Warning The MATLAB interface is under active development and should be considered experimental.
This is a very early stage MATLAB interface to the Apache Arrow C++ libraries.
Currently, the MATLAB interface supports:
Array types and MATLAB array types (see table below)tables and arrow.tabular.RecordBatchsFields, Schemas, and TypesSupported arrow.array.Array types are included in the table below.
NOTE: All Arrow Array classes listed below are part of the arrow.array package (e.g. arrow.array.Float64Array).
| MATLAB Array Type | Arrow Array Type |
|---|---|
uint8 | UInt8Array |
uint16 | UInt16Array |
uint32 | UInt32Array |
uint64 | UInt64Array |
int8 | Int8Array |
int16 | Int16Array |
int32 | Int32Array |
int64 | Int64Array |
single | Float32Array |
double | Float64Array |
logical | BooleanArray |
string | StringArray |
datetime | TimestampArray |
datetime | Date32Array |
datetime | Date64Array |
duration | Time32Array |
duration | Time64Array |
cell | ListArray |
table | StructArray |
To build the MATLAB Interface to Apache Arrow from source, the following software must be installed on the target machine:
gcc on Linux, Xcode on macOS, or Visual Studio on Windows)To set up a local working copy of the source code, start by cloning the apache/arrow GitHub repository using Git:
$ git clone https://github.com/apache/arrow.git
After cloning, change the working directory to the matlab subdirectory:
$ cd arrow/matlab
To build the MATLAB interface, use CMake:
$ cmake -S . -B build $ cmake --build build --config Release
To install the MATLAB interface to the default software installation location for the target machine (e.g. /usr/local on Linux or C:\Program Files on Windows), pass the --target install flag to CMake.
$ cmake --build build --config Release --target install
As part of the install step, the installation directory is added to the MATLAB Search Path.
Note: This step may fail if the current user is lacking necessary filesystem permissions. If the install step fails, the installation directory can be manually added to the MATLAB Search Path using the addpath command.
To run the MATLAB tests, start MATLAB in the arrow/matlab directory and call the runtests command on the test directory with IncludeSubFolders=true:
>> runtests("test", IncludeSubFolders=true);
Refer to Testing Guidelines for more information.
Included below are some example code snippets that illustrate how to use the MATLAB interface.
Array classes (i.e. arrow.array.<Array>)Float64Array from a MATLAB double array>> matlabArray = double([1, 2, 3]) matlabArray = 1 2 3 >> arrowArray = arrow.array(matlabArray) arrowArray = Float64Array with 3 elements and 0 null values: 1 | 2 | 3
logical array from an Arrow BooleanArray>> arrowArray = arrow.array([true, false, true]) arrowArray = BooleanArray with 3 elements and 0 null values: true | false | true >> matlabArray = toMATLAB(arrowArray) matlabArray = 3×1 logical array 1 0 1
Null Values when constructing an arrow.array.Int8Array>> matlabArray = int8([122, -1, 456, -10, 789]) matlabArray = 1×5 int8 row vector 122 -1 127 -10 127 % Treat all negative array elements as Null >> validElements = matlabArray > 0 validElements = 1×5 logical array 1 0 1 0 1 % Specify which values are Null/Valid by supplying a logical validity "mask" >> arrowArray = arrow.array(matlabArray, Valid=validElements) arrowArray = Int8Array with 5 elements and 2 null values: 122 | null | 127 | null | 127
RecordBatch classRecordBatch from a MATLAB table>> matlabTable = table(["A"; "B"; "C"], [1; 2; 3], [true; false; true]) matlabTable = 3x3 table Var1 Var2 Var3 ____ ____ _____ "A" 1 true "B" 2 false "C" 3 true >> arrowRecordBatch = arrow.recordBatch(matlabTable) arrowRecordBatch = Arrow RecordBatch with 3 rows and 3 columns: Schema: Var1: String | Var2: Float64 | Var3: Boolean First Row: "A" | 1 | true
table from an Arrow RecordBatch>> arrowRecordBatch arrowRecordBatch = Arrow RecordBatch with 3 rows and 3 columns: Schema: Var1: String | Var2: Float64 | Var3: Boolean First Row: "A" | 1 | true >> matlabTable = table(arrowRecordBatch) matlabTable = 3x3 table Var1 Var2 Var3 ____ ____ _____ "A" 1 true "B" 2 false "C" 3 true
