| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from collections.abc import Iterable |
| import datetime |
| import decimal |
| import hypothesis as h |
| import hypothesis.strategies as st |
| import itertools |
| import pickle |
| import pytest |
| import struct |
| import subprocess |
| import sys |
| import weakref |
| |
| import numpy as np |
| try: |
| import pickle5 |
| except ImportError: |
| pickle5 = None |
| |
| import pyarrow as pa |
| import pyarrow.tests.strategies as past |
| |
| |
| def test_total_bytes_allocated(): |
| code = """if 1: |
| import pyarrow as pa |
| |
| assert pa.total_allocated_bytes() == 0 |
| """ |
| res = subprocess.run([sys.executable, "-c", code], |
| universal_newlines=True, stderr=subprocess.PIPE) |
| if res.returncode != 0: |
| print(res.stderr, file=sys.stderr) |
| res.check_returncode() # fail |
| assert len(res.stderr.splitlines()) == 0 |
| |
| |
| def test_weakref(): |
| arr = pa.array([1, 2, 3]) |
| wr = weakref.ref(arr) |
| assert wr() is not None |
| del arr |
| assert wr() is None |
| |
| |
| def test_getitem_NULL(): |
| arr = pa.array([1, None, 2]) |
| assert arr[1].as_py() is None |
| assert arr[1].is_valid is False |
| assert isinstance(arr[1], pa.Int64Scalar) |
| |
| |
| def test_constructor_raises(): |
| # This could happen by wrong capitalization. |
| # ARROW-2638: prevent calling extension class constructors directly |
| with pytest.raises(TypeError): |
| pa.Array([1, 2]) |
| |
| |
| def test_list_format(): |
| arr = pa.array([[1], None, [2, 3, None]]) |
| result = arr.to_string() |
| expected = """\ |
| [ |
| [ |
| 1 |
| ], |
| null, |
| [ |
| 2, |
| 3, |
| null |
| ] |
| ]""" |
| assert result == expected |
| |
| |
| def test_string_format(): |
| arr = pa.array(['', None, 'foo']) |
| result = arr.to_string() |
| expected = """\ |
| [ |
| "", |
| null, |
| "foo" |
| ]""" |
| assert result == expected |
| |
| |
| def test_long_array_format(): |
| arr = pa.array(range(100)) |
| result = arr.to_string(window=2) |
| expected = """\ |
| [ |
| 0, |
| 1, |
| ... |
| 98, |
| 99 |
| ]""" |
| assert result == expected |
| |
| |
| def test_indented_string_format(): |
| arr = pa.array(['', None, 'foo']) |
| result = arr.to_string(indent=1) |
| expected = '[\n "",\n null,\n "foo"\n]' |
| |
| assert result == expected |
| |
| |
| def test_top_level_indented_string_format(): |
| arr = pa.array(['', None, 'foo']) |
| result = arr.to_string(top_level_indent=1) |
| expected = ' [\n "",\n null,\n "foo"\n ]' |
| |
| assert result == expected |
| |
| |
| def test_binary_format(): |
| arr = pa.array([b'\x00', b'', None, b'\x01foo', b'\x80\xff']) |
| result = arr.to_string() |
| expected = """\ |
| [ |
| 00, |
| , |
| null, |
| 01666F6F, |
| 80FF |
| ]""" |
| assert result == expected |
| |
| |
| def test_binary_total_values_length(): |
| arr = pa.array([b'0000', None, b'11111', b'222222', b'3333333'], |
| type='binary') |
| large_arr = pa.array([b'0000', None, b'11111', b'222222', b'3333333'], |
| type='large_binary') |
| |
| assert arr.total_values_length == 22 |
| assert arr.slice(1, 3).total_values_length == 11 |
| assert large_arr.total_values_length == 22 |
| assert large_arr.slice(1, 3).total_values_length == 11 |
| |
| |
| def test_to_numpy_zero_copy(): |
| arr = pa.array(range(10)) |
| |
| np_arr = arr.to_numpy() |
| |
| # check for zero copy (both arrays using same memory) |
| arrow_buf = arr.buffers()[1] |
| assert arrow_buf.address == np_arr.ctypes.data |
| |
| arr = None |
| import gc |
| gc.collect() |
| |
| # Ensure base is still valid |
| assert np_arr.base is not None |
| expected = np.arange(10) |
| np.testing.assert_array_equal(np_arr, expected) |
| |
| |
| def test_chunked_array_to_numpy_zero_copy(): |
| elements = [[2, 2, 4], [4, 5, 100]] |
| |
| chunked_arr = pa.chunked_array(elements) |
| |
| msg = "zero_copy_only must be False for pyarrow.ChunkedArray.to_numpy" |
| |
| with pytest.raises(ValueError, match=msg): |
| chunked_arr.to_numpy(zero_copy_only=True) |
| |
| np_arr = chunked_arr.to_numpy() |
| expected = [2, 2, 4, 4, 5, 100] |
| np.testing.assert_array_equal(np_arr, expected) |
| |
| |
| def test_to_numpy_unsupported_types(): |
| # ARROW-2871: Some primitive types are not yet supported in to_numpy |
| bool_arr = pa.array([True, False, True]) |
| |
| with pytest.raises(ValueError): |
| bool_arr.to_numpy() |
| |
| result = bool_arr.to_numpy(zero_copy_only=False) |
| expected = np.array([True, False, True]) |
| np.testing.assert_array_equal(result, expected) |
| |
| null_arr = pa.array([None, None, None]) |
| |
| with pytest.raises(ValueError): |
| null_arr.to_numpy() |
| |
| result = null_arr.to_numpy(zero_copy_only=False) |
| expected = np.array([None, None, None], dtype=object) |
| np.testing.assert_array_equal(result, expected) |
| |
| arr = pa.array([1, 2, None]) |
| |
| with pytest.raises(ValueError, match="with 1 nulls"): |
| arr.to_numpy() |
| |
| |
| def test_to_numpy_writable(): |
| arr = pa.array(range(10)) |
| np_arr = arr.to_numpy() |
| |
| # by default not writable for zero-copy conversion |
| with pytest.raises(ValueError): |
| np_arr[0] = 10 |
| |
| np_arr2 = arr.to_numpy(zero_copy_only=False, writable=True) |
| np_arr2[0] = 10 |
| assert arr[0].as_py() == 0 |
| |
| # when asking for writable, cannot do zero-copy |
| with pytest.raises(ValueError): |
| arr.to_numpy(zero_copy_only=True, writable=True) |
| |
| |
| @pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns']) |
| @pytest.mark.parametrize('tz', [None, "UTC"]) |
| def test_to_numpy_datetime64(unit, tz): |
| arr = pa.array([1, 2, 3], pa.timestamp(unit, tz=tz)) |
| expected = np.array([1, 2, 3], dtype="datetime64[{}]".format(unit)) |
| np_arr = arr.to_numpy() |
| np.testing.assert_array_equal(np_arr, expected) |
| |
| |
| @pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns']) |
| def test_to_numpy_timedelta64(unit): |
| arr = pa.array([1, 2, 3], pa.duration(unit)) |
| expected = np.array([1, 2, 3], dtype="timedelta64[{}]".format(unit)) |
| np_arr = arr.to_numpy() |
| np.testing.assert_array_equal(np_arr, expected) |
| |
| |
| def test_to_numpy_dictionary(): |
| # ARROW-7591 |
| arr = pa.array(["a", "b", "a"]).dictionary_encode() |
| expected = np.array(["a", "b", "a"], dtype=object) |
| np_arr = arr.to_numpy(zero_copy_only=False) |
| np.testing.assert_array_equal(np_arr, expected) |
| |
| |
| @pytest.mark.pandas |
| def test_to_pandas_zero_copy(): |
| import gc |
| |
| arr = pa.array(range(10)) |
| |
| for i in range(10): |
| series = arr.to_pandas() |
| assert sys.getrefcount(series) == 2 |
| series = None # noqa |
| |
| assert sys.getrefcount(arr) == 2 |
| |
| for i in range(10): |
| arr = pa.array(range(10)) |
| series = arr.to_pandas() |
| arr = None |
| gc.collect() |
| |
| # Ensure base is still valid |
| |
| # Because of py.test's assert inspection magic, if you put getrefcount |
| # on the line being examined, it will be 1 higher than you expect |
| base_refcount = sys.getrefcount(series.values.base) |
| assert base_refcount == 2 |
| series.sum() |
| |
| |
| @pytest.mark.nopandas |
| @pytest.mark.pandas |
| def test_asarray(): |
| # ensure this is tested both when pandas is present or not (ARROW-6564) |
| |
| arr = pa.array(range(4)) |
| |
| # The iterator interface gives back an array of Int64Value's |
| np_arr = np.asarray([_ for _ in arr]) |
| assert np_arr.tolist() == [0, 1, 2, 3] |
| assert np_arr.dtype == np.dtype('O') |
| assert type(np_arr[0]) == pa.lib.Int64Value |
| |
| # Calling with the arrow array gives back an array with 'int64' dtype |
| np_arr = np.asarray(arr) |
| assert np_arr.tolist() == [0, 1, 2, 3] |
| assert np_arr.dtype == np.dtype('int64') |
| |
| # An optional type can be specified when calling np.asarray |
| np_arr = np.asarray(arr, dtype='str') |
| assert np_arr.tolist() == ['0', '1', '2', '3'] |
| |
| # If PyArrow array has null values, numpy type will be changed as needed |
| # to support nulls. |
| arr = pa.array([0, 1, 2, None]) |
| assert arr.type == pa.int64() |
| np_arr = np.asarray(arr) |
| elements = np_arr.tolist() |
| assert elements[:3] == [0., 1., 2.] |
| assert np.isnan(elements[3]) |
| assert np_arr.dtype == np.dtype('float64') |
| |
| # DictionaryType data will be converted to dense numpy array |
| arr = pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, 2, 0, 1]), pa.array(['a', 'b', 'c'])) |
| np_arr = np.asarray(arr) |
| assert np_arr.dtype == np.dtype('object') |
| assert np_arr.tolist() == ['a', 'b', 'c', 'a', 'b'] |
| |
| |
| @pytest.mark.parametrize('ty', [ |
| None, |
| pa.null(), |
| pa.int8(), |
| pa.string() |
| ]) |
| def test_nulls(ty): |
| arr = pa.nulls(3, type=ty) |
| expected = pa.array([None, None, None], type=ty) |
| |
| assert len(arr) == 3 |
| assert arr.equals(expected) |
| |
| if ty is None: |
| assert arr.type == pa.null() |
| else: |
| assert arr.type == ty |
| |
| |
| def test_array_from_scalar(): |
| pytz = pytest.importorskip("pytz") |
| |
| today = datetime.date.today() |
| now = datetime.datetime.now() |
| now_utc = now.replace(tzinfo=pytz.utc) |
| now_with_tz = now_utc.astimezone(pytz.timezone('US/Eastern')) |
| oneday = datetime.timedelta(days=1) |
| |
| cases = [ |
| (None, 1, pa.array([None])), |
| (None, 10, pa.nulls(10)), |
| (-1, 3, pa.array([-1, -1, -1], type=pa.int64())), |
| (2.71, 2, pa.array([2.71, 2.71], type=pa.float64())), |
| ("string", 4, pa.array(["string"] * 4)), |
| ( |
| pa.scalar(8, type=pa.uint8()), |
| 17, |
| pa.array([8] * 17, type=pa.uint8()) |
| ), |
| (pa.scalar(None), 3, pa.array([None, None, None])), |
| (pa.scalar(True), 11, pa.array([True] * 11)), |
| (today, 2, pa.array([today] * 2)), |
| (now, 10, pa.array([now] * 10)), |
| ( |
| now_with_tz, |
| 2, |
| pa.array( |
| [now_utc] * 2, |
| type=pa.timestamp('us', tz=pytz.timezone('US/Eastern')) |
| ) |
| ), |
| (now.time(), 9, pa.array([now.time()] * 9)), |
| (oneday, 4, pa.array([oneday] * 4)), |
| (False, 9, pa.array([False] * 9)), |
| ([1, 2], 2, pa.array([[1, 2], [1, 2]])), |
| ( |
| pa.scalar([-1, 3], type=pa.large_list(pa.int8())), |
| 5, |
| pa.array([[-1, 3]] * 5, type=pa.large_list(pa.int8())) |
| ), |
| ({'a': 1, 'b': 2}, 3, pa.array([{'a': 1, 'b': 2}] * 3)) |
| ] |
| |
| for value, size, expected in cases: |
| arr = pa.repeat(value, size) |
| assert len(arr) == size |
| assert arr.type.equals(expected.type) |
| assert arr.equals(expected) |
| if expected.type == pa.null(): |
| assert arr.null_count == size |
| else: |
| assert arr.null_count == 0 |
| |
| |
| def test_array_from_dictionary_scalar(): |
| dictionary = ['foo', 'bar', 'baz'] |
| arr = pa.DictionaryArray.from_arrays([2, 1, 2, 0], dictionary=dictionary) |
| |
| result = pa.repeat(arr[0], 5) |
| expected = pa.DictionaryArray.from_arrays([2] * 5, dictionary=dictionary) |
| assert result.equals(expected) |
| |
| result = pa.repeat(arr[3], 5) |
| expected = pa.DictionaryArray.from_arrays([0] * 5, dictionary=dictionary) |
| assert result.equals(expected) |
| |
| |
| def test_array_getitem(): |
| arr = pa.array(range(10, 15)) |
| lst = arr.to_pylist() |
| |
| for idx in range(-len(arr), len(arr)): |
| assert arr[idx].as_py() == lst[idx] |
| for idx in range(-2 * len(arr), -len(arr)): |
| with pytest.raises(IndexError): |
| arr[idx] |
| for idx in range(len(arr), 2 * len(arr)): |
| with pytest.raises(IndexError): |
| arr[idx] |
| |
| # check that numpy scalars are supported |
| for idx in range(-len(arr), len(arr)): |
| assert arr[np.int32(idx)].as_py() == lst[idx] |
| |
| |
| def test_array_slice(): |
| arr = pa.array(range(10)) |
| |
| sliced = arr.slice(2) |
| expected = pa.array(range(2, 10)) |
| assert sliced.equals(expected) |
| |
| sliced2 = arr.slice(2, 4) |
| expected2 = pa.array(range(2, 6)) |
| assert sliced2.equals(expected2) |
| |
| # 0 offset |
| assert arr.slice(0).equals(arr) |
| |
| # Slice past end of array |
| assert len(arr.slice(len(arr))) == 0 |
| assert len(arr.slice(len(arr) + 2)) == 0 |
| assert len(arr.slice(len(arr) + 2, 100)) == 0 |
| |
| with pytest.raises(IndexError): |
| arr.slice(-1) |
| |
| with pytest.raises(ValueError): |
| arr.slice(2, -1) |
| |
| # Test slice notation |
| assert arr[2:].equals(arr.slice(2)) |
| assert arr[2:5].equals(arr.slice(2, 3)) |
| assert arr[-5:].equals(arr.slice(len(arr) - 5)) |
| |
| n = len(arr) |
| for start in range(-n * 2, n * 2): |
| for stop in range(-n * 2, n * 2): |
| res = arr[start:stop] |
| res.validate() |
| expected = arr.to_pylist()[start:stop] |
| assert res.to_pylist() == expected |
| assert res.to_numpy().tolist() == expected |
| |
| |
| def test_array_slice_negative_step(): |
| # ARROW-2714 |
| np_arr = np.arange(20) |
| arr = pa.array(np_arr) |
| chunked_arr = pa.chunked_array([arr]) |
| |
| cases = [ |
| slice(None, None, -1), |
| slice(None, 6, -2), |
| slice(10, 6, -2), |
| slice(8, None, -2), |
| slice(2, 10, -2), |
| slice(10, 2, -2), |
| slice(None, None, 2), |
| slice(0, 10, 2), |
| ] |
| |
| for case in cases: |
| result = arr[case] |
| expected = pa.array(np_arr[case]) |
| assert result.equals(expected) |
| |
| result = pa.record_batch([arr], names=['f0'])[case] |
| expected = pa.record_batch([expected], names=['f0']) |
| assert result.equals(expected) |
| |
| result = chunked_arr[case] |
| expected = pa.chunked_array([np_arr[case]]) |
| assert result.equals(expected) |
| |
| |
| def test_array_diff(): |
| # ARROW-6252 |
| arr1 = pa.array(['foo'], type=pa.utf8()) |
| arr2 = pa.array(['foo', 'bar', None], type=pa.utf8()) |
| arr3 = pa.array([1, 2, 3]) |
| arr4 = pa.array([[], [1], None], type=pa.list_(pa.int64())) |
| |
| assert arr1.diff(arr1) == '' |
| assert arr1.diff(arr2) == ''' |
| @@ -1, +1 @@ |
| +"bar" |
| +null |
| ''' |
| assert arr1.diff(arr3).strip() == '# Array types differed: string vs int64' |
| assert arr1.diff(arr3).strip() == '# Array types differed: string vs int64' |
| assert arr1.diff(arr4).strip() == ('# Array types differed: string vs ' |
| 'list<item: int64>') |
