| // Copyright 2022 The Blaze Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| use std::{any::Any, fmt::Formatter, sync::Arc}; |
| |
| use arrow::{ |
| array::{Array, ArrayRef, Int32Array}, |
| datatypes::SchemaRef, |
| record_batch::{RecordBatch, RecordBatchOptions}, |
| }; |
| use datafusion::{ |
| common::{Result, Statistics}, |
| execution::context::TaskContext, |
| physical_expr::{EquivalenceProperties, PhysicalSortExpr}, |
| physical_plan::{ |
| metrics::{ExecutionPlanMetricsSet, MetricsSet}, |
| DisplayAs, DisplayFormatType, ExecutionMode, ExecutionPlan, ExecutionPlanProperties, |
| PhysicalExpr, PlanProperties, SendableRecordBatchStream, |
| }, |
| }; |
| use datafusion_ext_commons::{arrow::cast::cast, downcast_any}; |
| use futures::StreamExt; |
| use once_cell::sync::OnceCell; |
| |
| use crate::{ |
| common::execution_context::ExecutionContext, |
| window::{window_context::WindowContext, WindowExpr}, |
| }; |
| |
| #[derive(Debug)] |
| pub struct WindowExec { |
| input: Arc<dyn ExecutionPlan>, |
| context: Arc<WindowContext>, |
| metrics: ExecutionPlanMetricsSet, |
| props: OnceCell<PlanProperties>, |
| } |
| |
| impl WindowExec { |
| // NOTE: |
| // WindowExec now supports spark's WindowExec and WindowGroupLimitExec: |
| // for normal WindowExec: |
| // group_limit = None |
| // output_window_cols = true |
| // |
| // for partial WindowGroupLimitExec |
| // group_limit = Some(K) |
| // output_window_cols = false |
| // |
| // for final WindowGroupLimitExec: |
| // group_limit = Some(K) |
| // output_window_cols = true |
| pub fn try_new( |
| input: Arc<dyn ExecutionPlan>, |
| window_exprs: Vec<WindowExpr>, |
| partition_spec: Vec<Arc<dyn PhysicalExpr>>, |
| order_spec: Vec<PhysicalSortExpr>, |
| group_limit: Option<usize>, |
| output_window_cols: bool, |
| ) -> Result<Self> { |
| let context = Arc::new(WindowContext::try_new( |
| input.schema(), |
| window_exprs, |
| partition_spec, |
| order_spec, |
| group_limit, |
| output_window_cols, |
| )?); |
| Ok(Self { |
| input, |
| context, |
| metrics: ExecutionPlanMetricsSet::new(), |
| props: OnceCell::new(), |
| }) |
| } |
| |
| pub fn window_context(&self) -> &WindowContext { |
| &self.context |
| } |
| |
| pub fn with_output_window_cols(&self, output_window_cols: bool) -> Self { |
| Self { |
| input: self.input.clone(), |
| context: Arc::new( |
| WindowContext::try_new( |
| self.input.schema(), |
| self.context.window_exprs.clone(), |
| self.context.partition_spec.clone(), |
| self.context.order_spec.clone(), |
| self.context.group_limit, |
| output_window_cols, |
| ) |
| .expect("failed to create window context"), |
| ), |
| metrics: ExecutionPlanMetricsSet::new(), |
| props: OnceCell::new(), |
| } |
| } |
| } |
| |
| impl DisplayAs for WindowExec { |
| fn fmt_as(&self, _t: DisplayFormatType, f: &mut Formatter) -> std::fmt::Result { |
| write!(f, "Window") |
| } |
| } |
| |
| impl ExecutionPlan for WindowExec { |
| fn name(&self) -> &str { |
| "WindowExec" |
| } |
| |
| fn as_any(&self) -> &dyn Any { |
| self |
| } |
| |
| fn schema(&self) -> SchemaRef { |
| self.context.output_schema.clone() |
| } |
| |
| fn properties(&self) -> &PlanProperties { |
| self.props.get_or_init(|| { |
| PlanProperties::new( |
| EquivalenceProperties::new(self.schema()), |
| self.input.output_partitioning().clone(), |
| ExecutionMode::Bounded, |
| ) |
| }) |
| } |
| |
| fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> { |
| vec![&self.input] |
| } |
| |
| fn with_new_children( |
| self: Arc<Self>, |
