| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| # cython: profile=False |
| # distutils: language = c++ |
| |
| from collections.abc import Sequence |
| from textwrap import indent |
| import warnings |
| |
| from cython.operator cimport dereference as deref |
| from pyarrow.includes.common cimport * |
| from pyarrow.includes.libarrow cimport * |
| from pyarrow.includes.libarrow_python cimport * |
| from pyarrow.lib cimport (_Weakrefable, Buffer, Schema, |
| check_status, |
| MemoryPool, maybe_unbox_memory_pool, |
| Table, KeyValueMetadata, |
| pyarrow_wrap_chunked_array, |
| pyarrow_wrap_schema, |
| pyarrow_unwrap_data_type, |
| pyarrow_unwrap_metadata, |
| pyarrow_unwrap_schema, |
| pyarrow_wrap_table, |
| pyarrow_wrap_batch, |
| pyarrow_wrap_scalar, |
| NativeFile, get_reader, get_writer, |
| string_to_timeunit) |
| |
| from pyarrow.lib import (ArrowException, NativeFile, BufferOutputStream, |
| ListType, LargeListType, |
| _stringify_path, |
| tobytes, frombytes, is_threading_enabled) |
| |
| cimport cpython as cp |
| |
| _DEFAULT_ROW_GROUP_SIZE = 1024*1024 |
| _MAX_ROW_GROUP_SIZE = 64*1024*1024 |
| |
| |
| cdef Type _unwrap_list_type(obj) except *: |
| if obj is ListType: |
| return _Type_LIST |
| elif obj is LargeListType: |
| return _Type_LARGE_LIST |
| else: |
| raise TypeError(f"Unexpected list_type: {obj!r}") |
| |
| |
| cdef class Statistics(_Weakrefable): |
| """Statistics for a single column in a single row group.""" |
| |
| def __init__(self): |
| raise TypeError(f"Do not call {self.__class__.__name__}'s constructor directly") |
| |
| def __cinit__(self): |
| pass |
| |
| def __repr__(self): |
| return f"""{object.__repr__(self)} |
| has_min_max: {self.has_min_max} |
| min: {self.min} |
| max: {self.max} |
| null_count: {self.null_count} |
| distinct_count: {self.distinct_count} |
| num_values: {self.num_values} |
| physical_type: {self.physical_type} |
| logical_type: {self.logical_type} |
| converted_type (legacy): {self.converted_type}""" |
| |
| def to_dict(self): |
| """ |
| Get dictionary representation of statistics. |
| |
| Returns |
| ------- |
| dict |
| Dictionary with a key for each attribute of this class. |
| """ |
| d = dict( |
| has_min_max=self.has_min_max, |
| min=self.min, |
| max=self.max, |
| null_count=self.null_count, |
| distinct_count=self.distinct_count, |
| num_values=self.num_values, |
| physical_type=self.physical_type |
| ) |
| return d |
| |
| def __eq__(self, other): |
| try: |
| return self.equals(other) |
| except TypeError: |
| return NotImplemented |
| |
| def equals(self, Statistics other): |
| """ |
| Return whether the two column statistics objects are equal. |
| |
| Parameters |
| ---------- |
| other : Statistics |
| Statistics to compare against. |
| |
| Returns |
| ------- |
| are_equal : bool |
| """ |
| return self.statistics.get().Equals(deref(other.statistics.get())) |
| |
| @property |
| def has_min_max(self): |
| """Whether min and max are present (bool).""" |
| return self.statistics.get().HasMinMax() |
| |
| @property |
| def has_null_count(self): |
| """Whether null count is present (bool).""" |
| return self.statistics.get().HasNullCount() |
| |
| @property |
| def has_distinct_count(self): |
| """Whether distinct count is preset (bool).""" |
| return self.statistics.get().HasDistinctCount() |
| |
| @property |
| def min_raw(self): |
| """Min value as physical type (bool, int, float, or bytes).""" |
| if self.has_min_max: |
| return _cast_statistic_raw_min(self.statistics.get()) |
| else: |
| return None |
| |
| @property |
| def max_raw(self): |
| """Max value as physical type (bool, int, float, or bytes).""" |
| if self.has_min_max: |
| return _cast_statistic_raw_max(self.statistics.get()) |
| else: |
| return None |
| |
| @property |
| def min(self): |
| """ |
| Min value as logical type. |
| |
| Returned as the Python equivalent of logical type, such as datetime.date |
| for dates and decimal.Decimal for decimals. |
| """ |
| if self.has_min_max: |
| min_scalar, _ = _cast_statistics(self.statistics.get()) |
| return min_scalar.as_py() |
| else: |
| return None |
| |
| @property |
| def max(self): |
| """ |
| Max value as logical type. |
| |
| Returned as the Python equivalent of logical type, such as datetime.date |
| for dates and decimal.Decimal for decimals. |
| """ |
| if self.has_min_max: |
| _, max_scalar = _cast_statistics(self.statistics.get()) |
| return max_scalar.as_py() |
| else: |
| return None |
| |
| @property |