RecordBatch from multiple Arrow Arrays>> stringArray = arrow.array(["A", "B", "C"]) stringArray = StringArray with 3 elements and 0 null values: "A" | "B" | "C" >> timestampArray = arrow.array([datetime(1997, 01, 01), datetime(1998, 01, 01), datetime(1999, 01, 01)]) timestampArray = TimestampArray with 3 elements and 0 null values: 1997-01-01 00:00:00.000000 | 1998-01-01 00:00:00.000000 | 1999-01-01 00:00:00.000000 >> booleanArray = arrow.array([true, false, true]) booleanArray = BooleanArray with 3 elements and 0 null values: true | false | true >> arrowRecordBatch = arrow.tabular.RecordBatch.fromArrays(stringArray, timestampArray, booleanArray) arrowRecordBatch = Arrow RecordBatch with 3 rows and 3 columns: Schema: Column1: String | Column2: Timestamp | Column3: Boolean First Row: "A" | 1997-01-01 00:00:00.000000 | true
RecordBatch by index>> arrowRecordBatch = arrow.tabular.RecordBatch.fromArrays(stringArray, timestampArray, booleanArray) arrowRecordBatch = Arrow RecordBatch with 3 rows and 3 columns: Schema: Column1: String | Column2: Timestamp | Column3: Boolean First Row: "A" | 1997-01-01 00:00:00.000000 | true >> timestampArray = arrowRecordBatch.column(2) timestampArray = TimestampArray with 3 elements and 0 null values: 1997-01-01 00:00:00.000000 | 1998-01-01 00:00:00.000000 | 1999-01-01 00:00:00.000000
Type classes (i.e. arrow.type.<Type>)Int8Type object>> type = arrow.int8() type = Int8Type with properties: ID: Int8
TimestampType object with a specific TimeUnit and TimeZone>> type = arrow.timestamp(TimeUnit="Second", TimeZone="Asia/Kolkata") type = TimestampType with properties: ID: Timestamp TimeUnit: Second TimeZone: "Asia/Kolkata"
ID for an Arrow Type object>> type.ID ans = ID enumeration Timestamp >> type = arrow.string() type = StringType with properties: ID: String >> type.ID ans = ID enumeration String
Field classField with type Int8Type>> field = arrow.field("Number", arrow.int8()) field = Field with properties: Name: "Number" Type: [1x1 arrow.type.Int8Type] >> field.Name ans = "Number" >> field.Type ans = Int8Type with properties: ID: Int8
Field with type StringType>> field = arrow.field("Letter", arrow.string()) field = Field with properties: Name: "Letter" Type: [1x1 arrow.type.StringType] >> field.Name ans = "Letter" >> field.Type ans = StringType with properties: ID: String
Field from an Arrow Schema by index>> arrowSchema arrowSchema = Arrow Schema with 2 fields: Letter: String | Number: Int8 % Specify the field to extract by its index (i.e. 2) >> field = arrowSchema.field(2) field = Field with properties: Name: "Number" Type: [1x1 arrow.type.Int8Type]
Field from an Arrow Schema by name>> arrowSchema arrowSchema = Arrow Schema with 2 fields: Letter: String | Number: Int8 % Specify the field to extract by its name (i.e. "Letter") >> field = arrowSchema.field("Letter") field = Field with properties: Name: "Letter" Type: [1x1 arrow.type.StringType]
Schema classSchema from multiple Arrow Fields>> letter = arrow.field("Letter", arrow.string()) letter = Field with properties: Name: "Letter" Type: [1x1 arrow.type.StringType] >> number = arrow.field("Number", arrow.int8()) number = Field with properties: Name: "Number" Type: [1x1 arrow.type.Int8Type] >> schema = arrow.schema([letter, number]) schema = Arrow Schema with 2 fields: Letter: String | Number: Int8
Schema of an Arrow RecordBatch>> matlabTable = table(["A"; "B"; "C"], [1; 2; 3], VariableNames=["Letter", "Number"]) matlabTable = 3x2 table Letter Number ______ ______ "A" 1 "B" 2 "C" 3 >> arrowRecordBatch = arrow.recordBatch(matlabTable) arrowRecordBatch = Arrow RecordBatch with 3 rows and 2 columns: Schema: Letter: String | Number: Float64 First Row: "A" | 1 >> arrowSchema = arrowRecordBatch.Schema arrowSchema = Arrow Schema with 2 fields: Letter: String | Number: Float64
>> t = table(["A"; "B"; "C"], [1; 2; 3], [true; false; true]) t = 3×3 table Var1 Var2 Var3 ____ ____ _____ "A" 1 true "B" 2 false "C" 3 true >> filename = "table.feather"; >> featherwrite(filename, t)
>> filename = "table.feather"; >> t = featherread(filename) t = 3×3 table Var1 Var2 Var3 ____ ____ _____ "A" 1 true "B" 2 false "C" 3 true