| children: Vec<Arc<dyn ExecutionPlan>>, |
| ) -> Result<Arc<dyn ExecutionPlan>> { |
| Ok(Arc::new(Self::try_new( |
| children[0].clone(), |
| self.context.window_exprs.clone(), |
| self.context.partition_spec.clone(), |
| self.context.order_spec.clone(), |
| self.context.group_limit, |
| self.context.output_window_cols, |
| )?)) |
| } |
| |
| fn execute( |
| &self, |
| partition: usize, |
| context: Arc<TaskContext>, |
| ) -> Result<SendableRecordBatchStream> { |
| // combine WindowGroupLimitExec -> WindowExec |
| if let Ok(window_group_limit) = downcast_any!(&self.input, WindowExec) |
| && window_group_limit.window_context().group_limit.is_some() |
| { |
| let combined = Arc::new(Self { |
| input: window_group_limit.input.clone(), |
| context: Arc::new(WindowContext::try_new( |
| self.input.schema(), |
| self.context.window_exprs.clone(), |
| self.context.partition_spec.clone(), |
| self.context.order_spec.clone(), |
| window_group_limit.context.group_limit, |
| true, |
| )?), |
| metrics: self.metrics.clone(), |
| props: OnceCell::new(), |
| }); |
| return combined.execute(partition, context); |
| } |
| |
| // at this moment only supports ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| let exec_ctx = ExecutionContext::new(context, partition, self.schema(), &self.metrics); |
| let input = exec_ctx.execute_with_input_stats(&self.input)?; |
| let coalesced = exec_ctx.coalesce_with_default_batch_size(input); |
| let window_ctx = self.context.clone(); |
| execute_window(coalesced, exec_ctx, window_ctx) |
| } |
| |
| fn metrics(&self) -> Option<MetricsSet> { |
| Some(self.metrics.clone_inner()) |
| } |
| |
| fn statistics(&self) -> Result<Statistics> { |
| todo!() |
| } |
| } |
| |
| fn execute_window( |
| mut input: SendableRecordBatchStream, |
| exec_ctx: Arc<ExecutionContext>, |
| window_ctx: Arc<WindowContext>, |
| ) -> Result<SendableRecordBatchStream> { |
| // start processing input batches |
| Ok(exec_ctx |
| .clone() |
| .output_with_sender("Window", |sender| async move { |
| sender.exclude_time(exec_ctx.baseline_metrics().elapsed_compute()); |
| |
| let mut processors = window_ctx |
| .window_exprs |
| .iter() |
| .map(|expr: &WindowExpr| expr.create_processor(&window_ctx)) |
| .collect::<Result<Vec<_>>>()?; |
| |
| while let Some(mut batch) = input.next().await.transpose()? { |
| let _timer = exec_ctx.baseline_metrics().elapsed_compute().timer(); |
| let mut window_cols: Vec<ArrayRef> = processors |
| .iter_mut() |
| .map(|processor| processor.process_batch(&window_ctx, &batch)) |
| .collect::<Result<_>>()?; |
| |
| if let Some(group_limit) = window_ctx.group_limit { |
| assert_eq!(window_cols.len(), 1); |
| let limited = arrow::compute::kernels::cmp::lt_eq( |
| &window_cols[0], |
| &Int32Array::new_scalar(group_limit as i32), |
| )?; |
| window_cols[0] = arrow::compute::filter(&window_cols[0], &limited)?; |
| batch = arrow::compute::filter_record_batch(&batch, &limited)?; |
| } |
| |
| let outputs: Vec<ArrayRef> = batch |
| .columns() |
| .iter() |
| .cloned() |
| .chain(if window_ctx.output_window_cols { |
| window_cols |
| } else { |
| vec![] |
| }) |
| .zip(window_ctx.output_schema.fields()) |
| .map(|(array, field)| { |
| if array.data_type() != field.data_type() { |
| return cast(&array, field.data_type()); |
| } |
| Ok(array.clone()) |
| }) |
| .collect::<Result<_>>()?; |
| let output_batch = RecordBatch::try_new_with_options( |
| window_ctx.output_schema.clone(), |
| outputs, |
| &RecordBatchOptions::new().with_row_count(Some(batch.num_rows())), |