| def null_count(self): |
| """Number of null values in chunk (int).""" |
| if self.has_null_count: |
| return self.statistics.get().null_count() |
| else: |
| return None |
| |
| @property |
| def distinct_count(self): |
| """Distinct number of values in chunk (int).""" |
| if self.has_distinct_count: |
| return self.statistics.get().distinct_count() |
| else: |
| return None |
| |
| @property |
| def num_values(self): |
| """Number of non-null values (int).""" |
| return self.statistics.get().num_values() |
| |
| @property |
| def physical_type(self): |
| """Physical type of column (str).""" |
| raw_physical_type = self.statistics.get().physical_type() |
| return physical_type_name_from_enum(raw_physical_type) |
| |
| @property |
| def logical_type(self): |
| """Logical type of column (:class:`ParquetLogicalType`).""" |
| return wrap_logical_type(self.statistics.get().descr().logical_type()) |
| |
| @property |
| def converted_type(self): |
| """Legacy converted type (str or None).""" |
| raw_converted_type = self.statistics.get().descr().converted_type() |
| return converted_type_name_from_enum(raw_converted_type) |
| |
| |
| cdef class ParquetLogicalType(_Weakrefable): |
| """Logical type of parquet type.""" |
| |
| def __init__(self): |
| raise TypeError(f"Do not call {self.__class__.__name__}'s constructor directly") |
| |
| cdef: |
| shared_ptr[const CParquetLogicalType] type |
| |
| def __cinit__(self): |
| pass |
| |
| cdef init(self, const shared_ptr[const CParquetLogicalType]& type): |
| self.type = type |
| |
| def __repr__(self): |
| return f"{object.__repr__(self)}\n {self}" |
| |
| def __str__(self): |
| return frombytes(self.type.get().ToString(), safe=True) |
| |
| def to_json(self): |
| """ |
| Get a JSON string containing type and type parameters. |
| |
| Returns |
| ------- |
| json : str |
| JSON representation of type, with at least a field called 'Type' |
| which contains the type name. If the type is parameterized, such |
| as a decimal with scale and precision, will contain those as fields |
| as well. |
| """ |
| return frombytes(self.type.get().ToJSON()) |
| |
| @property |
| def type(self): |
| """Name of the logical type (str).""" |
| return logical_type_name_from_enum(self.type.get().type()) |
| |
| |
| cdef wrap_logical_type(const shared_ptr[const CParquetLogicalType]& type): |
| cdef ParquetLogicalType out = ParquetLogicalType.__new__(ParquetLogicalType) |
| out.init(type) |
| return out |
| |
| |
| cdef _cast_statistic_raw_min(CStatistics* statistics): |
| cdef ParquetType physical_type = statistics.physical_type() |
| cdef uint32_t type_length = statistics.descr().type_length() |
| if physical_type == ParquetType_BOOLEAN: |
| return (<CBoolStatistics*> statistics).min() |
| elif physical_type == ParquetType_INT32: |
| return (<CInt32Statistics*> statistics).min() |
| elif physical_type == ParquetType_INT64: |
| return (<CInt64Statistics*> statistics).min() |
| elif physical_type == ParquetType_FLOAT: |
| return (<CFloatStatistics*> statistics).min() |
| elif physical_type == ParquetType_DOUBLE: |
| return (<CDoubleStatistics*> statistics).min() |
| elif physical_type == ParquetType_BYTE_ARRAY: |
| return _box_byte_array((<CByteArrayStatistics*> statistics).min()) |
| elif physical_type == ParquetType_FIXED_LEN_BYTE_ARRAY: |
| return _box_flba((<CFLBAStatistics*> statistics).min(), type_length) |
| |
| |
| cdef _cast_statistic_raw_max(CStatistics* statistics): |
| cdef ParquetType physical_type = statistics.physical_type() |
| cdef uint32_t type_length = statistics.descr().type_length() |
| if physical_type == ParquetType_BOOLEAN: |
| return (<CBoolStatistics*> statistics).max() |
| elif physical_type == ParquetType_INT32: |
| return (<CInt32Statistics*> statistics).max() |
| elif physical_type == ParquetType_INT64: |
| return (<CInt64Statistics*> statistics).max() |
| elif physical_type == ParquetType_FLOAT: |
| return (<CFloatStatistics*> statistics).max() |
| elif physical_type == ParquetType_DOUBLE: |
| return (<CDoubleStatistics*> statistics).max() |
| elif physical_type == ParquetType_BYTE_ARRAY: |
| return _box_byte_array((<CByteArrayStatistics*> statistics).max()) |
| elif physical_type == ParquetType_FIXED_LEN_BYTE_ARRAY: |
| return _box_flba((<CFLBAStatistics*> statistics).max(), type_length) |
| |
| |
| cdef _cast_statistics(CStatistics* statistics): |
| cdef: |
| shared_ptr[CScalar] c_min |
| shared_ptr[CScalar] c_max |
| check_status(StatisticsAsScalars(statistics[0], &c_min, &c_max)) |