| |
| |
| def test_array_iter(): |
| arr = pa.array(range(10)) |
| |
| for i, j in zip(range(10), arr): |
| assert i == j.as_py() |
| |
| assert isinstance(arr, Iterable) |
| |
| |
| def test_struct_array_slice(): |
| # ARROW-2311: slicing nested arrays needs special care |
| ty = pa.struct([pa.field('a', pa.int8()), |
| pa.field('b', pa.float32())]) |
| arr = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) |
| assert arr[1:].to_pylist() == [{'a': 3, 'b': 4.5}, |
| {'a': 5, 'b': 6.5}] |
| |
| |
| def test_array_factory_invalid_type(): |
| |
| class MyObject: |
| pass |
| |
| arr = np.array([MyObject()]) |
| with pytest.raises(ValueError): |
| pa.array(arr) |
| |
| |
| def test_array_ref_to_ndarray_base(): |
| arr = np.array([1, 2, 3]) |
| |
| refcount = sys.getrefcount(arr) |
| arr2 = pa.array(arr) # noqa |
| assert sys.getrefcount(arr) == (refcount + 1) |
| |
| |
| def test_array_eq(): |
| # ARROW-2150 / ARROW-9445: we define the __eq__ behavior to be |
| # data equality (not element-wise equality) |
| arr1 = pa.array([1, 2, 3], type=pa.int32()) |
| arr2 = pa.array([1, 2, 3], type=pa.int32()) |
| arr3 = pa.array([1, 2, 3], type=pa.int64()) |
| |
| assert (arr1 == arr2) is True |
| assert (arr1 != arr2) is False |
| assert (arr1 == arr3) is False |
| assert (arr1 != arr3) is True |
| |
| assert (arr1 == 1) is False |
| assert (arr1 == None) is False # noqa: E711 |
| |
| |
| def test_array_from_buffers(): |
| values_buf = pa.py_buffer(np.int16([4, 5, 6, 7])) |
| nulls_buf = pa.py_buffer(np.uint8([0b00001101])) |
| arr = pa.Array.from_buffers(pa.int16(), 4, [nulls_buf, values_buf]) |
| assert arr.type == pa.int16() |
| assert arr.to_pylist() == [4, None, 6, 7] |
| |
| arr = pa.Array.from_buffers(pa.int16(), 4, [None, values_buf]) |
| assert arr.type == pa.int16() |
| assert arr.to_pylist() == [4, 5, 6, 7] |
| |
| arr = pa.Array.from_buffers(pa.int16(), 3, [nulls_buf, values_buf], |
| offset=1) |
| assert arr.type == pa.int16() |
| assert arr.to_pylist() == [None, 6, 7] |
| |
| with pytest.raises(TypeError): |
| pa.Array.from_buffers(pa.int16(), 3, ['', ''], offset=1) |
| |
| |
| def test_string_binary_from_buffers(): |
| array = pa.array(["a", None, "b", "c"]) |
| |
| buffers = array.buffers() |
| copied = pa.StringArray.from_buffers( |
| len(array), buffers[1], buffers[2], buffers[0], array.null_count, |
| array.offset) |
| assert copied.to_pylist() == ["a", None, "b", "c"] |
| |
| binary_copy = pa.Array.from_buffers(pa.binary(), len(array), |
| array.buffers(), array.null_count, |
| array.offset) |
| assert binary_copy.to_pylist() == [b"a", None, b"b", b"c"] |
| |
| copied = pa.StringArray.from_buffers( |
| len(array), buffers[1], buffers[2], buffers[0]) |
| assert copied.to_pylist() == ["a", None, "b", "c"] |
| |
| sliced = array[1:] |
| buffers = sliced.buffers() |
| copied = pa.StringArray.from_buffers( |
| len(sliced), buffers[1], buffers[2], buffers[0], -1, sliced.offset) |
| assert copied.to_pylist() == [None, "b", "c"] |
| assert copied.null_count == 1 |
| |
| # Slice but exclude all null entries so that we don't need to pass |
| # the null bitmap. |
| sliced = array[2:] |
| buffers = sliced.buffers() |
| copied = pa.StringArray.from_buffers( |
| len(sliced), buffers[1], buffers[2], None, -1, sliced.offset) |
| assert copied.to_pylist() == ["b", "c"] |
| assert copied.null_count == 0 |
| |
| |
| @pytest.mark.parametrize('list_type_factory', [pa.list_, pa.large_list]) |
| def test_list_from_buffers(list_type_factory): |
| ty = list_type_factory(pa.int16()) |
| array = pa.array([[0, 1, 2], None, [], [3, 4, 5]], type=ty) |
| assert array.type == ty |
| |
| buffers = array.buffers() |
| |
| with pytest.raises(ValueError): |
| # No children |
| pa.Array.from_buffers(ty, 4, [None, buffers[1]]) |
| |
| child = pa.Array.from_buffers(pa.int16(), 6, buffers[2:]) |
| copied = pa.Array.from_buffers(ty, 4, buffers[:2], children=[child]) |
| assert copied.equals(array) |
| |
| with pytest.raises(ValueError): |
| # too many children |
| pa.Array.from_buffers(ty, 4, [None, buffers[1]], |
| children=[child, child]) |
| |
| |
| def test_struct_from_buffers(): |
| ty = pa.struct([pa.field('a', pa.int16()), pa.field('b', pa.utf8())]) |
| array = pa.array([{'a': 0, 'b': 'foo'}, None, {'a': 5, 'b': ''}], |
| type=ty) |
| buffers = array.buffers() |
| |
| with pytest.raises(ValueError): |
| # No children |
| pa.Array.from_buffers(ty, 3, [None, buffers[1]]) |
| |
| children = [pa.Array.from_buffers(pa.int16(), 3, buffers[1:3]), |
| pa.Array.from_buffers(pa.utf8(), 3, buffers[3:])] |
| copied = pa.Array.from_buffers(ty, 3, buffers[:1], children=children) |
| assert copied.equals(array) |
| |
| with pytest.raises(ValueError): |
| # not enough many children |
| pa.Array.from_buffers(ty, 3, [buffers[0]], |
| children=children[:1]) |
| |
| |
| def test_struct_from_arrays(): |
| a = pa.array([4, 5, 6], type=pa.int64()) |
| b = pa.array(["bar", None, ""]) |
| c = pa.array([[1, 2], None, [3, None]]) |
| expected_list = [ |
| {'a': 4, 'b': 'bar', 'c': [1, 2]}, |
| {'a': 5, 'b': None, 'c': None}, |
| {'a': 6, 'b': '', 'c': [3, None]}, |
| ] |
| |
| # From field names |
| arr = pa.StructArray.from_arrays([a, b, c], ["a", "b", "c"]) |
| assert arr.type == pa.struct( |
| [("a", a.type), ("b", b.type), ("c", c.type)]) |
| assert arr.to_pylist() == expected_list |
| |
| with pytest.raises(ValueError): |
| pa.StructArray.from_arrays([a, b, c], ["a", "b"]) |
| |
| arr = pa.StructArray.from_arrays([], []) |
| assert arr.type == pa.struct([]) |
| assert arr.to_pylist() == [] |
| |
| # From fields |
| fa = pa.field("a", a.type, nullable=False) |
| fb = pa.field("b", b.type) |
| fc = pa.field("c", c.type) |
| arr = pa.StructArray.from_arrays([a, b, c], fields=[fa, fb, fc]) |
| assert arr.type == pa.struct([fa, fb, fc]) |
| assert not arr.type[0].nullable |
| assert arr.to_pylist() == expected_list |
| |
| with pytest.raises(ValueError): |
| pa.StructArray.from_arrays([a, b, c], fields=[fa, fb]) |
| |
| arr = pa.StructArray.from_arrays([], fields=[]) |
| assert arr.type == pa.struct([]) |
| assert arr.to_pylist() == [] |
| |
| # Inconsistent fields |
| fa2 = pa.field("a", pa.int32()) |
| with pytest.raises(ValueError, match="int64 vs int32"): |
| pa.StructArray.from_arrays([a, b, c], fields=[fa2, fb, fc]) |
| |
| arrays = [a, b, c] |
| fields = [fa, fb, fc] |
| # With mask |
| mask = pa.array([True, False, False]) |
| arr = pa.StructArray.from_arrays(arrays, fields=fields, mask=mask) |
| assert arr.to_pylist() == [None] + expected_list[1:] |
| |
| arr = pa.StructArray.from_arrays(arrays, names=['a', 'b', 'c'], mask=mask) |
| assert arr.to_pylist() == [None] + expected_list[1:] |
| |
| # Bad masks |
| with pytest.raises(TypeError, match='Mask must be'): |
| pa.StructArray.from_arrays(arrays, fields, mask=[True, False, False]) |
| |
| with pytest.raises(ValueError, match='not contain nulls'): |
| pa.StructArray.from_arrays( |
| arrays, fields, mask=pa.array([True, False, None])) |
| |
| with pytest.raises(TypeError, match='Mask must be'): |
| pa.StructArray.from_arrays( |
| arrays, fields, mask=pa.chunked_array([mask])) |
| |
| # Non-empty array with no fields https://github.com/apache/arrow/issues/15109 |
| arr = pa.StructArray.from_arrays([], [], mask=mask) |
| assert arr.is_null() == mask |
| assert arr.to_pylist() == [None, {}, {}] |
| |
| |
| def test_struct_array_from_chunked(): |
| # ARROW-11780 |
| # Check that we don't segfault when trying to build |
| # a StructArray from a chunked array. |
| chunked_arr = pa.chunked_array([[1, 2, 3], [4, 5, 6]]) |
| |
| with pytest.raises(TypeError, match="Expected Array"): |
| pa.StructArray.from_arrays([chunked_arr], ["foo"]) |
| |
| |
| @pytest.mark.parametrize("offset", (0, 1)) |
| def test_dictionary_from_buffers(offset): |
| a = pa.array(["one", "two", "three", "two", "one"]).dictionary_encode() |
| b = pa.DictionaryArray.from_buffers(a.type, len(a)-offset, |
| a.indices.buffers(), a.dictionary, |
| offset=offset) |
| assert a[offset:] == b |
| |
| |
| def test_dictionary_from_numpy(): |
| indices = np.repeat([0, 1, 2], 2) |
| dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) |
| mask = np.array([False, False, True, False, False, False]) |
| |
| d1 = pa.DictionaryArray.from_arrays(indices, dictionary) |
| d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask) |
| |
| assert d1.indices.to_pylist() == indices.tolist() |
| assert d1.indices.to_pylist() == indices.tolist() |
| assert d1.dictionary.to_pylist() == dictionary.tolist() |
| assert d2.dictionary.to_pylist() == dictionary.tolist() |
| |
| for i in range(len(indices)): |
| assert d1[i].as_py() == dictionary[indices[i]] |
| |
| if mask[i]: |
| assert d2[i].as_py() is None |
| else: |
| assert d2[i].as_py() == dictionary[indices[i]] |
| |
| |
| def test_dictionary_to_numpy(): |
| expected = pa.array( |
| ["foo", "bar", None, "foo"] |
| ).to_numpy(zero_copy_only=False) |
| a = pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, None, 0]), |
| pa.array(['foo', 'bar']) |
| ) |
| np.testing.assert_array_equal(a.to_numpy(zero_copy_only=False), |
| expected) |
| |
| with pytest.raises(pa.ArrowInvalid): |
| # If this would be changed to no longer raise in the future, |
| # ensure to test the actual result because, currently, to_numpy takes |
| # for granted that when zero_copy_only=True there will be no nulls |
| # (it's the decoding of the DictionaryArray that handles the nulls and |
| # this is only activated with zero_copy_only=False) |
| a.to_numpy(zero_copy_only=True) |
| |
| anonulls = pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, 1, 0]), |
| pa.array(['foo', 'bar']) |
| ) |
| expected = pa.array( |
| ["foo", "bar", "bar", "foo"] |
| ).to_numpy(zero_copy_only=False) |
| np.testing.assert_array_equal(anonulls.to_numpy(zero_copy_only=False), |
| expected) |
| |
| with pytest.raises(pa.ArrowInvalid): |
| anonulls.to_numpy(zero_copy_only=True) |
| |
| afloat = pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, 1, 0]), |
| pa.array([13.7, 11.0]) |
| ) |
| expected = pa.array([13.7, 11.0, 11.0, 13.7]).to_numpy() |
| np.testing.assert_array_equal(afloat.to_numpy(zero_copy_only=True), |
| expected) |
| np.testing.assert_array_equal(afloat.to_numpy(zero_copy_only=False), |
| expected) |
| |
| afloat2 = pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, None, 0]), |
| pa.array([13.7, 11.0]) |
| ) |
| expected = pa.array( |
| [13.7, 11.0, None, 13.7] |
| ).to_numpy(zero_copy_only=False) |
| np.testing.assert_allclose( |
| afloat2.to_numpy(zero_copy_only=False), |
| expected, |
| equal_nan=True |
| ) |
| |
| # Testing for integers can reveal problems related to dealing |
| # with None values, as a numpy array of int dtype |
| # can't contain NaN nor None. |
| aints = pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, None, 0]), |
| pa.array([7, 11]) |
| ) |
| expected = pa.array([7, 11, None, 7]).to_numpy(zero_copy_only=False) |
| np.testing.assert_allclose( |
| aints.to_numpy(zero_copy_only=False), |
| expected, |
| equal_nan=True |
| ) |
| |
| |
| def test_dictionary_from_boxed_arrays(): |
| indices = np.repeat([0, 1, 2], 2) |
| dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) |
| |
| iarr = pa.array(indices) |
| darr = pa.array(dictionary) |
| |
| d1 = pa.DictionaryArray.from_arrays(iarr, darr) |
| |
| assert d1.indices.to_pylist() == indices.tolist() |
| assert d1.dictionary.to_pylist() == dictionary.tolist() |
| |
| for i in range(len(indices)): |
| assert d1[i].as_py() == dictionary[indices[i]] |
| |
| |
| def test_dictionary_from_arrays_boundscheck(): |
| indices1 = pa.array([0, 1, 2, 0, 1, 2]) |
| indices2 = pa.array([0, -1, 2]) |
| indices3 = pa.array([0, 1, 2, 3]) |
| |
| dictionary = pa.array(['foo', 'bar', 'baz']) |
| |
| # Works fine |
| pa.DictionaryArray.from_arrays(indices1, dictionary) |
| |
| with pytest.raises(pa.ArrowException): |
| pa.DictionaryArray.from_arrays(indices2, dictionary) |
| |
| with pytest.raises(pa.ArrowException): |
| pa.DictionaryArray.from_arrays(indices3, dictionary) |
| |
| # If we are confident that the indices are "safe" we can pass safe=False to |
| # disable the boundschecking |
| pa.DictionaryArray.from_arrays(indices2, dictionary, safe=False) |
| |
| |
| def test_dictionary_indices(): |
| # https://issues.apache.org/jira/browse/ARROW-6882 |
| indices = pa.array([0, 1, 2, 0, 1, 2]) |
| dictionary = pa.array(['foo', 'bar', 'baz']) |
| arr = pa.DictionaryArray.from_arrays(indices, dictionary) |
| arr.indices.validate(full=True) |
| |
| |
| @pytest.mark.parametrize(('list_array_type', 'list_type_factory'), |
| [(pa.ListArray, pa.list_), |
| (pa.LargeListArray, pa.large_list)]) |
| def test_list_from_arrays(list_array_type, list_type_factory): |
| offsets_arr = np.array([0, 2, 5, 8], dtype='i4') |
| offsets = pa.array(offsets_arr, type='int32') |
| pyvalues = [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h'] |
| values = pa.array(pyvalues, type='binary') |
| |
| result = list_array_type.from_arrays(offsets, values) |
| expected = pa.array([pyvalues[:2], pyvalues[2:5], pyvalues[5:8]], |
| type=list_type_factory(pa.binary())) |
| |
| assert result.equals(expected) |
| |
| # With specified type |
| typ = list_type_factory(pa.field("name", pa.binary())) |
| result = list_array_type.from_arrays(offsets, values, typ) |
| assert result.type == typ |
| assert result.type.value_field.name == "name" |
| |
| # With nulls |
| offsets = [0, None, 2, 6] |
| values = [b'a', b'b', b'c', b'd', b'e', b'f'] |
| |
| result = list_array_type.from_arrays(offsets, values) |
| expected = pa.array([values[:2], None, values[2:]], |
| type=list_type_factory(pa.binary())) |
| |
| assert result.equals(expected) |
| |
| # Another edge case |
| offsets2 = [0, 2, None, 6] |
| result = list_array_type.from_arrays(offsets2, values) |
| expected = pa.array([values[:2], values[2:], None], |
| type=list_type_factory(pa.binary())) |
