blob: 3a0931d8ccc49deed0546d3dcdc8a042df4a37b4 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Implementation of DataFrame API
use std::sync::{Arc, Mutex};
use crate::arrow::record_batch::RecordBatch;
use crate::error::Result;
use crate::execution::context::{ExecutionContext, ExecutionContextState};
use crate::logical_plan::{
col, DFSchema, Expr, FunctionRegistry, JoinType, LogicalPlan, LogicalPlanBuilder,
Partitioning,
};
use crate::{
dataframe::*,
physical_plan::{collect, collect_partitioned},
};
use async_trait::async_trait;
/// Implementation of DataFrame API
pub struct DataFrameImpl {
ctx_state: Arc<Mutex<ExecutionContextState>>,
plan: LogicalPlan,
}
impl DataFrameImpl {
/// Create a new Table based on an existing logical plan
pub fn new(ctx_state: Arc<Mutex<ExecutionContextState>>, plan: &LogicalPlan) -> Self {
Self {
ctx_state,
plan: plan.clone(),
}
}
}
#[async_trait]
impl DataFrame for DataFrameImpl {
/// Apply a projection based on a list of column names
fn select_columns(&self, columns: &[&str]) -> Result<Arc<dyn DataFrame>> {
let fields = columns
.iter()
.map(|name| self.plan.schema().field_with_unqualified_name(name))
.collect::<Result<Vec<_>>>()?;
let expr: Vec<Expr> = fields.iter().map(|f| col(f.name())).collect();
self.select(&expr)
}
/// Create a projection based on arbitrary expressions
fn select(&self, expr_list: &[Expr]) -> Result<Arc<dyn DataFrame>> {
let plan = LogicalPlanBuilder::from(&self.plan)
.project(expr_list)?
.build()?;
Ok(Arc::new(DataFrameImpl::new(self.ctx_state.clone(), &plan)))
}
/// Create a filter based on a predicate expression
fn filter(&self, predicate: Expr) -> Result<Arc<dyn DataFrame>> {
let plan = LogicalPlanBuilder::from(&self.plan)
.filter(predicate)?
.build()?;
Ok(Arc::new(DataFrameImpl::new(self.ctx_state.clone(), &plan)))
}
/// Perform an aggregate query
fn aggregate(
&self,
group_expr: &[Expr],
aggr_expr: &[Expr],
) -> Result<Arc<dyn DataFrame>> {
let plan = LogicalPlanBuilder::from(&self.plan)
.aggregate(group_expr, aggr_expr)?
.build()?;
Ok(Arc::new(DataFrameImpl::new(self.ctx_state.clone(), &plan)))
}
/// Limit the number of rows
fn limit(&self, n: usize) -> Result<Arc<dyn DataFrame>> {
let plan = LogicalPlanBuilder::from(&self.plan).limit(n)?.build()?;
Ok(Arc::new(DataFrameImpl::new(self.ctx_state.clone(), &plan)))
}
/// Sort by specified sorting expressions
fn sort(&self, expr: &[Expr]) -> Result<Arc<dyn DataFrame>> {
let plan = LogicalPlanBuilder::from(&self.plan).sort(expr)?.build()?;
Ok(Arc::new(DataFrameImpl::new(self.ctx_state.clone(), &plan)))
}
/// Join with another DataFrame
fn join(
&self,
right: Arc<dyn DataFrame>,
join_type: JoinType,
left_cols: &[&str],
right_cols: &[&str],
) -> Result<Arc<dyn DataFrame>> {
let plan = LogicalPlanBuilder::from(&self.plan)
.join(&right.to_logical_plan(), join_type, left_cols, right_cols)?
.build()?;
Ok(Arc::new(DataFrameImpl::new(self.ctx_state.clone(), &plan)))
}
fn repartition(
&self,
partitioning_scheme: Partitioning,
) -> Result<Arc<dyn DataFrame>> {
let plan = LogicalPlanBuilder::from(&self.plan)
.repartition(partitioning_scheme)?