| return (pyarrow_wrap_scalar(c_min), pyarrow_wrap_scalar(c_max)) |
| |
| |
| cdef _box_byte_array(ParquetByteArray val): |
| return cp.PyBytes_FromStringAndSize(<char*> val.ptr, <Py_ssize_t> val.len) |
| |
| |
| cdef _box_flba(ParquetFLBA val, uint32_t len): |
| return cp.PyBytes_FromStringAndSize(<char*> val.ptr, <Py_ssize_t> len) |
| |
| |
| cdef class GeoStatistics(_Weakrefable): |
| """Statistics for columns with geospatial data types (experimental) |
| |
| These statistics provide a bounding box and list of geometry types for |
| geospatial columns (GEOMETRY or GEOGRAPHY). All components may be None |
| if a file does not provide information about a particular component. |
| """ |
| |
| def __init__(self): |
| raise TypeError(f"Do not call {self.__class__.__name__}'s constructor directly") |
| |
| def __cinit__(self): |
| pass |
| |
| def __repr__(self): |
| return f"""{object.__repr__(self)} |
| geospatial_types: {self.geospatial_types} |
| xmin: {self.xmin}, xmax: {self.xmax} |
| ymin: {self.ymin}, ymax: {self.ymax} |
| zmin: {self.zmin}, zmax: {self.zmax} |
| mmin: {self.mmin}, mmax: {self.mmax}""" |
| |
| def to_dict(self): |
| """Dictionary summary of these statistics""" |
| out = { |
| "geospatial_types": self.geospatial_types, |
| "xmin": self.xmin, |
| "xmax": self.xmax, |
| "ymin": self.ymin, |
| "ymax": self.ymax, |
| "zmin": self.zmin, |
| "zmax": self.zmax, |
| "mmin": self.mmin, |
| "mmax": self.mmax |
| } |
| |
| return out |
| |
| @property |
| def geospatial_types(self): |
| """Unique geometry types |
| |
| Contains an integer code for each geometry type code encountered in the |
| geometries represented by these statistics. The geometry type codes are |
| ISO WKB geometry type codes returned in sorted order without duplicates. |
| |
| This property may be None if geospatial types are not available. |
| """ |
| cdef optional[vector[int32_t]] maybe_geometry_types = \ |
| self.statistics.get().geometry_types() |
| if not maybe_geometry_types.has_value(): |
| return None |
| |
| return list(maybe_geometry_types.value()) |
| |
| @property |
| def xmin(self): |
| """Minimum X value or None if not available |
| |
| Note that Parquet permits "wraparound" bounds in the X direction only |
| to more compactly represent bounds for geometries with components on |
| both sides of the antimeridian. This case is denoted by xmin > xmax. |
| """ |
| return self.statistics.get().lower_bound()[0] if self._x_valid() else None |
| |
| @property |
| def xmax(self): |
| """Maximum X value or None if not available |
| |
| Note that Parquet permits "wraparound" bounds in the X direction only |
| (see xmin). |
| """ |
| return self.statistics.get().upper_bound()[0] if self._x_valid() else None |
| |
| @property |
| def ymin(self): |
| """Minimum Y value or None if not available""" |
| return self.statistics.get().lower_bound()[1] if self._y_valid() else None |
| |
| @property |
| def ymax(self): |
| """Maximum Y value or None if not available""" |
| return self.statistics.get().upper_bound()[1] if self._y_valid() else None |
| |
| @property |
| def zmin(self): |
| """Minimum Z value or None if not available""" |
| return self.statistics.get().lower_bound()[2] if self._z_valid() else None |
| |
| @property |
| def zmax(self): |
| """Maximum Z value or None if not available""" |
| return self.statistics.get().upper_bound()[2] if self._z_valid() else None |
| |
| @property |
| def mmin(self): |
| """Minimum M value or None if not available""" |
| return self.statistics.get().lower_bound()[3] if self._m_valid() else None |
| |
| @property |
| def mmax(self): |
| """Maximum M value or None if not available""" |
| return self.statistics.get().upper_bound()[3] if self._m_valid() else None |
| |
| # Helpers to calculate the availability of a given dimension. For statistics |
| # read from a file, dimension_empty should always be false because there is |
| # no way to represent an empty range in Thrift; however, we check to be safe. |
| def _x_valid(self): |
| return self.statistics.get().dimension_valid()[0] \ |
| and not self.statistics.get().dimension_empty()[0] |
| |
| def _y_valid(self): |
| return self.statistics.get().dimension_valid()[1] \ |
| and not self.statistics.get().dimension_empty()[1] |
| |
| def _z_valid(self): |
| return self.statistics.get().dimension_valid()[2] \ |
| and not self.statistics.get().dimension_empty()[2] |
| |
| def _m_valid(self): |
| return self.statistics.get().dimension_valid()[3] \ |