| assert result.equals(expected) |
| |
| # raise on invalid array |
| offsets = [1, 3, 10] |
| values = np.arange(5) |
| with pytest.raises(ValueError): |
| list_array_type.from_arrays(offsets, values) |
| |
| # Non-monotonic offsets |
| offsets = [0, 3, 2, 6] |
| values = list(range(6)) |
| result = list_array_type.from_arrays(offsets, values) |
| with pytest.raises(ValueError): |
| result.validate(full=True) |
| |
| # mismatching type |
| typ = list_type_factory(pa.binary()) |
| with pytest.raises(TypeError): |
| list_array_type.from_arrays(offsets, values, type=typ) |
| |
| |
| @pytest.mark.parametrize(('list_array_type', 'list_type_factory'), ( |
| (pa.ListArray, pa.list_), |
| (pa.LargeListArray, pa.large_list) |
| )) |
| @pytest.mark.parametrize("arr", ( |
| [None, [0]], |
| [None, [0, None], [0]], |
| [[0], [1]], |
| )) |
| def test_list_array_types_from_arrays( |
| list_array_type, list_type_factory, arr |
| ): |
| arr = pa.array(arr, list_type_factory(pa.int8())) |
| reconstructed_arr = list_array_type.from_arrays( |
| arr.offsets, arr.values, mask=arr.is_null()) |
| assert arr == reconstructed_arr |
| |
| |
| @pytest.mark.parametrize(('list_array_type', 'list_type_factory'), ( |
| (pa.ListArray, pa.list_), |
| (pa.LargeListArray, pa.large_list) |
| )) |
| def test_list_array_types_from_arrays_fail(list_array_type, list_type_factory): |
| # Fail when manual offsets include nulls and mask passed |
| # ListArray.offsets doesn't report nulls. |
| |
| # This test case arr.offsets == [0, 1, 1, 3, 4] |
| arr = pa.array([[0], None, [0, None], [0]], list_type_factory(pa.int8())) |
| offsets = pa.array([0, None, 1, 3, 4]) |
| |
| # Using array's offset has no nulls; gives empty lists on top level |
| reconstructed_arr = list_array_type.from_arrays(arr.offsets, arr.values) |
| assert reconstructed_arr.to_pylist() == [[0], [], [0, None], [0]] |
| |
| # Manually specifiying offsets (with nulls) is same as mask at top level |
| reconstructed_arr = list_array_type.from_arrays(offsets, arr.values) |
| assert arr == reconstructed_arr |
| reconstructed_arr = list_array_type.from_arrays(arr.offsets, |
| arr.values, |
| mask=arr.is_null()) |
| assert arr == reconstructed_arr |
| |
| # But using both is ambiguous, in this case `offsets` has nulls |
| with pytest.raises(ValueError, match="Ambiguous to specify both "): |
| list_array_type.from_arrays(offsets, arr.values, mask=arr.is_null()) |
| |
| # Not supported to reconstruct from a slice. |
| arr_slice = arr[1:] |
| msg = "Null bitmap with offsets slice not supported." |
| with pytest.raises(NotImplementedError, match=msg): |
| list_array_type.from_arrays( |
| arr_slice.offsets, arr_slice.values, mask=arr_slice.is_null()) |
| |
| |
| def test_map_labelled(): |
| # ARROW-13735 |
| t = pa.map_(pa.field("name", "string", nullable=False), "int64") |
| arr = pa.array([[('a', 1), ('b', 2)], [('c', 3)]], type=t) |
| assert arr.type.key_field == pa.field("name", pa.utf8(), nullable=False) |
| assert arr.type.item_field == pa.field("value", pa.int64()) |
| assert len(arr) == 2 |
| |
| |
| def test_map_from_dict(): |
| # ARROW-17832 |
| tup_arr = pa.array([[('a', 1), ('b', 2)], [('c', 3)]], |
| pa.map_(pa.string(), pa.int64())) |
| dict_arr = pa.array([{'a': 1, 'b': 2}, {'c': 3}], |
| pa.map_(pa.string(), pa.int64())) |
| |
| assert tup_arr.equals(dict_arr) |
| |
| |
| def test_map_from_arrays(): |
| offsets_arr = np.array([0, 2, 5, 8], dtype='i4') |
| offsets = pa.array(offsets_arr, type='int32') |
| pykeys = [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h'] |
| pyitems = list(range(len(pykeys))) |
| pypairs = list(zip(pykeys, pyitems)) |
| pyentries = [pypairs[:2], pypairs[2:5], pypairs[5:8]] |
| keys = pa.array(pykeys, type='binary') |
| items = pa.array(pyitems, type='i4') |
| |
| result = pa.MapArray.from_arrays(offsets, keys, items) |
| expected = pa.array(pyentries, type=pa.map_(pa.binary(), pa.int32())) |
| |
| assert result.equals(expected) |
| |
| # With nulls |
| offsets = [0, None, 2, 6] |
| pykeys = [b'a', b'b', b'c', b'd', b'e', b'f'] |
| pyitems = [1, 2, 3, None, 4, 5] |
| pypairs = list(zip(pykeys, pyitems)) |
| pyentries = [pypairs[:2], None, pypairs[2:]] |
| keys = pa.array(pykeys, type='binary') |
| items = pa.array(pyitems, type='i4') |
| |
| result = pa.MapArray.from_arrays(offsets, keys, items) |
| expected = pa.array(pyentries, type=pa.map_(pa.binary(), pa.int32())) |
| |
| assert result.equals(expected) |
| |
| # check invalid usage |
| |
| offsets = [0, 1, 3, 5] |
| keys = np.arange(5) |
| items = np.arange(5) |
| _ = pa.MapArray.from_arrays(offsets, keys, items) |
| |
| # raise on invalid offsets |
| with pytest.raises(ValueError): |
| pa.MapArray.from_arrays(offsets + [6], keys, items) |
| |
| # raise on length of keys != items |
| with pytest.raises(ValueError): |
| pa.MapArray.from_arrays(offsets, keys, np.concatenate([items, items])) |
| |
| # raise on keys with null |
| keys_with_null = list(keys)[:-1] + [None] |
| assert len(keys_with_null) == len(items) |
| with pytest.raises(ValueError): |
| pa.MapArray.from_arrays(offsets, keys_with_null, items) |
| |
| |
| def test_fixed_size_list_from_arrays(): |
| values = pa.array(range(12), pa.int64()) |
| result = pa.FixedSizeListArray.from_arrays(values, 4) |
| assert result.to_pylist() == [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] |
| assert result.type.equals(pa.list_(pa.int64(), 4)) |
| |
| typ = pa.list_(pa.field("name", pa.int64()), 4) |
| result = pa.FixedSizeListArray.from_arrays(values, type=typ) |
| assert result.to_pylist() == [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] |
| assert result.type.equals(typ) |
| assert result.type.value_field.name == "name" |
| |
| # raise on invalid values / list_size |
| with pytest.raises(ValueError): |
| pa.FixedSizeListArray.from_arrays(values, -4) |
| |
| with pytest.raises(ValueError): |
| # array with list size 0 cannot be constructed with from_arrays |
| pa.FixedSizeListArray.from_arrays(pa.array([], pa.int64()), 0) |
| |
| with pytest.raises(ValueError): |
| # length of values not multiple of 5 |
| pa.FixedSizeListArray.from_arrays(values, 5) |
| |
| typ = pa.list_(pa.int64(), 5) |
| with pytest.raises(ValueError): |
| pa.FixedSizeListArray.from_arrays(values, type=typ) |
| |
| # raise on mismatching values type |
| typ = pa.list_(pa.float64(), 4) |
| with pytest.raises(TypeError): |
| pa.FixedSizeListArray.from_arrays(values, type=typ) |
| |
| # raise on specifying none or both of list_size / type |
| with pytest.raises(ValueError): |
| pa.FixedSizeListArray.from_arrays(values) |
| |
| typ = pa.list_(pa.int64(), 4) |
| with pytest.raises(ValueError): |
| pa.FixedSizeListArray.from_arrays(values, list_size=4, type=typ) |
| |
| |
| def test_variable_list_from_arrays(): |
| values = pa.array([1, 2, 3, 4], pa.int64()) |
| offsets = pa.array([0, 2, 4]) |
| result = pa.ListArray.from_arrays(offsets, values) |
| assert result.to_pylist() == [[1, 2], [3, 4]] |
| assert result.type.equals(pa.list_(pa.int64())) |
| |
| offsets = pa.array([0, None, 2, 4]) |
| result = pa.ListArray.from_arrays(offsets, values) |
| assert result.to_pylist() == [[1, 2], None, [3, 4]] |
| |
| # raise if offset out of bounds |
| with pytest.raises(ValueError): |
| pa.ListArray.from_arrays(pa.array([-1, 2, 4]), values) |
| |
| with pytest.raises(ValueError): |
| pa.ListArray.from_arrays(pa.array([0, 2, 5]), values) |
| |
| |
| def test_union_from_dense(): |
| binary = pa.array([b'a', b'b', b'c', b'd'], type='binary') |
| int64 = pa.array([1, 2, 3], type='int64') |
| types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') |
| logical_types = pa.array([11, 13, 11, 11, 13, 13, 11], type='int8') |
| value_offsets = pa.array([0, 0, 1, 2, 1, 2, 3], type='int32') |
| py_value = [b'a', 1, b'b', b'c', 2, 3, b'd'] |
| |
| def check_result(result, expected_field_names, expected_type_codes, |
| expected_type_code_values): |
| result.validate(full=True) |
| actual_field_names = [result.type[i].name |
| for i in range(result.type.num_fields)] |
| assert actual_field_names == expected_field_names |
| assert result.type.mode == "dense" |
| assert result.type.type_codes == expected_type_codes |
| assert result.to_pylist() == py_value |
| assert expected_type_code_values.equals(result.type_codes) |
| assert value_offsets.equals(result.offsets) |
| assert result.field(0).equals(binary) |
| assert result.field(1).equals(int64) |
| with pytest.raises(KeyError): |
| result.field(-1) |
| with pytest.raises(KeyError): |
| result.field(2) |
| |
| # without field names and type codes |
| check_result(pa.UnionArray.from_dense(types, value_offsets, |
| [binary, int64]), |
| expected_field_names=['0', '1'], |
| expected_type_codes=[0, 1], |
| expected_type_code_values=types) |
| |
| # with field names |
| check_result(pa.UnionArray.from_dense(types, value_offsets, |
| [binary, int64], |
| ['bin', 'int']), |
| expected_field_names=['bin', 'int'], |
| expected_type_codes=[0, 1], |
| expected_type_code_values=types) |
| |
| # with type codes |
| check_result(pa.UnionArray.from_dense(logical_types, value_offsets, |
| [binary, int64], |
| type_codes=[11, 13]), |
| expected_field_names=['0', '1'], |
| expected_type_codes=[11, 13], |
| expected_type_code_values=logical_types) |
| |
| # with field names and type codes |
| check_result(pa.UnionArray.from_dense(logical_types, value_offsets, |
| [binary, int64], |
| ['bin', 'int'], [11, 13]), |
| expected_field_names=['bin', 'int'], |
| expected_type_codes=[11, 13], |
| expected_type_code_values=logical_types) |
| |
| # Bad type ids |
| arr = pa.UnionArray.from_dense(logical_types, value_offsets, |
| [binary, int64]) |
| with pytest.raises(pa.ArrowInvalid): |
| arr.validate(full=True) |
| arr = pa.UnionArray.from_dense(types, value_offsets, [binary, int64], |
| type_codes=[11, 13]) |
| with pytest.raises(pa.ArrowInvalid): |
| arr.validate(full=True) |
| |
| # Offset larger than child size |
| bad_offsets = pa.array([0, 0, 1, 2, 1, 2, 4], type='int32') |
| arr = pa.UnionArray.from_dense(types, bad_offsets, [binary, int64]) |
| with pytest.raises(pa.ArrowInvalid): |
| arr.validate(full=True) |
| |
| |
| def test_union_from_sparse(): |
| binary = pa.array([b'a', b' ', b'b', b'c', b' ', b' ', b'd'], |
| type='binary') |
| int64 = pa.array([0, 1, 0, 0, 2, 3, 0], type='int64') |
| types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') |
| logical_types = pa.array([11, 13, 11, 11, 13, 13, 11], type='int8') |
| py_value = [b'a', 1, b'b', b'c', 2, 3, b'd'] |
| |
| def check_result(result, expected_field_names, expected_type_codes, |
| expected_type_code_values): |
| result.validate(full=True) |
| assert result.to_pylist() == py_value |
| actual_field_names = [result.type[i].name |
| for i in range(result.type.num_fields)] |
| assert actual_field_names == expected_field_names |
| assert result.type.mode == "sparse" |
| assert result.type.type_codes == expected_type_codes |
| assert expected_type_code_values.equals(result.type_codes) |
| assert result.field(0).equals(binary) |
| assert result.field(1).equals(int64) |
| with pytest.raises(pa.ArrowTypeError): |
| result.offsets |
| with pytest.raises(KeyError): |
| result.field(-1) |
| with pytest.raises(KeyError): |
| result.field(2) |
| |
| # without field names and type codes |
| check_result(pa.UnionArray.from_sparse(types, [binary, int64]), |
| expected_field_names=['0', '1'], |
| expected_type_codes=[0, 1], |
| expected_type_code_values=types) |
| |
| # with field names |
| check_result(pa.UnionArray.from_sparse(types, [binary, int64], |
| ['bin', 'int']), |
| expected_field_names=['bin', 'int'], |
| expected_type_codes=[0, 1], |
| expected_type_code_values=types) |
| |
| # with type codes |
| check_result(pa.UnionArray.from_sparse(logical_types, [binary, int64], |
| type_codes=[11, 13]), |
| expected_field_names=['0', '1'], |
| expected_type_codes=[11, 13], |
| expected_type_code_values=logical_types) |
| |
| # with field names and type codes |
| check_result(pa.UnionArray.from_sparse(logical_types, [binary, int64], |
| ['bin', 'int'], |
| [11, 13]), |
| expected_field_names=['bin', 'int'], |
| expected_type_codes=[11, 13], |
| expected_type_code_values=logical_types) |
| |
| # Bad type ids |
| arr = pa.UnionArray.from_sparse(logical_types, [binary, int64]) |
| with pytest.raises(pa.ArrowInvalid): |
| arr.validate(full=True) |
| arr = pa.UnionArray.from_sparse(types, [binary, int64], |
| type_codes=[11, 13]) |
| with pytest.raises(pa.ArrowInvalid): |
| arr.validate(full=True) |
| |
| # Invalid child length |
| with pytest.raises(pa.ArrowInvalid): |
| arr = pa.UnionArray.from_sparse(logical_types, [binary, int64[1:]]) |
| |
| |
| def test_union_array_to_pylist_with_nulls(): |
| # ARROW-9556 |
| arr = pa.UnionArray.from_sparse( |
| pa.array([0, 1, 0, 0, 1], type=pa.int8()), |
| [ |
| pa.array([0.0, 1.1, None, 3.3, 4.4]), |
| pa.array([True, None, False, True, False]), |
| ] |
| ) |
| assert arr.to_pylist() == [0.0, None, None, 3.3, False] |
| |
| arr = pa.UnionArray.from_dense( |
| pa.array([0, 1, 0, 0, 0, 1, 1], type=pa.int8()), |
| pa.array([0, 0, 1, 2, 3, 1, 2], type=pa.int32()), |
| [ |
| pa.array([0.0, 1.1, None, 3.3]), |
| pa.array([True, None, False]) |
| ] |
| ) |
| assert arr.to_pylist() == [0.0, True, 1.1, None, 3.3, None, False] |
| |
| |
| def test_union_array_slice(): |
| # ARROW-2314 |
| arr = pa.UnionArray.from_sparse(pa.array([0, 0, 1, 1], type=pa.int8()), |
| [pa.array(["a", "b", "c", "d"]), |
| pa.array([1, 2, 3, 4])]) |
| assert arr[1:].to_pylist() == ["b", 3, 4] |
| |
| binary = pa.array([b'a', b'b', b'c', b'd'], type='binary') |
| int64 = pa.array([1, 2, 3], type='int64') |
| types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') |
| value_offsets = pa.array([0, 0, 2, 1, 1, 2, 3], type='int32') |
| |
| arr = pa.UnionArray.from_dense(types, value_offsets, [binary, int64]) |
| lst = arr.to_pylist() |