.build()?;
Ok(Arc::new(DataFrameImpl::new(self.ctx_state.clone(), &plan)))
}
/// Convert to logical plan
fn to_logical_plan(&self) -> LogicalPlan {
self.plan.clone()
}
// Convert the logical plan represented by this DataFrame into a physical plan and
// execute it
async fn collect(&self) -> Result<Vec<RecordBatch>> {
let state = self.ctx_state.lock().unwrap().clone();
let ctx = ExecutionContext::from(Arc::new(Mutex::new(state)));
let plan = ctx.optimize(&self.plan)?;
let plan = ctx.create_physical_plan(&plan)?;
Ok(collect(plan).await?)
}
// Convert the logical plan represented by this DataFrame into a physical plan and
// execute it
async fn collect_partitioned(&self) -> Result<Vec<Vec<RecordBatch>>> {
let state = self.ctx_state.lock().unwrap().clone();
let ctx = ExecutionContext::from(Arc::new(Mutex::new(state)));
let plan = ctx.optimize(&self.plan)?;
let plan = ctx.create_physical_plan(&plan)?;
Ok(collect_partitioned(plan).await?)
}
/// Returns the schema from the logical plan
fn schema(&self) -> &DFSchema {
self.plan.schema()
}
fn explain(&self, verbose: bool) -> Result<Arc<dyn DataFrame>> {
let plan = LogicalPlanBuilder::from(&self.plan)
.explain(verbose)?
.build()?;
Ok(Arc::new(DataFrameImpl::new(self.ctx_state.clone(), &plan)))
}
fn registry(&self) -> Arc<dyn FunctionRegistry> {
let registry = self.ctx_state.lock().unwrap().clone();
Arc::new(registry)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::execution::context::ExecutionContext;
use crate::logical_plan::*;
use crate::{datasource::csv::CsvReadOptions, physical_plan::ColumnarValue};
use crate::{physical_plan::functions::ScalarFunctionImplementation, test};
use arrow::datatypes::DataType;
#[test]
fn select_columns() -> Result<()> {
// build plan using Table API
let t = test_table()?;
let t2 = t.select_columns(&["c1", "c2", "c11"])?;
let plan = t2.to_logical_plan();
// build query using SQL
let sql_plan = create_plan("SELECT c1, c2, c11 FROM aggregate_test_100")?;
// the two plans should be identical
assert_same_plan(&plan, &sql_plan);
Ok(())
}
#[test]
fn select_expr() -> Result<()> {
// build plan using Table API
let t = test_table()?;
let t2 = t.select(&[col("c1"), col("c2"), col("c11")])?;
let plan = t2.to_logical_plan();
// build query using SQL
let sql_plan = create_plan("SELECT c1, c2, c11 FROM aggregate_test_100")?;
// the two plans should be identical
assert_same_plan(&plan, &sql_plan);
Ok(())
}
#[test]
fn aggregate() -> Result<()> {
// build plan using DataFrame API
let df = test_table()?;
let group_expr = &[col("c1")];
let aggr_expr = &[
min(col("c12")),
max(col("c12")),
avg(col("c12")),
sum(col("c12")),
count(col("c12")),
count_distinct(col("c12")),
];
let df = df.aggregate(group_expr, aggr_expr)?;
let plan = df.to_logical_plan();
// build same plan using SQL API
let sql = "SELECT c1, MIN(c12), MAX(c12), AVG(c12), SUM(c12), COUNT(c12), COUNT(DISTINCT c12) \
FROM aggregate_test_100 \
GROUP BY c1";
let sql_plan = create_plan(sql)?;
// the two plans should be identical
assert_same_plan(&plan, &sql_plan);
Ok(())
}
#[tokio::test]
async fn join() -> Result<()> {
let left = test_table()?.select_columns(&["c1", "c2"])?;
let right = test_table()?.select_columns(&["c1", "c3"])?;