| and not self.statistics.get().dimension_empty()[3] |
| |
| |
| cdef class ColumnChunkMetaData(_Weakrefable): |
| """Column metadata for a single row group.""" |
| |
| def __init__(self): |
| raise TypeError(f"Do not call {self.__class__.__name__}'s constructor directly") |
| |
| def __cinit__(self): |
| pass |
| |
| def __repr__(self): |
| statistics = indent(repr(self.statistics), 4 * ' ') |
| geo_statistics = indent(repr(self.geo_statistics), 4 * ' ') |
| return f"""{object.__repr__(self)} |
| file_offset: {self.file_offset} |
| file_path: {self.file_path} |
| physical_type: {self.physical_type} |
| num_values: {self.num_values} |
| path_in_schema: {self.path_in_schema} |
| is_stats_set: {self.is_stats_set} |
| statistics: |
| {statistics} |
| geo_statistics: |
| {geo_statistics} |
| compression: {self.compression} |
| encodings: {self.encodings} |
| has_dictionary_page: {self.has_dictionary_page} |
| dictionary_page_offset: {self.dictionary_page_offset} |
| data_page_offset: {self.data_page_offset} |
| total_compressed_size: {self.total_compressed_size} |
| total_uncompressed_size: {self.total_uncompressed_size}""" |
| |
| def to_dict(self): |
| """ |
| Get dictionary representation of the column chunk metadata. |
| |
| Returns |
| ------- |
| dict |
| Dictionary with a key for each attribute of this class. |
| """ |
| statistics = self.statistics.to_dict() if self.is_stats_set else None |
| if self.is_geo_stats_set: |
| geo_statistics = self.geo_statistics.to_dict() |
| else: |
| geo_statistics = None |
| |
| d = dict( |
| file_offset=self.file_offset, |
| file_path=self.file_path, |
| physical_type=self.physical_type, |
| num_values=self.num_values, |
| path_in_schema=self.path_in_schema, |
| is_stats_set=self.is_stats_set, |
| statistics=statistics, |
| geo_statistics=geo_statistics, |
| compression=self.compression, |
| encodings=self.encodings, |
| has_dictionary_page=self.has_dictionary_page, |
| dictionary_page_offset=self.dictionary_page_offset, |
| data_page_offset=self.data_page_offset, |
| total_compressed_size=self.total_compressed_size, |
| total_uncompressed_size=self.total_uncompressed_size |
| ) |
| return d |
| |
| def __eq__(self, other): |
| try: |
| return self.equals(other) |
| except TypeError: |
| return NotImplemented |
| |
| def equals(self, ColumnChunkMetaData other): |
| """ |
| Return whether the two column chunk metadata objects are equal. |
| |
| Parameters |
| ---------- |
| other : ColumnChunkMetaData |
| Metadata to compare against. |
| |
| Returns |
| ------- |
| are_equal : bool |
| """ |
| return self.metadata.Equals(deref(other.metadata)) |
| |
| @property |
| def file_offset(self): |
| """Offset into file where column chunk is located (int).""" |
| return self.metadata.file_offset() |
| |
| @property |
| def file_path(self): |
| """Optional file path if set (str or None).""" |
| return frombytes(self.metadata.file_path()) |
| |
| @property |
| def physical_type(self): |
| """Physical type of column (str).""" |
| return physical_type_name_from_enum(self.metadata.type()) |
| |
| @property |
| def num_values(self): |
| """Total number of values (int).""" |
| return self.metadata.num_values() |
| |
| @property |
| def path_in_schema(self): |
| """Nested path to field, separated by periods (str).""" |
| path = self.metadata.path_in_schema().get().ToDotString() |
| return frombytes(path) |
| |
| @property |
| def is_stats_set(self): |
| """Whether or not statistics are present in metadata (bool).""" |
| return self.metadata.is_stats_set() |
| |
| @property |
| def statistics(self): |
| """Statistics for column chunk (:class:`Statistics`).""" |
| if not self.metadata.is_stats_set(): |
| return None |
| cdef Statistics statistics = Statistics.__new__(Statistics) |
| statistics.init(self.metadata.statistics(), self) |
| return statistics |
| |
| @property |
| def is_geo_stats_set(self): |
| """Whether or not geometry statistics are present in metadata (bool).""" |
| return self.metadata.is_geo_stats_set() |
| |
| @property |
| def geo_statistics(self): |
| """Statistics for column chunk (:class:`GeoStatistics`).""" |
| c_geo_statistics = self.metadata.geo_statistics() |
| if not c_geo_statistics or not c_geo_statistics.get().is_valid(): |
| return None |
| cdef GeoStatistics geo_statistics = GeoStatistics.__new__(GeoStatistics) |
| geo_statistics.init(c_geo_statistics, self) |
| return geo_statistics |
| |
| @property |
| def compression(self): |
| """ |