| for i in range(len(arr)): |
| for j in range(i, len(arr)): |
| assert arr[i:j].to_pylist() == lst[i:j] |
| |
| |
| def _check_cast_case(case, *, safe=True, check_array_construction=True): |
| in_data, in_type, out_data, out_type = case |
| if isinstance(out_data, pa.Array): |
| assert out_data.type == out_type |
| expected = out_data |
| else: |
| expected = pa.array(out_data, type=out_type) |
| |
| # check casting an already created array |
| if isinstance(in_data, pa.Array): |
| assert in_data.type == in_type |
| in_arr = in_data |
| else: |
| in_arr = pa.array(in_data, type=in_type) |
| casted = in_arr.cast(out_type, safe=safe) |
| casted.validate(full=True) |
| assert casted.equals(expected) |
| |
| # constructing an array with out type which optionally involves casting |
| # for more see ARROW-1949 |
| if check_array_construction: |
| in_arr = pa.array(in_data, type=out_type, safe=safe) |
| assert in_arr.equals(expected) |
| |
| |
| def test_cast_integers_safe(): |
| safe_cases = [ |
| (np.array([0, 1, 2, 3], dtype='i1'), 'int8', |
| np.array([0, 1, 2, 3], dtype='i4'), pa.int32()), |
| (np.array([0, 1, 2, 3], dtype='i1'), 'int8', |
| np.array([0, 1, 2, 3], dtype='u4'), pa.uint16()), |
| (np.array([0, 1, 2, 3], dtype='i1'), 'int8', |
| np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()), |
| (np.array([0, 1, 2, 3], dtype='i1'), 'int8', |
| np.array([0, 1, 2, 3], dtype='f8'), pa.float64()) |
| ] |
| |
| for case in safe_cases: |
| _check_cast_case(case) |
| |
| unsafe_cases = [ |
| (np.array([50000], dtype='i4'), 'int32', 'int16'), |
| (np.array([70000], dtype='i4'), 'int32', 'uint16'), |
| (np.array([-1], dtype='i4'), 'int32', 'uint16'), |
| (np.array([50000], dtype='u2'), 'uint16', 'int16') |
| ] |
| for in_data, in_type, out_type in unsafe_cases: |
| in_arr = pa.array(in_data, type=in_type) |
| |
| with pytest.raises(pa.ArrowInvalid): |
| in_arr.cast(out_type) |
| |
| |
| def test_cast_none(): |
| # ARROW-3735: Ensure that calling cast(None) doesn't segfault. |
| arr = pa.array([1, 2, 3]) |
| |
| with pytest.raises(TypeError): |
| arr.cast(None) |
| |
| |
| def test_cast_list_to_primitive(): |
| # ARROW-8070: cast segfaults on unsupported cast from list<binary> to utf8 |
| arr = pa.array([[1, 2], [3, 4]]) |
| with pytest.raises(NotImplementedError): |
| arr.cast(pa.int8()) |
| |
| arr = pa.array([[b"a", b"b"], [b"c"]], pa.list_(pa.binary())) |
| with pytest.raises(NotImplementedError): |
| arr.cast(pa.binary()) |
| |
| |
| def test_slice_chunked_array_zero_chunks(): |
| # ARROW-8911 |
| arr = pa.chunked_array([], type='int8') |
| assert arr.num_chunks == 0 |
| |
| result = arr[:] |
| assert result.equals(arr) |
| |
| # Do not crash |
| arr[:5] |
| |
| |
| def test_cast_chunked_array(): |
| arrays = [pa.array([1, 2, 3]), pa.array([4, 5, 6])] |
| carr = pa.chunked_array(arrays) |
| |
| target = pa.float64() |
| casted = carr.cast(target) |
| expected = pa.chunked_array([x.cast(target) for x in arrays]) |
| assert casted.equals(expected) |
| |
| |
| def test_cast_chunked_array_empty(): |
| # ARROW-8142 |
| for typ1, typ2 in [(pa.dictionary(pa.int8(), pa.string()), pa.string()), |
| (pa.int64(), pa.int32())]: |
| |
| arr = pa.chunked_array([], type=typ1) |
| result = arr.cast(typ2) |
| expected = pa.chunked_array([], type=typ2) |
| assert result.equals(expected) |
| |
| |
| def test_chunked_array_data_warns(): |
| with pytest.warns(FutureWarning): |
| res = pa.chunked_array([[]]).data |
| assert isinstance(res, pa.ChunkedArray) |
| |
| |
| def test_cast_integers_unsafe(): |
| # We let NumPy do the unsafe casting. |
| # Note that NEP50 in the NumPy spec no longer allows |
| # the np.array() constructor to pass the dtype directly |
| # if it results in an unsafe cast. |
| unsafe_cases = [ |
| (np.array([50000], dtype='i4'), 'int32', |
| np.array([50000]).astype(dtype='i2'), pa.int16()), |
| (np.array([70000], dtype='i4'), 'int32', |
| np.array([70000]).astype(dtype='u2'), pa.uint16()), |
| (np.array([-1], dtype='i4'), 'int32', |
| np.array([-1]).astype(dtype='u2'), pa.uint16()), |
| (np.array([50000], dtype='u2'), pa.uint16(), |
| np.array([50000]).astype(dtype='i2'), pa.int16()) |
| ] |
| |
| for case in unsafe_cases: |
| _check_cast_case(case, safe=False) |
| |
| |
| def test_floating_point_truncate_safe(): |
| safe_cases = [ |
| (np.array([1.0, 2.0, 3.0], dtype='float32'), 'float32', |
| np.array([1, 2, 3], dtype='i4'), pa.int32()), |
| (np.array([1.0, 2.0, 3.0], dtype='float64'), 'float64', |
| np.array([1, 2, 3], dtype='i4'), pa.int32()), |
| (np.array([-10.0, 20.0, -30.0], dtype='float64'), 'float64', |
| np.array([-10, 20, -30], dtype='i4'), pa.int32()), |
| ] |
| for case in safe_cases: |
| _check_cast_case(case, safe=True) |
| |
| |
| def test_floating_point_truncate_unsafe(): |
| unsafe_cases = [ |
| (np.array([1.1, 2.2, 3.3], dtype='float32'), 'float32', |
| np.array([1, 2, 3], dtype='i4'), pa.int32()), |
| (np.array([1.1, 2.2, 3.3], dtype='float64'), 'float64', |
| np.array([1, 2, 3], dtype='i4'), pa.int32()), |
| (np.array([-10.1, 20.2, -30.3], dtype='float64'), 'float64', |
| np.array([-10, 20, -30], dtype='i4'), pa.int32()), |
| ] |
| for case in unsafe_cases: |
| # test safe casting raises |
| with pytest.raises(pa.ArrowInvalid, match='truncated'): |
| _check_cast_case(case, safe=True) |
| |
| # test unsafe casting truncates |
| _check_cast_case(case, safe=False) |
| |
| |
| def test_decimal_to_int_safe(): |
| safe_cases = [ |
| ( |
| [decimal.Decimal("123456"), None, decimal.Decimal("-912345")], |
| pa.decimal128(32, 5), |
| [123456, None, -912345], |
| pa.int32() |
| ), |
| ( |
| [decimal.Decimal("1234"), None, decimal.Decimal("-9123")], |
| pa.decimal128(19, 10), |
| [1234, None, -9123], |
| pa.int16() |
| ), |
| ( |
| [decimal.Decimal("123"), None, decimal.Decimal("-91")], |
| pa.decimal128(19, 10), |
| [123, None, -91], |
| pa.int8() |
| ), |
| ] |
| for case in safe_cases: |
| _check_cast_case(case) |
| _check_cast_case(case, safe=True) |
| |
| |
| def test_decimal_to_int_value_out_of_bounds(): |
| out_of_bounds_cases = [ |
| ( |
| np.array([ |
| decimal.Decimal("1234567890123"), |
| None, |
| decimal.Decimal("-912345678901234") |
| ]), |
| pa.decimal128(32, 5), |
| [1912276171, None, -135950322], |
| pa.int32() |
| ), |
| ( |
| [decimal.Decimal("123456"), None, decimal.Decimal("-912345678")], |
| pa.decimal128(32, 5), |
| [-7616, None, -19022], |
| pa.int16() |
| ), |
| ( |
| [decimal.Decimal("1234"), None, decimal.Decimal("-9123")], |
| pa.decimal128(32, 5), |
| [-46, None, 93], |
| pa.int8() |
| ), |
| ] |
| |
| for case in out_of_bounds_cases: |
| # test safe casting raises |
| with pytest.raises(pa.ArrowInvalid, |
| match='Integer value out of bounds'): |
| _check_cast_case(case) |
| |
| # XXX `safe=False` can be ignored when constructing an array |
| # from a sequence of Python objects (ARROW-8567) |
| _check_cast_case(case, safe=False, check_array_construction=False) |
| |
| |
| def test_decimal_to_int_non_integer(): |
| non_integer_cases = [ |
| ( |
| [ |
| decimal.Decimal("123456.21"), |
| None, |
| decimal.Decimal("-912345.13") |
| ], |
| pa.decimal128(32, 5), |
| [123456, None, -912345], |
| pa.int32() |
| ), |
| ( |
| [decimal.Decimal("1234.134"), None, decimal.Decimal("-9123.1")], |
| pa.decimal128(19, 10), |
| [1234, None, -9123], |
| pa.int16() |
| ), |
| ( |
| [decimal.Decimal("123.1451"), None, decimal.Decimal("-91.21")], |
| pa.decimal128(19, 10), |
| [123, None, -91], |
| pa.int8() |
| ), |
| ] |
| |
| for case in non_integer_cases: |
| # test safe casting raises |
| msg_regexp = 'Rescaling Decimal128 value would cause data loss' |
| with pytest.raises(pa.ArrowInvalid, match=msg_regexp): |
| _check_cast_case(case) |
| |
| _check_cast_case(case, safe=False) |
| |
| |
| def test_decimal_to_decimal(): |
| arr = pa.array( |
| [decimal.Decimal("1234.12"), None], |
| type=pa.decimal128(19, 10) |
| ) |
| result = arr.cast(pa.decimal128(15, 6)) |
| expected = pa.array( |
| [decimal.Decimal("1234.12"), None], |
| type=pa.decimal128(15, 6) |
| ) |
| assert result.equals(expected) |
| |
| msg_regexp = 'Rescaling Decimal128 value would cause data loss' |
| with pytest.raises(pa.ArrowInvalid, match=msg_regexp): |
| result = arr.cast(pa.decimal128(9, 1)) |
| |
| result = arr.cast(pa.decimal128(9, 1), safe=False) |
| expected = pa.array( |
| [decimal.Decimal("1234.1"), None], |
| type=pa.decimal128(9, 1) |
| ) |
| assert result.equals(expected) |
| |
| with pytest.raises(pa.ArrowInvalid, |
| match='Decimal value does not fit in precision'): |
| result = arr.cast(pa.decimal128(5, 2)) |
| |
| |
| def test_safe_cast_nan_to_int_raises(): |
| arr = pa.array([np.nan, 1.]) |
| |
| with pytest.raises(pa.ArrowInvalid, match='truncated'): |
| arr.cast(pa.int64(), safe=True) |
| |
| |
| def test_cast_signed_to_unsigned(): |
| safe_cases = [ |
| (np.array([0, 1, 2, 3], dtype='i1'), pa.uint8(), |
| np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()), |
| (np.array([0, 1, 2, 3], dtype='i2'), pa.uint16(), |
| np.array([0, 1, 2, 3], dtype='u2'), pa.uint16()) |
| ] |
| |
| for case in safe_cases: |
| _check_cast_case(case) |
| |
| |
| def test_cast_from_null(): |
| in_data = [None] * 3 |
| in_type = pa.null() |
| out_types = [ |
| pa.null(), |
| pa.uint8(), |
| pa.float16(), |
| pa.utf8(), |
| pa.binary(), |
| pa.binary(10), |
| pa.list_(pa.int16()), |
| pa.list_(pa.int32(), 4), |
| pa.large_list(pa.uint8()), |
| pa.decimal128(19, 4), |
| pa.timestamp('us'), |
| pa.timestamp('us', tz='UTC'), |
| pa.timestamp('us', tz='Europe/Paris'), |
| pa.duration('us'), |
| pa.month_day_nano_interval(), |
| pa.struct([pa.field('a', pa.int32()), |
| pa.field('b', pa.list_(pa.int8())), |
| pa.field('c', pa.string())]), |
| pa.dictionary(pa.int32(), pa.string()), |
| ] |
| for out_type in out_types: |
| _check_cast_case((in_data, in_type, in_data, out_type)) |
| |
| out_types = [ |
| |
| pa.union([pa.field('a', pa.binary(10)), |
| pa.field('b', pa.string())], mode=pa.lib.UnionMode_DENSE), |
| pa.union([pa.field('a', pa.binary(10)), |
| pa.field('b', pa.string())], mode=pa.lib.UnionMode_SPARSE), |
| ] |
| in_arr = pa.array(in_data, type=pa.null()) |
| for out_type in out_types: |
| with pytest.raises(NotImplementedError): |
| in_arr.cast(out_type) |
| |
| |
| def test_cast_string_to_number_roundtrip(): |
| cases = [ |
| (pa.array(["1", "127", "-128"]), |
| pa.array([1, 127, -128], type=pa.int8())), |
| (pa.array([None, "18446744073709551615"]), |
| pa.array([None, 18446744073709551615], type=pa.uint64())), |
| ] |
| for in_arr, expected in cases: |
| casted = in_arr.cast(expected.type, safe=True) |
| casted.validate(full=True) |
| assert casted.equals(expected) |
| casted_back = casted.cast(in_arr.type, safe=True) |
| casted_back.validate(full=True) |
| assert casted_back.equals(in_arr) |
| |
| |
| def test_cast_dictionary(): |
| # cast to the value type |
| arr = pa.array( |
| ["foo", "bar", None], |
| type=pa.dictionary(pa.int64(), pa.string()) |
| ) |
| expected = pa.array(["foo", "bar", None]) |
| assert arr.type == pa.dictionary(pa.int64(), pa.string()) |
| assert arr.cast(pa.string()) == expected |
| |
| # cast to a different key type |
| for key_type in [pa.int8(), pa.int16(), pa.int32()]: |
| typ = pa.dictionary(key_type, pa.string()) |
| expected = pa.array( |
| ["foo", "bar", None], |
| type=pa.dictionary(key_type, pa.string()) |
| ) |
| assert arr.cast(typ) == expected |
| |
| # shouldn't crash (ARROW-7077) |
| with pytest.raises(pa.ArrowInvalid): |
| arr.cast(pa.int32()) |
| |
| |
| def test_view(): |
| # ARROW-5992 |
| arr = pa.array(['foo', 'bar', 'baz'], type=pa.utf8()) |
| expected = pa.array(['foo', 'bar', 'baz'], type=pa.binary()) |
| |
| assert arr.view(pa.binary()).equals(expected) |
| assert arr.view('binary').equals(expected) |
| |
| |
| def test_unique_simple(): |
| cases = [ |
| (pa.array([1, 2, 3, 1, 2, 3]), pa.array([1, 2, 3])), |
| (pa.array(['foo', None, 'bar', 'foo']), |
| pa.array(['foo', None, 'bar'])), |
| (pa.array(['foo', None, 'bar', 'foo'], pa.large_binary()), |
| pa.array(['foo', None, 'bar'], pa.large_binary())), |
| ] |
| for arr, expected in cases: |
| result = arr.unique() |
| assert result.equals(expected) |
| result = pa.chunked_array([arr]).unique() |
| assert result.equals(expected) |
| |
| |
| def test_value_counts_simple(): |
| cases = [ |
| (pa.array([1, 2, 3, 1, 2, 3]), |
| pa.array([1, 2, 3]), |
| pa.array([2, 2, 2], type=pa.int64())), |
| (pa.array(['foo', None, 'bar', 'foo']), |
| pa.array(['foo', None, 'bar']), |
| pa.array([2, 1, 1], type=pa.int64())), |
| (pa.array(['foo', None, 'bar', 'foo'], pa.large_binary()), |
| pa.array(['foo', None, 'bar'], pa.large_binary()), |
| pa.array([2, 1, 1], type=pa.int64())), |
| ] |
| for arr, expected_values, expected_counts in cases: |
| for arr_in in (arr, pa.chunked_array([arr])): |
| result = arr_in.value_counts() |
| assert result.type.equals( |
| pa.struct([pa.field("values", arr.type), |
| pa.field("counts", pa.int64())])) |
| assert result.field("values").equals(expected_values) |
| assert result.field("counts").equals(expected_counts) |
| |
| |
| def test_unique_value_counts_dictionary_type(): |
| indices = pa.array([3, 0, 0, 0, 1, 1, 3, 0, 1, 3, 0, 1]) |
| dictionary = pa.array(['foo', 'bar', 'baz', 'qux']) |
| |
| arr = pa.DictionaryArray.from_arrays(indices, dictionary) |
| |
| unique_result = arr.unique() |
| expected = pa.DictionaryArray.from_arrays(indices.unique(), dictionary) |
| assert unique_result.equals(expected) |
| |
| result = arr.value_counts() |
| assert result.field('values').equals(unique_result) |
| assert result.field('counts').equals(pa.array([3, 5, 4], type='int64')) |
| |
| arr = pa.DictionaryArray.from_arrays( |
| pa.array([], type='int64'), dictionary) |
| unique_result = arr.unique() |
| expected = pa.DictionaryArray.from_arrays(pa.array([], type='int64'), |
| pa.array([], type='utf8')) |
| assert unique_result.equals(expected) |