let left_rows = left.collect().await?;
let right_rows = right.collect().await?;
let join = left.join(right, JoinType::Inner, &["c1"], &["c1"])?;
let join_rows = join.collect().await?;
assert_eq!(1, left_rows.len());
assert_eq!(100, left_rows[0].num_rows());
assert_eq!(1, right_rows.len());
assert_eq!(100, right_rows[0].num_rows());
assert_eq!(1, join_rows.len());
assert_eq!(2008, join_rows[0].num_rows());
Ok(())
}
#[test]
fn limit() -> Result<()> {
// build query using Table API
let t = test_table()?;
let t2 = t.select_columns(&["c1", "c2", "c11"])?.limit(10)?;
let plan = t2.to_logical_plan();
// build query using SQL
let sql_plan =
create_plan("SELECT c1, c2, c11 FROM aggregate_test_100 LIMIT 10")?;
// the two plans should be identical
assert_same_plan(&plan, &sql_plan);
Ok(())
}
#[test]
fn explain() -> Result<()> {
// build query using Table API
let df = test_table()?;
let df = df
.select_columns(&["c1", "c2", "c11"])?
.limit(10)?
.explain(false)?;
let plan = df.to_logical_plan();
// build query using SQL
let sql_plan =
create_plan("EXPLAIN SELECT c1, c2, c11 FROM aggregate_test_100 LIMIT 10")?;
// the two plans should be identical
assert_same_plan(&plan, &sql_plan);
Ok(())
}
#[test]
fn registry() -> Result<()> {
let mut ctx = ExecutionContext::new();
register_aggregate_csv(&mut ctx)?;
// declare the udf
let my_fn: ScalarFunctionImplementation =
Arc::new(|_: &[ColumnarValue]| unimplemented!("my_fn is not implemented"));
// create and register the udf
ctx.register_udf(create_udf(
"my_fn",
vec![DataType::Float64],
Arc::new(DataType::Float64),
my_fn,
));
// build query with a UDF using DataFrame API
let df = ctx.table("aggregate_test_100")?;
let f = df.registry();
let df = df.select(&[f.udf("my_fn")?.call(vec![col("c12")])])?;
let plan = df.to_logical_plan();
// build query using SQL
let sql_plan =
ctx.create_logical_plan("SELECT my_fn(c12) FROM aggregate_test_100")?;
// the two plans should be identical
assert_same_plan(&plan, &sql_plan);
Ok(())
}
#[tokio::test]
async fn sendable() {
let df = test_table().unwrap();
// dataframes should be sendable between threads/tasks
let task = tokio::task::spawn(async move {
df.select_columns(&["c1"])
.expect("should be usable in a task")
});
task.await.expect("task completed successfully");
}
/// Compare the formatted string representation of two plans for equality
fn assert_same_plan(plan1: &LogicalPlan, plan2: &LogicalPlan) {
assert_eq!(format!("{:?}", plan1), format!("{:?}", plan2));
}
/// Create a logical plan from a SQL query
fn create_plan(sql: &str) -> Result<LogicalPlan> {
let mut ctx = ExecutionContext::new();
register_aggregate_csv(&mut ctx)?;
ctx.create_logical_plan(sql)
}
fn test_table() -> Result<Arc<dyn DataFrame + 'static>> {
let mut ctx = ExecutionContext::new();
register_aggregate_csv(&mut ctx)?;
ctx.table("aggregate_test_100")
}
fn register_aggregate_csv(ctx: &mut ExecutionContext) -> Result<()> {
let schema = test::aggr_test_schema();
let testdata = arrow::util::test_util::arrow_test_data();
ctx.register_csv(
"aggregate_test_100",
&format!("{}/csv/aggregate_test_100.csv", testdata),
CsvReadOptions::new().schema(&schema.as_ref()),
)?;
Ok(())
}
}