| Type of compression used for column (str). |
| |
| One of 'UNCOMPRESSED', 'SNAPPY', 'GZIP', 'LZO', 'BROTLI', 'LZ4', 'ZSTD', |
| or 'UNKNOWN'. |
| """ |
| return compression_name_from_enum(self.metadata.compression()) |
| |
| @property |
| def encodings(self): |
| """ |
| Encodings used for column (tuple of str). |
| |
| One of 'PLAIN', 'BIT_PACKED', 'RLE', 'BYTE_STREAM_SPLIT', 'DELTA_BINARY_PACKED', |
| 'DELTA_LENGTH_BYTE_ARRAY', 'DELTA_BYTE_ARRAY'. |
| """ |
| return tuple(map(encoding_name_from_enum, self.metadata.encodings())) |
| |
| @property |
| def has_dictionary_page(self): |
| """Whether there is dictionary data present in the column chunk (bool).""" |
| return bool(self.metadata.has_dictionary_page()) |
| |
| @property |
| def dictionary_page_offset(self): |
| """Offset of dictionary page relative to beginning of the file (int).""" |
| if self.has_dictionary_page: |
| return self.metadata.dictionary_page_offset() |
| else: |
| return None |
| |
| @property |
| def data_page_offset(self): |
| """Offset of data page relative to beginning of the file (int).""" |
| return self.metadata.data_page_offset() |
| |
| @property |
| def has_index_page(self): |
| """Not yet supported.""" |
| raise NotImplementedError('not supported in parquet-cpp') |
| |
| @property |
| def index_page_offset(self): |
| """Not yet supported.""" |
| raise NotImplementedError("parquet-cpp doesn't return valid values") |
| |
| @property |
| def total_compressed_size(self): |
| """Compressed size in bytes (int).""" |
| return self.metadata.total_compressed_size() |
| |
| @property |
| def total_uncompressed_size(self): |
| """Uncompressed size in bytes (int).""" |
| return self.metadata.total_uncompressed_size() |
| |
| @property |
| def has_offset_index(self): |
| """Whether the column chunk has an offset index""" |
| return self.metadata.GetOffsetIndexLocation().has_value() |
| |
| @property |
| def has_column_index(self): |
| """Whether the column chunk has a column index""" |
| return self.metadata.GetColumnIndexLocation().has_value() |
| |
| @property |
| def metadata(self): |
| """Additional metadata as key value pairs (dict[bytes, bytes]).""" |
| cdef: |
| unordered_map[c_string, c_string] metadata |
| const CKeyValueMetadata* underlying_metadata |
| underlying_metadata = self.metadata.key_value_metadata().get() |
| if underlying_metadata != NULL: |
| underlying_metadata.ToUnorderedMap(&metadata) |
| return metadata |
| else: |
| return None |
| |
| |
| cdef class SortingColumn: |
| """ |
| Sorting specification for a single column. |
| |
| Returned by :meth:`RowGroupMetaData.sorting_columns` and used in |
| :class:`ParquetWriter` to specify the sort order of the data. |
| |
| Parameters |
| ---------- |
| column_index : int |
| Index of column that data is sorted by. |
| descending : bool, default False |
| Whether column is sorted in descending order. |
| nulls_first : bool, default False |
| Whether null values appear before valid values. |
| |
| Notes |
| ----- |
| |
| Column indices are zero-based, refer only to leaf fields, and are in |
| depth-first order. This may make the column indices for nested schemas |
| different from what you expect. In most cases, it will be easier to |
| specify the sort order using column names instead of column indices |
| and converting using the ``from_ordering`` method. |
| |
| Examples |
| -------- |
| |
| In other APIs, sort order is specified by names, such as: |
| |
| >>> sort_order = [('id', 'ascending'), ('timestamp', 'descending')] |
| |
| For Parquet, the column index must be used instead: |
| |
| >>> import pyarrow.parquet as pq |
| >>> [pq.SortingColumn(0), pq.SortingColumn(1, descending=True)] |
| [SortingColumn(column_index=0, descending=False, nulls_first=False), SortingColumn(column_index=1, descending=True, nulls_first=False)] |
| |
| Convert the sort_order into the list of sorting columns with |
| ``from_ordering`` (note that the schema must be provided as well): |
| |
| >>> import pyarrow as pa |
| >>> schema = pa.schema([('id', pa.int64()), ('timestamp', pa.timestamp('ms'))]) |
| >>> sorting_columns = pq.SortingColumn.from_ordering(schema, sort_order) |
| >>> sorting_columns |
| (SortingColumn(column_index=0, descending=False, nulls_first=False), SortingColumn(column_index=1, descending=True, nulls_first=False)) |
| |
| Convert back to the sort order with ``to_ordering``: |
| |
| >>> pq.SortingColumn.to_ordering(schema, sorting_columns) |