| |
| result = arr.value_counts() |
| assert result.field('values').equals(unique_result) |
| assert result.field('counts').equals(pa.array([], type='int64')) |
| |
| |
| def test_dictionary_encode_simple(): |
| cases = [ |
| (pa.array([1, 2, 3, None, 1, 2, 3]), |
| pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, 2, None, 0, 1, 2], type='int32'), |
| [1, 2, 3])), |
| (pa.array(['foo', None, 'bar', 'foo']), |
| pa.DictionaryArray.from_arrays( |
| pa.array([0, None, 1, 0], type='int32'), |
| ['foo', 'bar'])), |
| (pa.array(['foo', None, 'bar', 'foo'], type=pa.large_binary()), |
| pa.DictionaryArray.from_arrays( |
| pa.array([0, None, 1, 0], type='int32'), |
| pa.array(['foo', 'bar'], type=pa.large_binary()))), |
| ] |
| for arr, expected in cases: |
| result = arr.dictionary_encode() |
| assert result.equals(expected) |
| result = pa.chunked_array([arr]).dictionary_encode() |
| assert result.num_chunks == 1 |
| assert result.chunk(0).equals(expected) |
| result = pa.chunked_array([], type=arr.type).dictionary_encode() |
| assert result.num_chunks == 0 |
| assert result.type == expected.type |
| |
| |
| def test_dictionary_encode_sliced(): |
| cases = [ |
| (pa.array([1, 2, 3, None, 1, 2, 3])[1:-1], |
| pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, None, 2, 0], type='int32'), |
| [2, 3, 1])), |
| (pa.array([None, 'foo', 'bar', 'foo', 'xyzzy'])[1:-1], |
| pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, 0], type='int32'), |
| ['foo', 'bar'])), |
| (pa.array([None, 'foo', 'bar', 'foo', 'xyzzy'], |
| type=pa.large_string())[1:-1], |
| pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, 0], type='int32'), |
| pa.array(['foo', 'bar'], type=pa.large_string()))), |
| ] |
| for arr, expected in cases: |
| result = arr.dictionary_encode() |
| assert result.equals(expected) |
| result = pa.chunked_array([arr]).dictionary_encode() |
| assert result.num_chunks == 1 |
| assert result.type == expected.type |
| assert result.chunk(0).equals(expected) |
| result = pa.chunked_array([], type=arr.type).dictionary_encode() |
| assert result.num_chunks == 0 |
| assert result.type == expected.type |
| |
| # ARROW-9143 dictionary_encode after slice was segfaulting |
| array = pa.array(['foo', 'bar', 'baz']) |
| array.slice(1).dictionary_encode() |
| |
| |
| def test_dictionary_encode_zero_length(): |
| # User-facing experience of ARROW-7008 |
| arr = pa.array([], type=pa.string()) |
| encoded = arr.dictionary_encode() |
| assert len(encoded.dictionary) == 0 |
| encoded.validate(full=True) |
| |
| |
| def test_dictionary_decode(): |
| cases = [ |
| (pa.array([1, 2, 3, None, 1, 2, 3]), |
| pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, 2, None, 0, 1, 2], type='int32'), |
| [1, 2, 3])), |
| (pa.array(['foo', None, 'bar', 'foo']), |
| pa.DictionaryArray.from_arrays( |
| pa.array([0, None, 1, 0], type='int32'), |
| ['foo', 'bar'])), |
| (pa.array(['foo', None, 'bar', 'foo'], type=pa.large_binary()), |
| pa.DictionaryArray.from_arrays( |
| pa.array([0, None, 1, 0], type='int32'), |
| pa.array(['foo', 'bar'], type=pa.large_binary()))), |
| ] |
| for expected, arr in cases: |
| result = arr.dictionary_decode() |
| assert result.equals(expected) |
| |
| |
| def test_cast_time32_to_int(): |
| arr = pa.array(np.array([0, 1, 2], dtype='int32'), |
| type=pa.time32('s')) |
| expected = pa.array([0, 1, 2], type='i4') |
| |
| result = arr.cast('i4') |
| assert result.equals(expected) |
| |
| |
| def test_cast_time64_to_int(): |
| arr = pa.array(np.array([0, 1, 2], dtype='int64'), |
| type=pa.time64('us')) |
| expected = pa.array([0, 1, 2], type='i8') |
| |
| result = arr.cast('i8') |
| assert result.equals(expected) |
| |
| |
| def test_cast_timestamp_to_int(): |
| arr = pa.array(np.array([0, 1, 2], dtype='int64'), |
| type=pa.timestamp('us')) |
| expected = pa.array([0, 1, 2], type='i8') |
| |
| result = arr.cast('i8') |
| assert result.equals(expected) |
| |
| |
| def test_cast_date32_to_int(): |
| arr = pa.array([0, 1, 2], type='i4') |
| |
| result1 = arr.cast('date32') |
| result2 = result1.cast('i4') |
| |
| expected1 = pa.array([ |
| datetime.date(1970, 1, 1), |
| datetime.date(1970, 1, 2), |
| datetime.date(1970, 1, 3) |
| ]).cast('date32') |
| |
| assert result1.equals(expected1) |
| assert result2.equals(arr) |
| |
| |
| def test_cast_duration_to_int(): |
| arr = pa.array(np.array([0, 1, 2], dtype='int64'), |
| type=pa.duration('us')) |
| expected = pa.array([0, 1, 2], type='i8') |
| |
| result = arr.cast('i8') |
| assert result.equals(expected) |
| |
| |
| def test_cast_binary_to_utf8(): |
| binary_arr = pa.array([b'foo', b'bar', b'baz'], type=pa.binary()) |
| utf8_arr = binary_arr.cast(pa.utf8()) |
| expected = pa.array(['foo', 'bar', 'baz'], type=pa.utf8()) |
| |
| assert utf8_arr.equals(expected) |
| |
| non_utf8_values = [('mañana').encode('utf-16-le')] |
| non_utf8_binary = pa.array(non_utf8_values) |
| assert non_utf8_binary.type == pa.binary() |
| with pytest.raises(ValueError): |
| non_utf8_binary.cast(pa.string()) |
| |
| non_utf8_all_null = pa.array(non_utf8_values, mask=np.array([True]), |
| type=pa.binary()) |
| # No error |
| casted = non_utf8_all_null.cast(pa.string()) |
| assert casted.null_count == 1 |
| |
| |
| def test_cast_date64_to_int(): |
| arr = pa.array(np.array([0, 1, 2], dtype='int64'), |
| type=pa.date64()) |
| expected = pa.array([0, 1, 2], type='i8') |
| |
| result = arr.cast('i8') |
| |
| assert result.equals(expected) |
| |
| |
| def test_date64_from_builtin_datetime(): |
| val1 = datetime.datetime(2000, 1, 1, 12, 34, 56, 123456) |
| val2 = datetime.datetime(2000, 1, 1) |
| result = pa.array([val1, val2], type='date64') |
| result2 = pa.array([val1.date(), val2.date()], type='date64') |
| |
| assert result.equals(result2) |
| |
| as_i8 = result.view('int64') |
| assert as_i8[0].as_py() == as_i8[1].as_py() |
| |
| |
| @pytest.mark.parametrize(('ty', 'values'), [ |
| ('bool', [True, False, True]), |
| ('uint8', range(0, 255)), |
| ('int8', range(0, 128)), |
| ('uint16', range(0, 10)), |
| ('int16', range(0, 10)), |
| ('uint32', range(0, 10)), |
| ('int32', range(0, 10)), |
| ('uint64', range(0, 10)), |
| ('int64', range(0, 10)), |
| ('float', [0.0, 0.1, 0.2]), |
| ('double', [0.0, 0.1, 0.2]), |
| ('string', ['a', 'b', 'c']), |
| ('binary', [b'a', b'b', b'c']), |
| (pa.binary(3), [b'abc', b'bcd', b'cde']) |
| ]) |
| def test_cast_identities(ty, values): |
| arr = pa.array(values, type=ty) |
| assert arr.cast(ty).equals(arr) |
| |
| |
| pickle_test_parametrize = pytest.mark.parametrize( |
| ('data', 'typ'), |
| [ |
| ([True, False, True, True], pa.bool_()), |
| ([1, 2, 4, 6], pa.int64()), |
| ([1.0, 2.5, None], pa.float64()), |
| (['a', None, 'b'], pa.string()), |
| ([], None), |
| ([[1, 2], [3]], pa.list_(pa.int64())), |
| ([[4, 5], [6]], pa.large_list(pa.int16())), |
| ([['a'], None, ['b', 'c']], pa.list_(pa.string())), |
| ([(1, 'a'), (2, 'c'), None], |
| pa.struct([pa.field('a', pa.int64()), pa.field('b', pa.string())])) |
| ] |
| ) |
| |
| |
| @pickle_test_parametrize |
| def test_array_pickle(data, typ): |
| # Allocate here so that we don't have any Arrow data allocated. |
| # This is needed to ensure that allocator tests can be reliable. |
| array = pa.array(data, type=typ) |
| for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): |
| result = pickle.loads(pickle.dumps(array, proto)) |
| assert array.equals(result) |
| |
| |
| def test_array_pickle_dictionary(): |
| # not included in the above as dictionary array cannot be created with |
| # the pa.array function |
| array = pa.DictionaryArray.from_arrays([0, 1, 2, 0, 1], ['a', 'b', 'c']) |
| for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): |
| result = pickle.loads(pickle.dumps(array, proto)) |
| assert array.equals(result) |
| |
| |
| @h.given( |
| past.arrays( |
| past.all_types, |
| size=st.integers(min_value=0, max_value=10) |
| ) |
| ) |
| def test_pickling(arr): |
| data = pickle.dumps(arr) |
| restored = pickle.loads(data) |
| assert arr.equals(restored) |
| |
| |
| @pickle_test_parametrize |
| def test_array_pickle5(data, typ): |
| # Test zero-copy pickling with protocol 5 (PEP 574) |
| picklemod = pickle5 or pickle |
| if pickle5 is None and picklemod.HIGHEST_PROTOCOL < 5: |
| pytest.skip("need pickle5 package or Python 3.8+") |
| |
| array = pa.array(data, type=typ) |
| addresses = [buf.address if buf is not None else 0 |
| for buf in array.buffers()] |
| |
| for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): |
| buffers = [] |
| pickled = picklemod.dumps(array, proto, buffer_callback=buffers.append) |
| result = picklemod.loads(pickled, buffers=buffers) |
| assert array.equals(result) |
| |
| result_addresses = [buf.address if buf is not None else 0 |
| for buf in result.buffers()] |
| assert result_addresses == addresses |
| |
| |
| @pytest.mark.parametrize( |
| 'narr', |
| [ |
| np.arange(10, dtype=np.int64), |
| np.arange(10, dtype=np.int32), |
| np.arange(10, dtype=np.int16), |
| np.arange(10, dtype=np.int8), |
| np.arange(10, dtype=np.uint64), |
| np.arange(10, dtype=np.uint32), |
| np.arange(10, dtype=np.uint16), |
| np.arange(10, dtype=np.uint8), |
| np.arange(10, dtype=np.float64), |
| np.arange(10, dtype=np.float32), |
| np.arange(10, dtype=np.float16), |
| ] |
| ) |
| def test_to_numpy_roundtrip(narr): |
| arr = pa.array(narr) |
| assert narr.dtype == arr.to_numpy().dtype |
| np.testing.assert_array_equal(narr, arr.to_numpy()) |
| np.testing.assert_array_equal(narr[:6], arr[:6].to_numpy()) |
| np.testing.assert_array_equal(narr[2:], arr[2:].to_numpy()) |
| np.testing.assert_array_equal(narr[2:6], arr[2:6].to_numpy()) |
| |
| |
| def test_array_uint64_from_py_over_range(): |
| arr = pa.array([2 ** 63], type=pa.uint64()) |
| expected = pa.array(np.array([2 ** 63], dtype='u8')) |
| assert arr.equals(expected) |
| |
| |
| def test_array_conversions_no_sentinel_values(): |
| arr = np.array([1, 2, 3, 4], dtype='int8') |
| refcount = sys.getrefcount(arr) |
| arr2 = pa.array(arr) # noqa |
| assert sys.getrefcount(arr) == (refcount + 1) |
| |
| assert arr2.type == 'int8' |
| |
| arr3 = pa.array(np.array([1, np.nan, 2, 3, np.nan, 4], dtype='float32'), |
| type='float32') |
| assert arr3.type == 'float32' |
| assert arr3.null_count == 0 |
| |
| |
| def test_time32_time64_from_integer(): |
| # ARROW-4111 |
| result = pa.array([1, 2, None], type=pa.time32('s')) |
| expected = pa.array([datetime.time(second=1), |
| datetime.time(second=2), None], |
| type=pa.time32('s')) |
| assert result.equals(expected) |
| |
| result = pa.array([1, 2, None], type=pa.time32('ms')) |
| expected = pa.array([datetime.time(microsecond=1000), |
| datetime.time(microsecond=2000), None], |
| type=pa.time32('ms')) |
| assert result.equals(expected) |
| |
| result = pa.array([1, 2, None], type=pa.time64('us')) |
| expected = pa.array([datetime.time(microsecond=1), |
| datetime.time(microsecond=2), None], |
| type=pa.time64('us')) |
| assert result.equals(expected) |
| |
| result = pa.array([1000, 2000, None], type=pa.time64('ns')) |
| expected = pa.array([datetime.time(microsecond=1), |
| datetime.time(microsecond=2), None], |
| type=pa.time64('ns')) |
| assert result.equals(expected) |
| |
| |
| def test_binary_string_pandas_null_sentinels(): |
| # ARROW-6227 |
| def _check_case(ty): |
| arr = pa.array(['string', np.nan], type=ty, from_pandas=True) |
| expected = pa.array(['string', None], type=ty) |
| assert arr.equals(expected) |
| _check_case('binary') |
| _check_case('utf8') |
| |
| |
| def test_pandas_null_sentinels_raise_error(): |
| # ARROW-6227 |
| cases = [ |
| ([None, np.nan], 'null'), |
| (['string', np.nan], 'binary'), |
| (['string', np.nan], 'utf8'), |
| (['string', np.nan], 'large_binary'), |
| (['string', np.nan], 'large_utf8'), |
| ([b'string', np.nan], pa.binary(6)), |
| ([True, np.nan], pa.bool_()), |
| ([decimal.Decimal('0'), np.nan], pa.decimal128(12, 2)), |
| ([0, np.nan], pa.date32()), |
| ([0, np.nan], pa.date32()), |
| ([0, np.nan], pa.date64()), |
| ([0, np.nan], pa.time32('s')), |
| ([0, np.nan], pa.time64('us')), |
| ([0, np.nan], pa.timestamp('us')), |
| ([0, np.nan], pa.duration('us')), |
| ] |
| for case, ty in cases: |
| # Both types of exceptions are raised. May want to clean that up |
| with pytest.raises((ValueError, TypeError)): |
| pa.array(case, type=ty) |
| |
| # from_pandas option suppresses failure |
| result = pa.array(case, type=ty, from_pandas=True) |
| assert result.null_count == (1 if ty != 'null' else 2) |
| |
| |
| @pytest.mark.pandas |
| def test_pandas_null_sentinels_index(): |
| # ARROW-7023 - ensure that when passing a pandas Index, "from_pandas" |
| # semantics are used |
| import pandas as pd |
| idx = pd.Index([1, 2, np.nan], dtype=object) |
| result = pa.array(idx) |
| expected = pa.array([1, 2, np.nan], from_pandas=True) |
| assert result.equals(expected) |
| |
| |
| def test_array_roundtrip_from_numpy_datetimeD(): |
| arr = np.array([None, datetime.date(2017, 4, 4)], dtype='datetime64[D]') |
| |
| result = pa.array(arr) |
| expected = pa.array([None, datetime.date(2017, 4, 4)], type=pa.date32()) |
| assert result.equals(expected) |
| result = result.to_numpy(zero_copy_only=False) |
| np.testing.assert_array_equal(result, arr) |
| assert result.dtype == arr.dtype |
| |
| |
| def test_array_from_naive_datetimes(): |
| arr = pa.array([ |
| None, |
| datetime.datetime(2017, 4, 4, 12, 11, 10), |
| datetime.datetime(2018, 1, 1, 0, 2, 0) |
| ]) |
| assert arr.type == pa.timestamp('us', tz=None) |
| |
| |
| @pytest.mark.parametrize(('dtype', 'type'), [ |
| ('datetime64[s]', pa.timestamp('s')), |
| ('datetime64[ms]', pa.timestamp('ms')), |
| ('datetime64[us]', pa.timestamp('us')), |
| ('datetime64[ns]', pa.timestamp('ns')) |
| ]) |
| def test_array_from_numpy_datetime(dtype, type): |
| data = [ |
| None, |
| datetime.datetime(2017, 4, 4, 12, 11, 10), |
| datetime.datetime(2018, 1, 1, 0, 2, 0) |
| ] |