| )?; |
| exec_ctx |
| .baseline_metrics() |
| .record_output(output_batch.num_rows()); |
| sender.send(output_batch).await; |
| } |
| Ok(()) |
| })) |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use std::sync::Arc; |
| |
| use arrow::{array::*, datatypes::*, record_batch::RecordBatch}; |
| use datafusion::{ |
| assert_batches_eq, |
| physical_expr::{expressions::Column, PhysicalSortExpr}, |
| physical_plan::{memory::MemoryExec, ExecutionPlan}, |
| prelude::SessionContext, |
| }; |
| |
| use crate::{ |
| agg::AggFunction, |
| window::{WindowExpr, WindowFunction, WindowRankType}, |
| window_exec::WindowExec, |
| }; |
| |
| fn build_table_i32( |
| a: (&str, &Vec<i32>), |
| b: (&str, &Vec<i32>), |
| c: (&str, &Vec<i32>), |
| ) -> RecordBatch { |
| let schema = Schema::new(vec![ |
| Field::new(a.0, DataType::Int32, false), |
| Field::new(b.0, DataType::Int32, false), |
| Field::new(c.0, DataType::Int32, false), |
| ]); |
| |
| RecordBatch::try_new( |
| Arc::new(schema), |
| vec![ |
| Arc::new(Int32Array::from(a.1.clone())), |
| Arc::new(Int32Array::from(b.1.clone())), |
| Arc::new(Int32Array::from(c.1.clone())), |
| ], |
| ) |
| .unwrap() |
| } |
| |
| fn build_table( |
| a: (&str, &Vec<i32>), |
| b: (&str, &Vec<i32>), |
| c: (&str, &Vec<i32>), |
| ) -> Arc<dyn ExecutionPlan> { |
| let batch = build_table_i32(a, b, c); |
| let schema = batch.schema(); |
| Arc::new(MemoryExec::try_new(&[vec![batch]], schema, None).unwrap()) |
| } |
| |
| #[tokio::test] |
| async fn test_window() -> Result<(), Box<dyn std::error::Error>> { |
| let session_ctx = SessionContext::new(); |
| let task_ctx = session_ctx.task_ctx(); |
| |
| // test window |
| let input = build_table( |
| ("a1", &vec![1, 1, 1, 1, 2, 3, 3]), |
| ("b1", &vec![1, 2, 2, 3, 4, 1, 1]), |
| ("c1", &vec![0, 0, 0, 0, 0, 0, 0]), |
| ); |
| let window_exprs = vec![ |
| WindowExpr::new( |
| WindowFunction::RankLike(WindowRankType::RowNumber), |
| vec![], |
| Arc::new(Field::new("b1_row_number", DataType::Int32, false)), |
| DataType::Int32, |
| ), |
| WindowExpr::new( |
| WindowFunction::RankLike(WindowRankType::Rank), |
| vec![], |
| Arc::new(Field::new("b1_rank", DataType::Int32, false)), |
| DataType::Int32, |
| ), |
| WindowExpr::new( |
| WindowFunction::RankLike(WindowRankType::DenseRank), |
| vec![], |
| Arc::new(Field::new("b1_dense_rank", DataType::Int32, false)), |
| DataType::Int32, |
| ), |
| WindowExpr::new( |
| WindowFunction::Agg(AggFunction::Sum), |
| vec![Arc::new(Column::new("b1", 1))], |
| Arc::new(Field::new("b1_sum", DataType::Int64, false)), |
| DataType::Int64, |
| ), |
| ]; |
| let window = Arc::new(WindowExec::try_new( |
| input.clone(), |
| window_exprs.clone(), |
| vec![Arc::new(Column::new("a1", 0))], |
| vec![PhysicalSortExpr { |
| expr: Arc::new(Column::new("b1", 1)), |
| options: Default::default(), |
| }], |
| None, |
| true, |
| )?); |
| let stream = window.execute(0, task_ctx.clone())?; |
| let batches = datafusion::physical_plan::common::collect(stream).await?; |
| let expected = vec![ |
| "+----+----+----+---------------+---------+---------------+--------+", |
| "| a1 | b1 | c1 | b1_row_number | b1_rank | b1_dense_rank | b1_sum |", |
| "+----+----+----+---------------+---------+---------------+--------+", |
| "| 1 | 1 | 0 | 1 | 1 | 1 | 1 |", |
| "| 1 | 2 | 0 | 2 | 2 | 2 | 3 |", |
| "| 1 | 2 | 0 | 3 | 2 | 2 | 5 |", |
| "| 1 | 3 | 0 | 4 | 4 | 3 | 8 |", |
| "| 2 | 4 | 0 | 1 | 1 | 1 | 4 |", |
| "| 3 | 1 | 0 | 1 | 1 | 1 | 1 |", |
| "| 3 | 1 | 0 | 2 | 1 | 1 | 2 |", |