| ((('id', 'ascending'), ('timestamp', 'descending')), 'at_end') |
| |
| See Also |
| -------- |
| RowGroupMetaData.sorting_columns |
| """ |
| cdef int column_index |
| cdef c_bool descending |
| cdef c_bool nulls_first |
| |
| def __init__(self, int column_index, c_bool descending=False, c_bool nulls_first=False): |
| self.column_index = column_index |
| self.descending = descending |
| self.nulls_first = nulls_first |
| |
| @classmethod |
| def from_ordering(cls, Schema schema, sort_keys, null_placement='at_end'): |
| """ |
| Create a tuple of SortingColumn objects from the same arguments as |
| :class:`pyarrow.compute.SortOptions`. |
| |
| Parameters |
| ---------- |
| schema : Schema |
| Schema of the input data. |
| sort_keys : Sequence of (name, order) tuples |
| Names of field/column keys (str) to sort the input on, |
| along with the order each field/column is sorted in. |
| Accepted values for `order` are "ascending", "descending". |
| null_placement : {'at_start', 'at_end'}, default 'at_end' |
| Where null values should appear in the sort order. |
| |
| Returns |
| ------- |
| sorting_columns : tuple of SortingColumn |
| """ |
| if null_placement == 'at_start': |
| nulls_first = True |
| elif null_placement == 'at_end': |
| nulls_first = False |
| else: |
| raise ValueError('null_placement must be "at_start" or "at_end"') |
| |
| col_map = _name_to_index_map(schema) |
| |
| sorting_columns = [] |
| |
| for sort_key in sort_keys: |
| if isinstance(sort_key, str): |
| name = sort_key |
| descending = False |
| elif (isinstance(sort_key, tuple) and len(sort_key) == 2 and |
| isinstance(sort_key[0], str) and |
| isinstance(sort_key[1], str)): |
| name, descending = sort_key |
| if descending == "descending": |
| descending = True |
| elif descending == "ascending": |
| descending = False |
| else: |
| raise ValueError(f"Invalid sort key direction: {descending}") |
| else: |
| raise ValueError(f"Invalid sort key: {sort_key}") |
| |
| try: |
| column_index = col_map[name] |
| except KeyError: |
| raise ValueError( |
| f"Sort key name '{name}' not found in schema:\n{schema}") |
| |
| sorting_columns.append( |
| cls(column_index, descending=descending, nulls_first=nulls_first) |
| ) |
| |
| return tuple(sorting_columns) |
| |
| @staticmethod |
| def to_ordering(Schema schema, sorting_columns): |
| """ |
| Convert a tuple of SortingColumn objects to the same format as |
| :class:`pyarrow.compute.SortOptions`. |
| |
| Parameters |
| ---------- |
| schema : Schema |
| Schema of the input data. |
| sorting_columns : tuple of SortingColumn |
| Columns to sort the input on. |
| |
| Returns |
| ------- |
| sort_keys : tuple of (name, order) tuples |
| null_placement : {'at_start', 'at_end'} |
| """ |
| col_map = {i: name for name, i in _name_to_index_map(schema).items()} |
| |
| sort_keys = [] |
| nulls_first = None |
| |
| for sorting_column in sorting_columns: |
| name = col_map[sorting_column.column_index] |
| if sorting_column.descending: |
| order = "descending" |
| else: |
| order = "ascending" |
| sort_keys.append((name, order)) |
| if nulls_first is None: |
| nulls_first = sorting_column.nulls_first |
| elif nulls_first != sorting_column.nulls_first: |
| raise ValueError("Sorting columns have inconsistent null placement") |
| |
| if nulls_first: |
| null_placement = "at_start" |
| else: |
| null_placement = "at_end" |
| |
| return tuple(sort_keys), null_placement |
| |
| def __repr__(self): |
| return f"{self.__class__.__name__}(column_index={self.column_index}, " \ |
| f"descending={self.descending}, nulls_first={self.nulls_first})" |
| |
| def __eq__(self, SortingColumn other): |
| return (self.column_index == other.column_index and |
| self.descending == other.descending and |
| self.nulls_first == other.nulls_first) |
| |
| def __hash__(self): |
| return hash((self.column_index, self.descending, self.nulls_first)) |
| |
| @property |
| def column_index(self): |
| """"Index of column data is sorted by (int).""" |
| return self.column_index |
| |
| @property |
| def descending(self): |
| """Whether column is sorted in descending order (bool).""" |
| return self.descending |
| |
| @property |
| def nulls_first(self): |
| """Whether null values appear before valid values (bool).""" |
| return self.nulls_first |
| |
| def to_dict(self): |
| """ |
| Get dictionary representation of the SortingColumn. |
| |
| Returns |
| ------- |
| dict |
| Dictionary with a key for each attribute of this class. |
| """ |
| d = dict( |