| |
| # from numpy array |
| arr = pa.array(np.array(data, dtype=dtype)) |
| expected = pa.array(data, type=type) |
| assert arr.equals(expected) |
| |
| # from list of numpy scalars |
| arr = pa.array(list(np.array(data, dtype=dtype))) |
| assert arr.equals(expected) |
| |
| |
| def test_array_from_different_numpy_datetime_units_raises(): |
| data = [ |
| None, |
| datetime.datetime(2017, 4, 4, 12, 11, 10), |
| datetime.datetime(2018, 1, 1, 0, 2, 0) |
| ] |
| s = np.array(data, dtype='datetime64[s]') |
| ms = np.array(data, dtype='datetime64[ms]') |
| data = list(s[:2]) + list(ms[2:]) |
| |
| with pytest.raises(pa.ArrowNotImplementedError): |
| pa.array(data) |
| |
| |
| @pytest.mark.parametrize('unit', ['ns', 'us', 'ms', 's']) |
| def test_array_from_list_of_timestamps(unit): |
| n = np.datetime64('NaT', unit) |
| x = np.datetime64('2017-01-01 01:01:01.111111111', unit) |
| y = np.datetime64('2018-11-22 12:24:48.111111111', unit) |
| |
| a1 = pa.array([n, x, y]) |
| a2 = pa.array([n, x, y], type=pa.timestamp(unit)) |
| |
| assert a1.type == a2.type |
| assert a1.type.unit == unit |
| assert a1[0] == a2[0] |
| |
| |
| def test_array_from_timestamp_with_generic_unit(): |
| n = np.datetime64('NaT') |
| x = np.datetime64('2017-01-01 01:01:01.111111111') |
| y = np.datetime64('2018-11-22 12:24:48.111111111') |
| |
| with pytest.raises(pa.ArrowNotImplementedError, |
| match='Unbound or generic datetime64 time unit'): |
| pa.array([n, x, y]) |
| |
| |
| @pytest.mark.parametrize(('dtype', 'type'), [ |
| ('timedelta64[s]', pa.duration('s')), |
| ('timedelta64[ms]', pa.duration('ms')), |
| ('timedelta64[us]', pa.duration('us')), |
| ('timedelta64[ns]', pa.duration('ns')) |
| ]) |
| def test_array_from_numpy_timedelta(dtype, type): |
| data = [ |
| None, |
| datetime.timedelta(1), |
| datetime.timedelta(0, 1) |
| ] |
| |
| # from numpy array |
| np_arr = np.array(data, dtype=dtype) |
| arr = pa.array(np_arr) |
| assert isinstance(arr, pa.DurationArray) |
| assert arr.type == type |
| expected = pa.array(data, type=type) |
| assert arr.equals(expected) |
| assert arr.to_pylist() == data |
| |
| # from list of numpy scalars |
| arr = pa.array(list(np.array(data, dtype=dtype))) |
| assert arr.equals(expected) |
| assert arr.to_pylist() == data |
| |
| |
| def test_array_from_numpy_timedelta_incorrect_unit(): |
| # generic (no unit) |
| td = np.timedelta64(1) |
| |
| for data in [[td], np.array([td])]: |
| with pytest.raises(NotImplementedError): |
| pa.array(data) |
| |
| # unsupported unit |
| td = np.timedelta64(1, 'M') |
| for data in [[td], np.array([td])]: |
| with pytest.raises(NotImplementedError): |
| pa.array(data) |
| |
| |
| def test_array_from_numpy_ascii(): |
| arr = np.array(['abcde', 'abc', ''], dtype='|S5') |
| |
| arrow_arr = pa.array(arr) |
| assert arrow_arr.type == 'binary' |
| expected = pa.array(['abcde', 'abc', ''], type='binary') |
| assert arrow_arr.equals(expected) |
| |
| mask = np.array([False, True, False]) |
| arrow_arr = pa.array(arr, mask=mask) |
| expected = pa.array(['abcde', None, ''], type='binary') |
| assert arrow_arr.equals(expected) |
| |
| # Strided variant |
| arr = np.array(['abcde', 'abc', ''] * 5, dtype='|S5')[::2] |
| mask = np.array([False, True, False] * 5)[::2] |
| arrow_arr = pa.array(arr, mask=mask) |
| |
| expected = pa.array(['abcde', '', None, 'abcde', '', None, 'abcde', ''], |
| type='binary') |
| assert arrow_arr.equals(expected) |
| |
| # 0 itemsize |
| arr = np.array(['', '', ''], dtype='|S0') |
| arrow_arr = pa.array(arr) |
| expected = pa.array(['', '', ''], type='binary') |
| assert arrow_arr.equals(expected) |
| |
| |
| def test_interval_array_from_timedelta(): |
| data = [ |
| None, |
| datetime.timedelta(days=1, seconds=1, microseconds=1, |
| milliseconds=1, minutes=1, hours=1, weeks=1)] |
| |
| # From timedelta (explicit type required) |
| arr = pa.array(data, pa.month_day_nano_interval()) |
| assert isinstance(arr, pa.MonthDayNanoIntervalArray) |
| assert arr.type == pa.month_day_nano_interval() |
| expected_list = [ |
| None, |
| pa.MonthDayNano([0, 8, |
| (datetime.timedelta(seconds=1, microseconds=1, |
| milliseconds=1, minutes=1, |
| hours=1) // |
| datetime.timedelta(microseconds=1)) * 1000])] |
| expected = pa.array(expected_list) |
| assert arr.equals(expected) |
| assert arr.to_pylist() == expected_list |
| |
| |
| @pytest.mark.pandas |
| def test_interval_array_from_relativedelta(): |
| # dateutil is dependency of pandas |
| from dateutil.relativedelta import relativedelta |
| from pandas import DateOffset |
| data = [ |
| None, |
| relativedelta(years=1, months=1, |
| days=1, seconds=1, microseconds=1, |
| minutes=1, hours=1, weeks=1, leapdays=1)] |
| # Note leapdays are ignored. |
| |
| # From relativedelta |
| arr = pa.array(data) |
| assert isinstance(arr, pa.MonthDayNanoIntervalArray) |
| assert arr.type == pa.month_day_nano_interval() |
| expected_list = [ |
| None, |
| pa.MonthDayNano([13, 8, |
| (datetime.timedelta(seconds=1, microseconds=1, |
| minutes=1, hours=1) // |
| datetime.timedelta(microseconds=1)) * 1000])] |
| expected = pa.array(expected_list) |
| assert arr.equals(expected) |
| assert arr.to_pandas().tolist() == [ |
| None, DateOffset(months=13, days=8, |
| microseconds=( |
| datetime.timedelta(seconds=1, microseconds=1, |
| minutes=1, hours=1) // |
| datetime.timedelta(microseconds=1)), |
| nanoseconds=0)] |
| with pytest.raises(ValueError): |
| pa.array([DateOffset(years=((1 << 32) // 12), months=100)]) |
| with pytest.raises(ValueError): |
| pa.array([DateOffset(weeks=((1 << 32) // 7), days=100)]) |
| with pytest.raises(ValueError): |
| pa.array([DateOffset(seconds=((1 << 64) // 1000000000), |
| nanoseconds=1)]) |
| with pytest.raises(ValueError): |
| pa.array([DateOffset(microseconds=((1 << 64) // 100))]) |
| |
| |
| def test_interval_array_from_tuple(): |
| data = [None, (1, 2, -3)] |
| |
| # From timedelta (explicit type required) |
| arr = pa.array(data, pa.month_day_nano_interval()) |
| assert isinstance(arr, pa.MonthDayNanoIntervalArray) |
| assert arr.type == pa.month_day_nano_interval() |
| expected_list = [ |
| None, |
| pa.MonthDayNano([1, 2, -3])] |
| expected = pa.array(expected_list) |
| assert arr.equals(expected) |
| assert arr.to_pylist() == expected_list |
| |
| |
| @pytest.mark.pandas |
| def test_interval_array_from_dateoffset(): |
| from pandas.tseries.offsets import DateOffset |
| data = [ |
| None, |
| DateOffset(years=1, months=1, |
| days=1, seconds=1, microseconds=1, |
| minutes=1, hours=1, weeks=1, nanoseconds=1), |
| DateOffset()] |
| |
| arr = pa.array(data) |
| assert isinstance(arr, pa.MonthDayNanoIntervalArray) |
| assert arr.type == pa.month_day_nano_interval() |
| expected_list = [ |
| None, |
| pa.MonthDayNano([13, 8, 3661000001001]), |
| pa.MonthDayNano([0, 0, 0])] |
| expected = pa.array(expected_list) |
| assert arr.equals(expected) |
| expected_from_pandas = [ |
| None, DateOffset(months=13, days=8, |
| microseconds=( |
| datetime.timedelta(seconds=1, microseconds=1, |
| minutes=1, hours=1) // |
| datetime.timedelta(microseconds=1)), |
| nanoseconds=1), |
| DateOffset(months=0, days=0, microseconds=0, nanoseconds=0)] |
| |
| assert arr.to_pandas().tolist() == expected_from_pandas |
| |
| # nested list<interval> array conversion |
| actual_list = pa.array([data]).to_pandas().tolist() |
| assert len(actual_list) == 1 |
| assert list(actual_list[0]) == expected_from_pandas |
| |
| |
| def test_array_from_numpy_unicode(): |
| dtypes = ['<U5', '>U5'] |
| |
| for dtype in dtypes: |
| arr = np.array(['abcde', 'abc', ''], dtype=dtype) |
| |
| arrow_arr = pa.array(arr) |
| assert arrow_arr.type == 'utf8' |
| expected = pa.array(['abcde', 'abc', ''], type='utf8') |
| assert arrow_arr.equals(expected) |
| |
| mask = np.array([False, True, False]) |
| arrow_arr = pa.array(arr, mask=mask) |
| expected = pa.array(['abcde', None, ''], type='utf8') |
| assert arrow_arr.equals(expected) |
| |
| # Strided variant |
| arr = np.array(['abcde', 'abc', ''] * 5, dtype=dtype)[::2] |
| mask = np.array([False, True, False] * 5)[::2] |
| arrow_arr = pa.array(arr, mask=mask) |
| |
| expected = pa.array(['abcde', '', None, 'abcde', '', None, |
| 'abcde', ''], type='utf8') |
| assert arrow_arr.equals(expected) |
| |
| # 0 itemsize |
| arr = np.array(['', '', ''], dtype='<U0') |
| arrow_arr = pa.array(arr) |
| expected = pa.array(['', '', ''], type='utf8') |
| assert arrow_arr.equals(expected) |
| |
| |
| def test_array_string_from_non_string(): |
| # ARROW-5682 - when converting to string raise on non string-like dtype |
| with pytest.raises(TypeError): |
| pa.array(np.array([1, 2, 3]), type=pa.string()) |
| |
| |
| def test_array_string_from_all_null(): |
| # ARROW-5682 |
| vals = np.array([None, None], dtype=object) |
| arr = pa.array(vals, type=pa.string()) |
| assert arr.null_count == 2 |
| |
| vals = np.array([np.nan, np.nan], dtype='float64') |
| # by default raises, but accept as all-null when from_pandas=True |
| with pytest.raises(TypeError): |
| pa.array(vals, type=pa.string()) |
| arr = pa.array(vals, type=pa.string(), from_pandas=True) |
| assert arr.null_count == 2 |
| |
| |
| def test_array_from_masked(): |
| ma = np.ma.array([1, 2, 3, 4], dtype='int64', |
| mask=[False, False, True, False]) |
| result = pa.array(ma) |
| expected = pa.array([1, 2, None, 4], type='int64') |
| assert expected.equals(result) |
| |
| with pytest.raises(ValueError, match="Cannot pass a numpy masked array"): |
| pa.array(ma, mask=np.array([True, False, False, False])) |
| |
| |
| def test_array_from_shrunken_masked(): |
| ma = np.ma.array([0], dtype='int64') |
| result = pa.array(ma) |
| expected = pa.array([0], type='int64') |
| assert expected.equals(result) |
| |
| |
| def test_array_from_invalid_dim_raises(): |
| msg = "only handle 1-dimensional arrays" |
| arr2d = np.array([[1, 2, 3], [4, 5, 6]]) |
| with pytest.raises(ValueError, match=msg): |
| pa.array(arr2d) |
| |
| arr0d = np.array(0) |
| with pytest.raises(ValueError, match=msg): |
| pa.array(arr0d) |
| |
| |
| def test_array_from_strided_bool(): |
| # ARROW-6325 |
| arr = np.ones((3, 2), dtype=bool) |
| result = pa.array(arr[:, 0]) |
| expected = pa.array([True, True, True]) |
| assert result.equals(expected) |
| result = pa.array(arr[0, :]) |
| expected = pa.array([True, True]) |
| assert result.equals(expected) |
| |
| |
| def test_array_from_strided(): |
| pydata = [ |
| ([b"ab", b"cd", b"ef"], (pa.binary(), pa.binary(2))), |
| ([1, 2, 3], (pa.int8(), pa.int16(), pa.int32(), pa.int64())), |
| ([1.0, 2.0, 3.0], (pa.float32(), pa.float64())), |
| (["ab", "cd", "ef"], (pa.utf8(), )) |
| ] |
| |
| for values, dtypes in pydata: |
| nparray = np.array(values) |
| for patype in dtypes: |
| for mask in (None, np.array([False, False])): |
| arrow_array = pa.array(nparray[::2], patype, |
| mask=mask) |
| assert values[::2] == arrow_array.to_pylist() |
| |
| |
| def test_boolean_true_count_false_count(): |
| # ARROW-9145 |
| arr = pa.array([True, True, None, False, None, True] * 1000) |
| assert arr.true_count == 3000 |
| assert arr.false_count == 1000 |
| |
| |
| def test_buffers_primitive(): |
| a = pa.array([1, 2, None, 4], type=pa.int16()) |
| buffers = a.buffers() |
| assert len(buffers) == 2 |
| null_bitmap = buffers[0].to_pybytes() |
| assert 1 <= len(null_bitmap) <= 64 # XXX this is varying |
| assert bytearray(null_bitmap)[0] == 0b00001011 |
| |
| # Slicing does not affect the buffers but the offset |
| a_sliced = a[1:] |
| buffers = a_sliced.buffers() |
| a_sliced.offset == 1 |
| assert len(buffers) == 2 |
| null_bitmap = buffers[0].to_pybytes() |
| assert 1 <= len(null_bitmap) <= 64 # XXX this is varying |
| assert bytearray(null_bitmap)[0] == 0b00001011 |
| |
| assert struct.unpack('hhxxh', buffers[1].to_pybytes()) == (1, 2, 4) |
| |
| a = pa.array(np.int8([4, 5, 6])) |
| buffers = a.buffers() |
| assert len(buffers) == 2 |
| # No null bitmap from Numpy int array |
| assert buffers[0] is None |
| assert struct.unpack('3b', buffers[1].to_pybytes()) == (4, 5, 6) |
| |
| a = pa.array([b'foo!', None, b'bar!!']) |
| buffers = a.buffers() |
| assert len(buffers) == 3 |
| null_bitmap = buffers[0].to_pybytes() |
| assert bytearray(null_bitmap)[0] == 0b00000101 |
| offsets = buffers[1].to_pybytes() |
| assert struct.unpack('4i', offsets) == (0, 4, 4, 9) |
| values = buffers[2].to_pybytes() |
| assert values == b'foo!bar!!' |
| |
| |
| def test_buffers_nested(): |
| a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64())) |
| buffers = a.buffers() |
| assert len(buffers) == 4 |
| # The parent buffers |
| null_bitmap = buffers[0].to_pybytes() |
| assert bytearray(null_bitmap)[0] == 0b00000101 |
| offsets = buffers[1].to_pybytes() |
| assert struct.unpack('4i', offsets) == (0, 2, 2, 6) |
| # The child buffers |
| null_bitmap = buffers[2].to_pybytes() |
| assert bytearray(null_bitmap)[0] == 0b00110111 |
| values = buffers[3].to_pybytes() |
| assert struct.unpack('qqq8xqq', values) == (1, 2, 3, 4, 5) |
| |
| a = pa.array([(42, None), None, (None, 43)], |
| type=pa.struct([pa.field('a', pa.int8()), |
| pa.field('b', pa.int16())])) |
| buffers = a.buffers() |
| assert len(buffers) == 5 |
| # The parent buffer |
| null_bitmap = buffers[0].to_pybytes() |
| assert bytearray(null_bitmap)[0] == 0b00000101 |
| # The child buffers: 'a' |
| null_bitmap = buffers[1].to_pybytes() |
| assert bytearray(null_bitmap)[0] == 0b00000011 |
| values = buffers[2].to_pybytes() |
| assert struct.unpack('bxx', values) == (42,) |
| # The child buffers: 'b' |
| null_bitmap = buffers[3].to_pybytes() |
| assert bytearray(null_bitmap)[0] == 0b00000110 |
| values = buffers[4].to_pybytes() |
| assert struct.unpack('4xh', values) == (43,) |
| |
| |
| def test_total_buffer_size(): |
| a = pa.array(np.array([4, 5, 6], dtype='int64')) |
| assert a.nbytes == 8 * 3 |
| assert a.get_total_buffer_size() == 8 * 3 |
| assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes |
