_node_t&nbsp;*root_node&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axiom_element_t&nbsp;*root_ele&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axiom_document_t&nbsp;*document&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axiom_stax_builder_t&nbsp;*om_builder&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axiom_xml_reader_t&nbsp;*xml_reader&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axiom_xml_writer_t&nbsp;*xml_writer&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axiom_output_t&nbsp;*om_output&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axis2_char_t&nbsp;*buffer&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;f&nbsp;=&nbsp;fopen("test.xml","r");
&nbsp;&nbsp;&nbsp;&nbsp;xml_reader&nbsp;=&nbsp;axiom_xml_reader_create_for_io(env,&nbsp;read_input_callback,
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;close_input_callback,&nbsp;NULL,&nbsp;NULL);
&nbsp;&nbsp;&nbsp;&nbsp;<b>if</b>(!xml_reader)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>return</b>&nbsp;-1;
&nbsp;&nbsp;&nbsp;&nbsp;om_builder&nbsp;=&nbsp;axiom_stax_builder_create(env,&nbsp;xml_reader);
&nbsp;&nbsp;&nbsp;&nbsp;<b>if</b>(!om_builder)
&nbsp;&nbsp;&nbsp;&nbsp;{
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;AXIOM_XML_READER_FREE(xml_reader,&nbsp;env);
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>return</b>&nbsp;AXIS2_FAILURE;
&nbsp;&nbsp;&nbsp;&nbsp;}
&nbsp;&nbsp;&nbsp;&nbsp;document&nbsp;=&nbsp;AXIOM_STAX_BUILDER_GET_DOCUMENT(om_builder, env);
&nbsp;&nbsp;&nbsp;&nbsp;<b>if</b>(!document)
&nbsp;&nbsp;&nbsp;&nbsp;{
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;AXIOM_STAX_BUILDER_FREE(om_builder,&nbsp;env);
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>return</b>&nbsp;AXIS2_FAILURE;
&nbsp;&nbsp;&nbsp;&nbsp;}
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;root_node&nbsp;=&nbsp;AXIOM_DOCUMENT_GET_ROOT_ELEMENT(document,&nbsp;env);
&nbsp;&nbsp;&nbsp;&nbsp;<b>if</b>(!root_node)
&nbsp;&nbsp;&nbsp;&nbsp;{
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;AXIOM_STAX_BUILDER_FREE(om_builder,&nbsp;env);
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>return</b>&nbsp;AXIS2_FAILURE;
&nbsp;&nbsp;&nbsp;&nbsp;}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;<b>if</b>(root_node)
&nbsp;&nbsp;&nbsp;&nbsp;{
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>if</b>(AXIOM_NODE_GET_NODE_TYPE(root_node,&nbsp;env)&nbsp;==&nbsp;AXIOM_ELEMENT)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;root_ele&nbsp;=&nbsp;(axiom_element_t*)AXIOM_NODE_GET_DATA_ELEMENT&nbsp;(root_node,&nbsp;env);
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>if</b>(root_ele)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;printf("&nbsp;%s"&nbsp;,&nbsp;AXIOM_ELEMENT_GET_LOCALNAME(root_ele,&nbsp;env));
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;}
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;}
&nbsp;&nbsp;&nbsp;&nbsp;}
&nbsp;&nbsp;&nbsp;&nbsp;AXIOM_DOCUMENT_BUILD_ALL(document,&nbsp;env);
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;xml_writer&nbsp;=&nbsp;axiom_xml_writer_create_for_memory(env,&nbsp;NULL,&nbsp;AXIS2_TRUE,&nbsp;0, AXIS2_XML_PARSER_TYPE_BUFFER);
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;om_output&nbsp;=&nbsp;axiom_output_create(env,&nbsp;xml_writer);
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;AXIOM_NODE_SERIALIZE(root_node,&nbsp;env,&nbsp;om_output);
&nbsp;&nbsp;&nbsp;&nbsp;buffer&nbsp;=&nbsp;(axis2_char_t*)AXIOM_XML_WRITER_GET_XML(xml_writer,&nbsp;env);
&nbsp;&nbsp;&nbsp;&nbsp;printf("The&nbsp;output&nbsp;XML&nbsp;is&nbsp;-&gt;&gt;&gt;&gt;\n&nbsp;%s&nbsp;",&nbsp;buffer);
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;<i>/**&nbsp;when&nbsp;om_output&nbsp;is&nbsp;freed&nbsp;xml_writer&nbsp;is&nbsp;also&nbsp;freed&nbsp;*/</i>
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;AXIOM_OUTPUT_FREE(om_output,&nbsp;env);
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;<i>/**&nbsp;when&nbsp;om_builder&nbsp;is&nbsp;freed&nbsp;,&nbsp;the&nbsp;builder,&nbsp;om_document&nbsp;and&nbsp;the&nbsp;entire&nbsp;om&nbsp;structure&nbsp;is&nbsp;freed&nbsp;*/</i>
&nbsp;&nbsp;&nbsp;&nbsp;AXIOM_STAX_BUILDER_FREE(om_builder,&nbsp;env);
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;AXIS2_FREE(env-&gt;allocator,&nbsp;buffer);
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;<b>return</b>&nbsp;AXIS2_SUCCESS;
&nbsp;&nbsp;&nbsp;&nbsp;
}
int&nbsp;main()
{
&nbsp;&nbsp;&nbsp;&nbsp;int&nbsp;status&nbsp;=&nbsp;AXIS2_SUCCESS;
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;axis2_env_t&nbsp;*env&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;axis2_allocator_t&nbsp;*allocator&nbsp;=&nbsp;NULL;
&nbsp;&nbsp;&nbsp;&nbsp;env&nbsp;=&nbsp;create_environment();
<br/>
&nbsp;&nbsp;&nbsp;&nbsp;status&nbsp;=&nbsp;build_and_serialize_om(env);
<br/>
&nbsp;&nbsp;&nbsp;&nbsp;<b>if</b>(status&nbsp;==&nbsp;AXIS2_FAILURE)
&nbsp;&nbsp;&nbsp;&nbsp;{
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;printf("&nbsp;build&nbsp;om&nbsp;failed");
&nbsp;&nbsp;&nbsp;&nbsp;}
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;axis2_env_free(env);
&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;<b>return</b>&nbsp;0;
}</pre>
</body>
</html>