| column_index=self.column_index, |
| descending=self.descending, |
| nulls_first=self.nulls_first |
| ) |
| return d |
| |
| |
| cdef class RowGroupMetaData(_Weakrefable): |
| """Metadata for a single row group.""" |
| |
| def __init__(self): |
| raise TypeError(f"Do not call {self.__class__.__name__}'s constructor directly") |
| |
| def __cinit__(self): |
| pass |
| |
| def __reduce__(self): |
| return RowGroupMetaData, (self.parent, self.index) |
| |
| def __eq__(self, other): |
| try: |
| return self.equals(other) |
| except TypeError: |
| return NotImplemented |
| |
| def equals(self, RowGroupMetaData other): |
| """ |
| Return whether the two row group metadata objects are equal. |
| |
| Parameters |
| ---------- |
| other : RowGroupMetaData |
| Metadata to compare against. |
| |
| Returns |
| ------- |
| are_equal : bool |
| """ |
| return self.metadata.Equals(deref(other.metadata)) |
| |
| def column(self, int i): |
| """ |
| Get column metadata at given index. |
| |
| Parameters |
| ---------- |
| i : int |
| Index of column to get metadata for. |
| |
| Returns |
| ------- |
| ColumnChunkMetaData |
| Metadata for column within this chunk. |
| """ |
| if i < 0 or i >= self.num_columns: |
| raise IndexError(f'{i} out of bounds') |
| cdef ColumnChunkMetaData chunk = ColumnChunkMetaData.__new__(ColumnChunkMetaData) |
| chunk.init(self, i) |
| return chunk |
| |
| def __repr__(self): |
| return f"""{object.__repr__(self)} |
| num_columns: {self.num_columns} |
| num_rows: {self.num_rows} |
| total_byte_size: {self.total_byte_size} |
| sorting_columns: {self.sorting_columns}""" |
| |
| def to_dict(self): |
| """ |
| Get dictionary representation of the row group metadata. |
| |
| Returns |
| ------- |
| dict |
| Dictionary with a key for each attribute of this class. |
| """ |
| columns = [] |
| d = dict( |
| num_columns=self.num_columns, |
| num_rows=self.num_rows, |
| total_byte_size=self.total_byte_size, |
| columns=columns, |
| sorting_columns=[col.to_dict() for col in self.sorting_columns] |
| ) |
| for i in range(self.num_columns): |
| columns.append(self.column(i).to_dict()) |
| return d |
| |
| @property |
| def num_columns(self): |
| """Number of columns in this row group (int).""" |
| return self.metadata.num_columns() |
| |
| @property |
| def num_rows(self): |
| """Number of rows in this row group (int).""" |
| return self.metadata.num_rows() |
| |
| @property |
| def total_byte_size(self): |
| """Total byte size of all the uncompressed column data in this row group (int).""" |
| return self.metadata.total_byte_size() |
| |
| @property |
| def sorting_columns(self): |
| """Columns the row group is sorted by (tuple of :class:`SortingColumn`)).""" |
| out = [] |
| cdef vector[CSortingColumn] sorting_columns = self.metadata.sorting_columns() |
| for sorting_col in sorting_columns: |
| out.append(SortingColumn( |
| sorting_col.column_idx, |
| sorting_col.descending, |
| sorting_col.nulls_first |
| )) |
| return tuple(out) |
| |
| |
| def _reconstruct_filemetadata(Buffer serialized): |
| cdef: |
| FileMetaData metadata = FileMetaData.__new__(FileMetaData) |
| CBuffer *buffer = serialized.buffer.get() |
| uint32_t metadata_len = <uint32_t>buffer.size() |
| |
| metadata.init(CFileMetaData_Make(buffer.data(), &metadata_len)) |
| |
| return metadata |
| |
| |
| cdef class FileMetaData(_Weakrefable): |
| """Parquet metadata for a single file.""" |
| |
| def __init__(self): |
| raise TypeError(f"Do not call {self.__class__.__name__}'s constructor directly") |
| |
| def __cinit__(self): |
| pass |
| |
| def __reduce__(self): |
| cdef: |
| NativeFile sink = BufferOutputStream() |
| COutputStream* c_sink = sink.get_output_stream().get() |
| with nogil: |
| self._metadata.WriteTo(c_sink) |
| |
| cdef Buffer buffer = sink.getvalue() |
| return _reconstruct_filemetadata, (buffer,) |
| |
| def __hash__(self): |
| return hash((self.schema, |
| self.num_rows, |
| self.num_row_groups, |
| self.format_version, |
| self.serialized_size)) |
| |
| def __repr__(self): |
| return f"""{object.__repr__(self)} |
| created_by: {self.created_by} |
| num_columns: {self.num_columns} |
| num_rows: {self.num_rows} |
| num_row_groups: {self.num_row_groups} |
| format_version: {self.format_version} |
| serialized_size: {self.serialized_size}""" |
| |
| def to_dict(self): |
| """ |
| Get dictionary representation of the file metadata. |
| |
| Returns |
| ------- |
| dict |
| Dictionary with a key for each attribute of this class. |
| """ |