| "+----+----+----+---------------+---------+---------------+--------+", |
| ]; |
| assert_batches_eq!(expected, &batches); |
| |
| // test window without partition by clause |
| let input = build_table( |
| ("a1", &vec![1, 3, 3, 1, 1, 1, 2]), |
| ("b1", &vec![1, 1, 1, 2, 2, 3, 4]), |
| ("c1", &vec![0, 0, 0, 0, 0, 0, 0]), |
| ); |
| let window_exprs = vec![ |
| WindowExpr::new( |
| WindowFunction::RankLike(WindowRankType::RowNumber), |
| vec![], |
| Arc::new(Field::new("b1_row_number", DataType::Int32, false)), |
| DataType::Int32, |
| ), |
| WindowExpr::new( |
| WindowFunction::RankLike(WindowRankType::Rank), |
| vec![], |
| Arc::new(Field::new("b1_rank", DataType::Int32, false)), |
| DataType::Int32, |
| ), |
| WindowExpr::new( |
| WindowFunction::RankLike(WindowRankType::DenseRank), |
| vec![], |
| Arc::new(Field::new("b1_dense_rank", DataType::Int32, false)), |
| DataType::Int32, |
| ), |
| WindowExpr::new( |
| WindowFunction::Agg(AggFunction::Sum), |
| vec![Arc::new(Column::new("b1", 1))], |
| Arc::new(Field::new("b1_sum", DataType::Int64, false)), |
| DataType::Int64, |
| ), |
| ]; |
| let window = Arc::new(WindowExec::try_new( |
| input.clone(), |
| window_exprs.clone(), |
| vec![], |
| vec![PhysicalSortExpr { |
| expr: Arc::new(Column::new("b1", 1)), |
| options: Default::default(), |
| }], |
| None, |
| true, |
| )?); |
| let stream = window.execute(0, task_ctx.clone())?; |
| let batches = datafusion::physical_plan::common::collect(stream).await?; |
| let expected = vec![ |
| "+----+----+----+---------------+---------+---------------+--------+", |
| "| a1 | b1 | c1 | b1_row_number | b1_rank | b1_dense_rank | b1_sum |", |
| "+----+----+----+---------------+---------+---------------+--------+", |
| "| 1 | 1 | 0 | 1 | 1 | 1 | 1 |", |
| "| 3 | 1 | 0 | 2 | 1 | 1 | 2 |", |
| "| 3 | 1 | 0 | 3 | 1 | 1 | 3 |", |
| "| 1 | 2 | 0 | 4 | 4 | 2 | 5 |", |
| "| 1 | 2 | 0 | 5 | 4 | 2 | 7 |", |
| "| 1 | 3 | 0 | 6 | 6 | 3 | 10 |", |
| "| 2 | 4 | 0 | 7 | 7 | 4 | 14 |", |
| "+----+----+----+---------------+---------+---------------+--------+", |
| ]; |
| assert_batches_eq!(expected, &batches); |
| Ok(()) |
| } |
| |
| #[tokio::test] |
| async fn test_window_group_limit() -> Result<(), Box<dyn std::error::Error>> { |
| let session_ctx = SessionContext::new(); |
| let task_ctx = session_ctx.task_ctx(); |
| |
| // test window |
| let input = build_table( |
| ("a1", &vec![1, 1, 1, 1, 2, 3, 3]), |
| ("b1", &vec![1, 2, 2, 3, 4, 1, 1]), |
| ("c1", &vec![0, 0, 0, 0, 0, 0, 0]), |
| ); |
| let window_exprs = vec![WindowExpr::new( |
| WindowFunction::RankLike(WindowRankType::RowNumber), |
| vec![], |
| Arc::new(Field::new("b1_row_number", DataType::Int32, false)), |
| DataType::Int32, |
| )]; |
| let window = Arc::new(WindowExec::try_new( |
| input.clone(), |
| window_exprs.clone(), |
| vec![Arc::new(Column::new("a1", 0))], |
| vec![PhysicalSortExpr { |
| expr: Arc::new(Column::new("b1", 1)), |
| options: Default::default(), |
| }], |
| Some(2), |
| true, |
| )?); |
| let stream = window.execute(0, task_ctx.clone())?; |
| let batches = datafusion::physical_plan::common::collect(stream).await?; |
| let expected = vec![ |
| "+----+----+----+---------------+", |
| "| a1 | b1 | c1 | b1_row_number |", |
| "+----+----+----+---------------+", |
| "| 1 | 1 | 0 | 1 |", |
| "| 1 | 2 | 0 | 2 |", |
| "| 2 | 4 | 0 | 1 |", |
| "| 3 | 1 | 0 | 1 |", |
| "| 3 | 1 | 0 | 2 |", |
| "+----+----+----+---------------+", |
| ]; |
| assert_batches_eq!(expected, &batches); |
| Ok(()) |
| } |
| } |