| a = pa.array([1, None, 3], type='int64') |
| assert a.nbytes == 8*3 + 1 |
| assert a.get_total_buffer_size() == 8*3 + 1 |
| assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes |
| a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64())) |
| assert a.nbytes == 62 |
| assert a.get_total_buffer_size() == 1 + 4 * 4 + 1 + 6 * 8 |
| assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes |
| a = pa.array([[[5, 6, 7]], [[9, 10]]], type=pa.list_(pa.list_(pa.int8()))) |
| assert a.get_total_buffer_size() == (4 * 3) + (4 * 3) + (1 * 5) |
| assert a.nbytes == 21 |
| a = pa.array([[[1, 2], [3, 4]], [[5, 6, 7], None, [8]], [[9, 10]]], |
| type=pa.list_(pa.list_(pa.int8()))) |
| a1 = a.slice(1, 2) |
| assert a1.nbytes == (4 * 2) + 1 + (4 * 4) + (1 * 6) |
| assert a1.get_total_buffer_size() == (4 * 4) + 1 + (4 * 7) + (1 * 10) |
| |
| |
| def test_nbytes_size(): |
| a = pa.chunked_array([pa.array([1, None, 3], type=pa.int16()), |
| pa.array([4, 5, 6], type=pa.int16())]) |
| assert a.nbytes == 13 |
| |
| |
| def test_invalid_tensor_constructor_repr(): |
| # ARROW-2638: prevent calling extension class constructors directly |
| with pytest.raises(TypeError): |
| repr(pa.Tensor([1])) |
| |
| |
| def test_invalid_tensor_construction(): |
| with pytest.raises(TypeError): |
| pa.Tensor() |
| |
| |
| @pytest.mark.parametrize(('offset_type', 'list_type_factory'), |
| [(pa.int32(), pa.list_), (pa.int64(), pa.large_list)]) |
| def test_list_array_flatten(offset_type, list_type_factory): |
| typ2 = list_type_factory( |
| list_type_factory( |
| pa.int64() |
| ) |
| ) |
| arr2 = pa.array([ |
| None, |
| [ |
| [1, None, 2], |
| None, |
| [3, 4] |
| ], |
| [], |
| [ |
| [], |
| [5, 6], |
| None |
| ], |
| [ |
| [7, 8] |
| ] |
| ], type=typ2) |
| offsets2 = pa.array([0, 0, 3, 3, 6, 7], type=offset_type) |
| |
| typ1 = list_type_factory(pa.int64()) |
| arr1 = pa.array([ |
| [1, None, 2], |
| None, |
| [3, 4], |
| [], |
| [5, 6], |
| None, |
| [7, 8] |
| ], type=typ1) |
| offsets1 = pa.array([0, 3, 3, 5, 5, 7, 7, 9], type=offset_type) |
| |
| arr0 = pa.array([ |
| 1, None, 2, |
| 3, 4, |
| 5, 6, |
| 7, 8 |
| ], type=pa.int64()) |
| |
| assert arr2.flatten().equals(arr1) |
| assert arr2.offsets.equals(offsets2) |
| assert arr2.values.equals(arr1) |
| assert arr1.flatten().equals(arr0) |
| assert arr1.offsets.equals(offsets1) |
| assert arr1.values.equals(arr0) |
| assert arr2.flatten().flatten().equals(arr0) |
| assert arr2.values.values.equals(arr0) |
| |
| |
| @pytest.mark.parametrize('list_type', [ |
| pa.list_(pa.int32()), |
| pa.list_(pa.int32(), list_size=2), |
| pa.large_list(pa.int32())]) |
| def test_list_value_parent_indices(list_type): |
| arr = pa.array( |
| [ |
| [0, 1], |
| None, |
| [None, None], |
| [3, 4] |
| ], type=list_type) |
| expected = pa.array([0, 0, 2, 2, 3, 3], type=pa.int64()) |
| assert arr.value_parent_indices().equals(expected) |
| |
| |
| @pytest.mark.parametrize(('offset_type', 'list_type'), |
| [(pa.int32(), pa.list_(pa.int32())), |
| (pa.int32(), pa.list_(pa.int32(), list_size=2)), |
| (pa.int64(), pa.large_list(pa.int32()))]) |
| def test_list_value_lengths(offset_type, list_type): |
| |
| # FixedSizeListArray needs fixed list sizes |
| if getattr(list_type, "list_size", None): |
| arr = pa.array( |
| [ |
| [0, 1], |
| None, |
| [None, None], |
| [3, 4] |
| ], type=list_type) |
| expected = pa.array([2, None, 2, 2], type=offset_type) |
| |
| # Otherwise create variable list sizes |
| else: |
| arr = pa.array( |
| [ |
| [0, 1, 2], |
| None, |
| [], |
| [3, 4] |
| ], type=list_type) |
| expected = pa.array([3, None, 0, 2], type=offset_type) |
| assert arr.value_lengths().equals(expected) |
| |
| |
| @pytest.mark.parametrize('list_type_factory', [pa.list_, pa.large_list]) |
| def test_list_array_flatten_non_canonical(list_type_factory): |
| # Non-canonical list array (null elements backed by non-empty sublists) |
| typ = list_type_factory(pa.int64()) |
| arr = pa.array([[1], [2, 3], [4, 5, 6]], type=typ) |
| buffers = arr.buffers()[:2] |
| buffers[0] = pa.py_buffer(b"\x05") # validity bitmap |
| arr = arr.from_buffers(arr.type, len(arr), buffers, children=[arr.values]) |
| assert arr.to_pylist() == [[1], None, [4, 5, 6]] |
| assert arr.offsets.to_pylist() == [0, 1, 3, 6] |
| |
| flattened = arr.flatten() |
| flattened.validate(full=True) |
| assert flattened.type == typ.value_type |
| assert flattened.to_pylist() == [1, 4, 5, 6] |
| |
| # .values is the physical values array (including masked elements) |
| assert arr.values.to_pylist() == [1, 2, 3, 4, 5, 6] |
| |
| |
| @pytest.mark.parametrize('klass', [pa.ListArray, pa.LargeListArray]) |
| def test_list_array_values_offsets_sliced(klass): |
| # ARROW-7301 |
| arr = klass.from_arrays(offsets=[0, 3, 4, 6], values=[1, 2, 3, 4, 5, 6]) |
| assert arr.values.to_pylist() == [1, 2, 3, 4, 5, 6] |
| assert arr.offsets.to_pylist() == [0, 3, 4, 6] |
| |
| # sliced -> values keeps referring to full values buffer, but offsets is |
| # sliced as well so the offsets correctly point into the full values array |
| # sliced -> flatten() will return the sliced value array. |
| arr2 = arr[1:] |
| assert arr2.values.to_pylist() == [1, 2, 3, 4, 5, 6] |
| assert arr2.offsets.to_pylist() == [3, 4, 6] |
| assert arr2.flatten().to_pylist() == [4, 5, 6] |
| i = arr2.offsets[0].as_py() |
| j = arr2.offsets[1].as_py() |
| assert arr2[0].as_py() == arr2.values[i:j].to_pylist() == [4] |
| |
| |
| def test_fixed_size_list_array_flatten(): |
| typ2 = pa.list_(pa.list_(pa.int64(), 2), 3) |
| arr2 = pa.array([ |
| [ |
| [1, 2], |
| [3, 4], |
| [5, 6], |
| ], |
| None, |
| [ |
| [7, None], |
| None, |
| [8, 9] |
| ], |
| ], type=typ2) |
| assert arr2.type.equals(typ2) |
| |
| typ1 = pa.list_(pa.int64(), 2) |
| arr1 = pa.array([ |
| [1, 2], [3, 4], [5, 6], |
| [7, None], None, [8, 9] |
| ], type=typ1) |
| assert arr1.type.equals(typ1) |
| assert arr2.flatten().equals(arr1) |
| |
| typ0 = pa.int64() |
| arr0 = pa.array([ |
| 1, 2, 3, 4, 5, 6, 7, None, 8, 9, |
| ], type=typ0) |
| assert arr0.type.equals(typ0) |
| assert arr1.flatten().equals(arr0) |
| assert arr2.flatten().flatten().equals(arr0) |
| |
| |
| def test_fixed_size_list_array_flatten_with_slice(): |
| array = pa.array([[1], [2], [3]], |
| type=pa.list_(pa.float64(), list_size=1)) |
| assert array[2:].flatten() == pa.array([3], type=pa.float64()) |
| |
| |
| def test_map_array_values_offsets(): |
| ty = pa.map_(pa.utf8(), pa.int32()) |
| ty_values = pa.struct([pa.field("key", pa.utf8(), nullable=False), |
| pa.field("value", pa.int32())]) |
| a = pa.array([[('a', 1), ('b', 2)], [('c', 3)]], type=ty) |
| |
| assert a.values.type.equals(ty_values) |
| assert a.values == pa.array([ |
| {'key': 'a', 'value': 1}, |
| {'key': 'b', 'value': 2}, |
| {'key': 'c', 'value': 3}, |
| ], type=ty_values) |
| assert a.keys.equals(pa.array(['a', 'b', 'c'])) |
| assert a.items.equals(pa.array([1, 2, 3], type=pa.int32())) |
| |
| assert pa.ListArray.from_arrays(a.offsets, a.keys).equals( |
| pa.array([['a', 'b'], ['c']])) |
| assert pa.ListArray.from_arrays(a.offsets, a.items).equals( |
| pa.array([[1, 2], [3]], type=pa.list_(pa.int32()))) |
| |
| with pytest.raises(NotImplementedError): |
| a.flatten() |
| |
| |
| def test_struct_array_flatten(): |
| ty = pa.struct([pa.field('x', pa.int16()), |
| pa.field('y', pa.float32())]) |
| a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) |
| xs, ys = a.flatten() |
| assert xs.type == pa.int16() |
| assert ys.type == pa.float32() |
| assert xs.to_pylist() == [1, 3, 5] |
| assert ys.to_pylist() == [2.5, 4.5, 6.5] |
| xs, ys = a[1:].flatten() |
| assert xs.to_pylist() == [3, 5] |
| assert ys.to_pylist() == [4.5, 6.5] |
| |
| a = pa.array([(1, 2.5), None, (3, 4.5)], type=ty) |
| xs, ys = a.flatten() |
| assert xs.to_pylist() == [1, None, 3] |
| assert ys.to_pylist() == [2.5, None, 4.5] |
| xs, ys = a[1:].flatten() |
| assert xs.to_pylist() == [None, 3] |
| assert ys.to_pylist() == [None, 4.5] |
| |
| a = pa.array([(1, None), (2, 3.5), (None, 4.5)], type=ty) |
| xs, ys = a.flatten() |
| assert xs.to_pylist() == [1, 2, None] |
| assert ys.to_pylist() == [None, 3.5, 4.5] |
| xs, ys = a[1:].flatten() |
| assert xs.to_pylist() == [2, None] |
| assert ys.to_pylist() == [3.5, 4.5] |
| |
| a = pa.array([(1, None), None, (None, 2.5)], type=ty) |
| xs, ys = a.flatten() |
| assert xs.to_pylist() == [1, None, None] |
| assert ys.to_pylist() == [None, None, 2.5] |
| xs, ys = a[1:].flatten() |
| assert xs.to_pylist() == [None, None] |
| assert ys.to_pylist() == [None, 2.5] |
| |
| |
| def test_struct_array_field(): |
| ty = pa.struct([pa.field('x', pa.int16()), |
| pa.field('y', pa.float32())]) |
| a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) |
| |
| x0 = a.field(0) |
| y0 = a.field(1) |
| x1 = a.field(-2) |
| y1 = a.field(-1) |
| x2 = a.field('x') |
| y2 = a.field('y') |
| |
| assert isinstance(x0, pa.lib.Int16Array) |
| assert isinstance(y1, pa.lib.FloatArray) |
| assert x0.equals(pa.array([1, 3, 5], type=pa.int16())) |
| assert y0.equals(pa.array([2.5, 4.5, 6.5], type=pa.float32())) |
| assert x0.equals(x1) |
| assert x0.equals(x2) |
| assert y0.equals(y1) |
| assert y0.equals(y2) |
| |
| for invalid_index in [None, pa.int16()]: |
| with pytest.raises(TypeError): |
| a.field(invalid_index) |
| |
| for invalid_index in [3, -3]: |
| with pytest.raises(IndexError): |
| a.field(invalid_index) |
| |
| for invalid_name in ['z', '']: |
| with pytest.raises(KeyError): |
| a.field(invalid_name) |
| |
| |
| def test_struct_array_flattened_field(): |
| ty = pa.struct([pa.field('x', pa.int16()), |
| pa.field('y', pa.float32())]) |
| a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty, |
| mask=pa.array([False, True, False])) |
| |
| x0 = a._flattened_field(0) |
| y0 = a._flattened_field(1) |
| x1 = a._flattened_field(-2) |
| y1 = a._flattened_field(-1) |
| x2 = a._flattened_field('x') |
| y2 = a._flattened_field('y') |
| |
| assert isinstance(x0, pa.lib.Int16Array) |
| assert isinstance(y1, pa.lib.FloatArray) |
| assert x0.equals(pa.array([1, None, 5], type=pa.int16())) |
| assert y0.equals(pa.array([2.5, None, 6.5], type=pa.float32())) |
| assert x0.equals(x1) |
| assert x0.equals(x2) |
| assert y0.equals(y1) |
| assert y0.equals(y2) |
| |
| for invalid_index in [None, pa.int16()]: |
| with pytest.raises(TypeError): |
| a._flattened_field(invalid_index) |
| |
| for invalid_index in [3, -3]: |
| with pytest.raises(IndexError): |
| a._flattened_field(invalid_index) |
| |
| for invalid_name in ['z', '']: |
| with pytest.raises(KeyError): |
| a._flattened_field(invalid_name) |
| |
| |
| def test_empty_cast(): |
| types = [ |
| pa.null(), |
| pa.bool_(), |
| pa.int8(), |
| pa.int16(), |
| pa.int32(), |
| pa.int64(), |
| pa.uint8(), |
| pa.uint16(), |
| pa.uint32(), |
| pa.uint64(), |
| pa.float16(), |
| pa.float32(), |
| pa.float64(), |
| pa.date32(), |
| pa.date64(), |
| pa.binary(), |
| pa.binary(length=4), |
| pa.string(), |
| ] |
| |
| for (t1, t2) in itertools.product(types, types): |
| try: |
| # ARROW-4766: Ensure that supported types conversion don't segfault |
| # on empty arrays of common types |
| pa.array([], type=t1).cast(t2) |
| except (pa.lib.ArrowNotImplementedError, pa.ArrowInvalid): |
| continue |
| |
| |
| def test_nested_dictionary_array(): |
| dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b']) |
| list_arr = pa.ListArray.from_arrays([0, 2, 3], dict_arr) |
| assert list_arr.to_pylist() == [['a', 'b'], ['a']] |
| |
| dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b']) |
| dict_arr2 = pa.DictionaryArray.from_arrays([0, 1, 2, 1, 0], dict_arr) |
| assert dict_arr2.to_pylist() == ['a', 'b', 'a', 'b', 'a'] |
| |
| |
| def test_array_from_numpy_str_utf8(): |
| # ARROW-3890 -- in Python 3, NPY_UNICODE arrays are produced, but in Python |
| # 2 they are NPY_STRING (binary), so we must do UTF-8 validation |
| vec = np.array(["toto", "tata"]) |
| vec2 = np.array(["toto", "tata"], dtype=object) |
| |
| arr = pa.array(vec, pa.string()) |
| arr2 = pa.array(vec2, pa.string()) |
| expected = pa.array(["toto", "tata"]) |
| assert arr.equals(expected) |
| assert arr2.equals(expected) |
| |
| # with mask, separate code path |
| mask = np.array([False, False], dtype=bool) |
| arr = pa.array(vec, pa.string(), mask=mask) |
| assert arr.equals(expected) |
| |
| # UTF8 validation failures |
| vec = np.array([('mañana').encode('utf-16-le')]) |
| with pytest.raises(ValueError): |
| pa.array(vec, pa.string()) |
| |
| with pytest.raises(ValueError): |
| pa.array(vec, pa.string(), mask=np.array([False])) |
| |
| |
| @pytest.mark.slow |
| @pytest.mark.large_memory |
| def test_numpy_binary_overflow_to_chunked(): |
| # ARROW-3762, ARROW-5966 |
| |
| # 2^31 + 1 bytes |
| values = [b'x'] |
| unicode_values = ['x'] |
| |
| # Make 10 unique 1MB strings then repeat then 2048 times |
| unique_strings = { |
| i: b'x' * ((1 << 20) - 1) + str(i % 10).encode('utf8') |
| for i in range(10) |
| } |
| unicode_unique_strings = {i: x.decode('utf8') |
| for i, x in unique_strings.items()} |
| values += [unique_strings[i % 10] for i in range(1 << 11)] |
| unicode_values += [unicode_unique_strings[i % 10] |
| for i in range(1 << 11)] |
| |
| for case, ex_type in [(values, pa.binary()), |
| (unicode_values, pa.utf8())]: |
| arr = np.array(case) |
| arrow_arr = pa.array(arr) |
| arr = None |
| |
| assert isinstance(arrow_arr, pa.ChunkedArray) |
| assert arrow_arr.type == ex_type |
| |
| # Split up into 16MB chunks. 128 * 16 = 2048, so 129 |
| assert arrow_arr.num_chunks == 129 |
| |
| value_index = 0 |
| for i in range(arrow_arr.num_chunks): |
| chunk = arrow_arr.chunk(i) |
| for val in chunk: |
| assert val.as_py() == case[value_index] |
| value_index += 1 |
| |
| |
| @pytest.mark.large_memory |
| def test_list_child_overflow_to_chunked(): |
| kilobyte_string = 'x' * 1024 |
| two_mega = 2**21 |
| |
| vals = [[kilobyte_string]] * (two_mega - 1) |
| arr = pa.array(vals) |
| assert isinstance(arr, pa.Array) |
| assert len(arr) == two_mega - 1 |
| |
| vals = [[kilobyte_string]] * two_mega |
| arr = pa.array(vals) |
| assert isinstance(arr, pa.ChunkedArray) |
| assert len(arr) == two_mega |
| assert len(arr.chunk(0)) == two_mega - 1 |
| assert len(arr.chunk(1)) == 1 |
| |
| |
| def test_infer_type_masked(): |
| # ARROW-5208 |
| ty = pa.infer_type(['foo', 'bar', None, 2], |
| mask=[False, False, False, True]) |
| assert ty == pa.utf8() |
| |
| # all masked |
| ty = pa.infer_type(['foo', 'bar', None, 2], |
| mask=np.array([True, True, True, True])) |
| assert ty == pa.null() |
| |
| # length 0 |
| assert pa.infer_type([], mask=[]) == pa.null() |
| |
| |
| def test_array_masked(): |
| # ARROW-5208 |
| arr = pa.array([4, None, 4, 3.], |
| mask=np.array([False, True, False, True])) |
| assert arr.type == pa.int64() |
| |
| # ndarray dtype=object argument |
| arr = pa.array(np.array([4, None, 4, 3.], dtype="O"), |
| mask=np.array([False, True, False, True])) |
| assert arr.type == pa.int64() |
| |
| |
| def test_array_supported_masks(): |
| # ARROW-13883 |
| arr = pa.array([4, None, 4, 3.], |
| mask=np.array([False, True, False, True])) |
| assert arr.to_pylist() == [4, None, 4, None] |
| |
| arr = pa.array([4, None, 4, 3], |
| mask=pa.array([False, True, False, True])) |
| assert arr.to_pylist() == [4, None, 4, None] |
| |
| arr = pa.array([4, None, 4, 3], |
| mask=[False, True, False, True]) |
| assert arr.to_pylist() == [4, None, 4, None] |
| |
| arr = pa.array([4, 3, None, 3], |
| mask=[False, True, False, True]) |
| assert arr.to_pylist() == [4, None, None, None] |
| |
| # Non boolean values |
| with pytest.raises(pa.ArrowTypeError): |
| arr = pa.array([4, None, 4, 3], |
| mask=pa.array([1.0, 2.0, 3.0, 4.0])) |
| |
| with pytest.raises(pa.ArrowTypeError): |
| arr = pa.array([4, None, 4, 3], |
| mask=[1.0, 2.0, 3.0, 4.0]) |
| |
| with pytest.raises(pa.ArrowTypeError): |
| arr = pa.array([4, None, 4, 3], |
| mask=np.array([1.0, 2.0, 3.0, 4.0])) |
| |
| with pytest.raises(pa.ArrowTypeError): |
| arr = pa.array([4, None, 4, 3], |
| mask=pa.array([False, True, False, True], |
| mask=pa.array([True, True, True, True]))) |
| |
| with pytest.raises(pa.ArrowTypeError): |
| arr = pa.array([4, None, 4, 3], |
| mask=pa.array([False, None, False, True])) |
| |
| # Numpy arrays only accepts numpy masks |
| with pytest.raises(TypeError): |
| arr = pa.array(np.array([4, None, 4, 3.]), |
| mask=[True, False, True, False]) |
| |
| with pytest.raises(TypeError): |
| arr = pa.array(np.array([4, None, 4, 3.]), |
| mask=pa.array([True, False, True, False])) |
| |
| |
| @pytest.mark.pandas |
| def test_array_supported_pandas_masks(): |
| import pandas |
| arr = pa.array(pandas.Series([0, 1], name="a", dtype="int64"), |
| mask=pandas.Series([True, False], dtype='bool')) |
| assert arr.to_pylist() == [None, 1] |
| |
| |
| def test_binary_array_masked(): |
| # ARROW-12431 |
| masked_basic = pa.array([b'\x05'], type=pa.binary(1), |
| mask=np.array([False])) |
| assert [b'\x05'] == masked_basic.to_pylist() |
| |
| # Fixed Length Binary |
| masked = pa.array(np.array([b'\x05']), type=pa.binary(1), |
| mask=np.array([False])) |
| assert [b'\x05'] == masked.to_pylist() |
| |
| masked_nulls = pa.array(np.array([b'\x05']), type=pa.binary(1), |
| mask=np.array([True])) |
| assert [None] == masked_nulls.to_pylist() |
| |
| # Variable Length Binary |
| masked = pa.array(np.array([b'\x05']), type=pa.binary(), |
| mask=np.array([False])) |
| assert [b'\x05'] == masked.to_pylist() |
| |
| masked_nulls = pa.array(np.array([b'\x05']), type=pa.binary(), |
| mask=np.array([True])) |
| assert [None] == masked_nulls.to_pylist() |
| |
| # Fixed Length Binary, copy |
| npa = np.array([b'aaa', b'bbb', b'ccc']*10) |
| arrow_array = pa.array(npa, type=pa.binary(3), |
| mask=np.array([False, False, False]*10)) |
| npa[npa == b"bbb"] = b"XXX" |
| assert ([b'aaa', b'bbb', b'ccc']*10) == arrow_array.to_pylist() |
| |
| |
| def test_binary_array_strided(): |
| # Masked |
| nparray = np.array([b"ab", b"cd", b"ef"]) |
| arrow_array = pa.array(nparray[::2], pa.binary(2), |
| mask=np.array([False, False])) |
| assert [b"ab", b"ef"] == arrow_array.to_pylist() |
| |
| # Unmasked |
| nparray = np.array([b"ab", b"cd", b"ef"]) |
| arrow_array = pa.array(nparray[::2], pa.binary(2)) |
| assert [b"ab", b"ef"] == arrow_array.to_pylist() |
| |
| |
| def test_array_invalid_mask_raises(): |
| # ARROW-10742 |
| cases = [ |
| ([1, 2], np.array([False, False], dtype="O"), |
| TypeError, "must be boolean dtype"), |
| |
| ([1, 2], np.array([[False], [False]]), |
| pa.ArrowInvalid, "must be 1D array"), |
| |
| ([1, 2, 3], np.array([False, False]), |
| pa.ArrowInvalid, "different length"), |
| |
| (np.array([1, 2]), np.array([False, False], dtype="O"), |
| TypeError, "must be boolean dtype"), |
| |
| (np.array([1, 2]), np.array([[False], [False]]), |
| ValueError, "must be 1D array"), |
| |
| (np.array([1, 2, 3]), np.array([False, False]), |
| ValueError, "different length"), |
| ] |
| for obj, mask, ex, msg in cases: |
| with pytest.raises(ex, match=msg): |
| pa.array(obj, mask=mask) |
| |
| |
| def test_array_from_large_pyints(): |
| # ARROW-5430 |
| with pytest.raises(OverflowError): |
| # too large for int64 so dtype must be explicitly provided |
| pa.array([int(2 ** 63)]) |
| |
| |
| def test_array_protocol(): |
| |
| class MyArray: |
| def __init__(self, data): |
| self.data = data |
| |
| def __arrow_array__(self, type=None): |
| return pa.array(self.data, type=type) |
| |
| arr = MyArray(np.array([1, 2, 3], dtype='int64')) |
| result = pa.array(arr) |
| expected = pa.array([1, 2, 3], type=pa.int64()) |
| assert result.equals(expected) |
| result = pa.array(arr, type=pa.int64()) |
| expected = pa.array([1, 2, 3], type=pa.int64()) |
| assert result.equals(expected) |
| result = pa.array(arr, type=pa.float64()) |
| expected = pa.array([1, 2, 3], type=pa.float64()) |
| assert result.equals(expected) |
| |
| # raise error when passing size or mask keywords |
| with pytest.raises(ValueError): |
| pa.array(arr, mask=np.array([True, False, True])) |
| with pytest.raises(ValueError): |
| pa.array(arr, size=3) |
| |
| # ensure the return value is an Array |
| class MyArrayInvalid: |
| def __init__(self, data): |
| self.data = data |
| |
| def __arrow_array__(self, type=None): |
| return np.array(self.data) |
| |
| arr = MyArrayInvalid(np.array([1, 2, 3], dtype='int64')) |
| with pytest.raises(TypeError): |
| pa.array(arr) |
| |
| # ARROW-7066 - allow ChunkedArray output |
| # GH-33727 - if num_chunks=1 return Array |
| class MyArray2: |
| def __init__(self, data): |
| self.data = data |
| |
| def __arrow_array__(self, type=None): |
| return pa.chunked_array([self.data], type=type) |
| |
| arr = MyArray2(np.array([1, 2, 3], dtype='int64')) |
| result = pa.array(arr) |
| expected = pa.array([1, 2, 3], type=pa.int64()) |
| assert result.equals(expected) |
| |
| class MyArray3: |
| def __init__(self, data1, data2): |
| self.data1 = data1 |
| self.data2 = data2 |
| |
| def __arrow_array__(self, type=None): |
| return pa.chunked_array([self.data1, self.data2], type=type) |
| |
| np_arr = np.array([1, 2, 3], dtype='int64') |
| arr = MyArray3(np_arr, np_arr) |
| result = pa.array(arr) |
| expected = pa.chunked_array([[1, 2, 3], [1, 2, 3]], type=pa.int64()) |
| assert result.equals(expected) |
| |
| |
| def test_concat_array(): |
| concatenated = pa.concat_arrays( |
| [pa.array([1, 2]), pa.array([3, 4])]) |
| assert concatenated.equals(pa.array([1, 2, 3, 4])) |
| |
| |
| def test_concat_array_different_types(): |
| with pytest.raises(pa.ArrowInvalid): |
| pa.concat_arrays([pa.array([1]), pa.array([2.])]) |
| |
| |
| def test_concat_array_invalid_type(): |
| # ARROW-9920 - do not segfault on non-array input |
| |
| with pytest.raises(TypeError, match="should contain Array objects"): |
| pa.concat_arrays([None]) |
| |
| arr = pa.chunked_array([[0, 1], [3, 4]]) |
| with pytest.raises(TypeError, match="should contain Array objects"): |
| pa.concat_arrays(arr) |
| |
| |
| @pytest.mark.pandas |
| def test_to_pandas_timezone(): |
| # https://issues.apache.org/jira/browse/ARROW-6652 |
| arr = pa.array([1, 2, 3], type=pa.timestamp('s', tz='Europe/Brussels')) |
| s = arr.to_pandas() |
| assert s.dt.tz is not None |
| arr = pa.chunked_array([arr]) |
| s = arr.to_pandas() |
| assert s.dt.tz is not None |
| |
| |
| @pytest.mark.pandas |
| def test_to_pandas_float16_list(): |
| # https://github.com/apache/arrow/issues/36168 |
| expected = [[np.float16(1)], [np.float16(2)], [np.float16(3)]] |
| arr = pa.array(expected) |
| result = arr.to_pandas() |
| assert result[0].dtype == "float16" |
| assert result.tolist() == expected |
| |
| |
| def test_array_sort(): |
| arr = pa.array([5, 7, 35], type=pa.int64()) |
| sorted_arr = arr.sort("descending") |
| assert sorted_arr.to_pylist() == [35, 7, 5] |
| |
| arr = pa.chunked_array([[1, 2, 3], [4, 5, 6]]) |
| sorted_arr = arr.sort("descending") |
| assert sorted_arr.to_pylist() == [6, 5, 4, 3, 2, 1] |
| |
| arr = pa.array([5, 7, 35, None], type=pa.int64()) |
| sorted_arr = arr.sort("descending", null_placement="at_end") |
| assert sorted_arr.to_pylist() == [35, 7, 5, None] |
| sorted_arr = arr.sort("descending", null_placement="at_start") |
| assert sorted_arr.to_pylist() == [None, 35, 7, 5] |
| |
| |
| def test_struct_array_sort(): |
| arr = pa.StructArray.from_arrays([ |
| pa.array([5, 7, 7, 35], type=pa.int64()), |
| pa.array(["foo", "car", "bar", "foobar"]) |
| ], names=["a", "b"]) |
| |
| sorted_arr = arr.sort("descending", by="a") |
| assert sorted_arr.to_pylist() == [ |
| {"a": 35, "b": "foobar"}, |
| {"a": 7, "b": "car"}, |
| {"a": 7, "b": "bar"}, |
| {"a": 5, "b": "foo"}, |
| ] |
| |
| arr_with_nulls = pa.StructArray.from_arrays([ |
| pa.array([5, 7, 7, 35], type=pa.int64()), |
| pa.array(["foo", "car", "bar", "foobar"]) |
| ], names=["a", "b"], mask=pa.array([False, False, True, False])) |
| |
| sorted_arr = arr_with_nulls.sort( |
| "descending", by="a", null_placement="at_start") |
| assert sorted_arr.to_pylist() == [ |
| None, |
| {"a": 35, "b": "foobar"}, |
| {"a": 7, "b": "car"}, |
| {"a": 5, "b": "foo"}, |
| ] |
| |
| sorted_arr = arr_with_nulls.sort( |
| "descending", by="a", null_placement="at_end") |
| assert sorted_arr.to_pylist() == [ |
| {"a": 35, "b": "foobar"}, |
| {"a": 7, "b": "car"}, |
| {"a": 5, "b": "foo"}, |
| None |
| ] |
| |
| |
| def test_array_accepts_pyarrow_array(): |
| arr = pa.array([1, 2, 3]) |
| result = pa.array(arr) |
| assert arr == result |
| |
| # Test casting to a different type |
| result = pa.array(arr, type=pa.uint8()) |
| expected = pa.array([1, 2, 3], type=pa.uint8()) |
| assert expected == result |
| assert expected.type == pa.uint8() |
| |
| # Test casting with safe keyword |
| arr = pa.array([2 ** 63 - 1], type=pa.int64()) |
| |
| with pytest.raises(pa.ArrowInvalid): |
| pa.array(arr, type=pa.int32()) |
| |
| expected = pa.array([-1], type=pa.int32()) |
| result = pa.array(arr, type=pa.int32(), safe=False) |
| assert result == expected |
| |
| # Test memory_pool keyword is accepted |
| result = pa.array(arr, memory_pool=pa.default_memory_pool()) |
| assert arr == result |
| |
| |
| def check_run_end_encoded(ree_array, run_ends, values, logical_length, physical_length, |
| physical_offset): |
| assert ree_array.run_ends.to_pylist() == run_ends |
| assert ree_array.values.to_pylist() == values |
| assert len(ree_array) == logical_length |
| assert ree_array.find_physical_length() == physical_length |
| assert ree_array.find_physical_offset() == physical_offset |
| |
| |
| def check_run_end_encoded_from_arrays_with_type(ree_type=None): |
| run_ends = [3, 5, 10, 19] |
| values = [1, 2, 1, 3] |
| ree_array = pa.RunEndEncodedArray.from_arrays(run_ends, values, ree_type) |
| check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0) |
| |
| |
| def test_run_end_encoded_from_arrays(): |
| check_run_end_encoded_from_arrays_with_type() |
| for run_end_type in [pa.int16(), pa.int32(), pa.int64()]: |
| for value_type in [pa.uint32(), pa.int32(), pa.uint64(), pa.int64()]: |
| ree_type = pa.run_end_encoded(run_end_type, value_type) |
| check_run_end_encoded_from_arrays_with_type(ree_type) |
| |
| |
| def test_run_end_encoded_from_buffers(): |
| run_ends = [3, 5, 10, 19] |
| values = [1, 2, 1, 3] |
| |
| ree_type = pa.run_end_encoded(run_end_type=pa.int32(), value_type=pa.uint8()) |
| length = 19 |
| buffers = [None] |
| null_count = 0 |
| offset = 0 |
| children = [run_ends, values] |
| |
| ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, |
| null_count, offset, |
| children) |
| check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0) |
| # buffers = [] |
| ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length, [], |
| null_count, offset, |
| children) |
| check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0) |
| # null_count = -1 |
| ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, |
| -1, offset, |
| children) |
| check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0) |
| # offset = 4 |
| ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length - 4, buffers, |
| null_count, 4, children) |
| check_run_end_encoded(ree_array, run_ends, values, length - 4, 3, 1) |
| # buffers = [None, None] |
| with pytest.raises(ValueError): |
| pa.RunEndEncodedArray.from_buffers(ree_type, length, [None, None], |
| null_count, offset, children) |
| # children = None |
| with pytest.raises(ValueError): |
| pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, |
| null_count, offset, None) |
| # len(children) == 1 |
| with pytest.raises(ValueError): |
| pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, |
| null_count, offset, [run_ends]) |
| # null_count = 1 |
| with pytest.raises(ValueError): |
| pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, |
| 1, offset, children) |