| row_groups = [] |
| d = dict( |
| created_by=self.created_by, |
| num_columns=self.num_columns, |
| num_rows=self.num_rows, |
| num_row_groups=self.num_row_groups, |
| row_groups=row_groups, |
| format_version=self.format_version, |
| serialized_size=self.serialized_size |
| ) |
| for i in range(self.num_row_groups): |
| row_groups.append(self.row_group(i).to_dict()) |
| return d |
| |
| def __eq__(self, other): |
| try: |
| return self.equals(other) |
| except TypeError: |
| return NotImplemented |
| |
| def equals(self, FileMetaData other not None): |
| """ |
| Return whether the two file metadata objects are equal. |
| |
| Parameters |
| ---------- |
| other : FileMetaData |
| Metadata to compare against. |
| |
| Returns |
| ------- |
| are_equal : bool |
| """ |
| return self._metadata.Equals(deref(other._metadata)) |
| |
| @property |
| def schema(self): |
| """Schema of the file (:class:`ParquetSchema`).""" |
| if self._schema is None: |
| self._schema = ParquetSchema(self) |
| return self._schema |
| |
| @property |
| def serialized_size(self): |
| """Size of the original thrift encoded metadata footer (int).""" |
| return self._metadata.size() |
| |
| @property |
| def num_columns(self): |
| """Number of columns in file (int).""" |
| return self._metadata.num_columns() |
| |
| @property |
| def num_rows(self): |
| """Total number of rows in file (int).""" |
| return self._metadata.num_rows() |
| |
| @property |
| def num_row_groups(self): |
| """Number of row groups in file (int).""" |
| return self._metadata.num_row_groups() |
| |
| @property |
| def format_version(self): |
| """ |
| Parquet format version used in file (str, such as '1.0', '2.4'). |
| |
| If version is missing or unparsable, will default to assuming '2.6'. |
| """ |
| cdef ParquetVersion version = self._metadata.version() |
| if version == ParquetVersion_V1: |
| return '1.0' |
| elif version == ParquetVersion_V2_4: |
| return '2.4' |
| elif version == ParquetVersion_V2_6: |
| return '2.6' |
| else: |
| warnings.warn(f'Unrecognized file version, assuming 2.6: {version}') |
| return '2.6' |
| |
| @property |
| def created_by(self): |
| """ |
| String describing source of the parquet file (str). |
| |
| This typically includes library name and version number. For example, Arrow 7.0's |
| writer returns 'parquet-cpp-arrow version 7.0.0'. |
| """ |
| return frombytes(self._metadata.created_by()) |
| |
| @property |
| def metadata(self): |
| """Additional metadata as key value pairs (dict[bytes, bytes]).""" |
| cdef: |
| unordered_map[c_string, c_string] metadata |
| const CKeyValueMetadata* underlying_metadata |
| underlying_metadata = self._metadata.key_value_metadata().get() |
| if underlying_metadata != NULL: |
| underlying_metadata.ToUnorderedMap(&metadata) |
| return metadata |
| else: |
| return None |
| |
| def row_group(self, int i): |
| """ |
| Get metadata for row group at index i. |
| |
| Parameters |
| ---------- |
| i : int |
| Row group index to get. |
| |
| Returns |
| ------- |
| row_group_metadata : RowGroupMetaData |
| """ |
| cdef RowGroupMetaData row_group = RowGroupMetaData.__new__(RowGroupMetaData) |
| row_group.init(self, i) |
| return row_group |
| |
| def set_file_path(self, path): |
| """ |
| Set ColumnChunk file paths to the given value. |
| |
| This method modifies the ``file_path`` field of each ColumnChunk |
| in the FileMetaData to be a particular value. |
| |
| Parameters |
| ---------- |
| path : str |
| The file path to set on all ColumnChunks. |
| """ |
| cdef: |
| c_string c_path = tobytes(path) |
| self._metadata.set_file_path(c_path) |
| |
| def append_row_groups(self, FileMetaData other): |
| """ |
| Append row groups from other FileMetaData object. |
| |
| Parameters |
| ---------- |
| other : FileMetaData |
| Other metadata to append row groups from. |
| """ |
| cdef shared_ptr[CFileMetaData] c_metadata |
| |
| c_metadata = other.sp_metadata |
| self._metadata.AppendRowGroups(deref(c_metadata)) |
| |
| def write_metadata_file(self, where): |
| """ |
| Write the metadata to a metadata-only Parquet file. |
| |
| Parameters |
| ---------- |
| where : path or file-like object |
| Where to write the metadata. Should be a writable path on |
| the local filesystem, or a writable file-like object. |
| """ |
| cdef: |
| shared_ptr[COutputStream] sink |
| c_string c_where |
| |
| try: |
| where = _stringify_path(where) |
| except TypeError: |
| get_writer(where, &sink) |
| else: |
| c_where = tobytes(where) |
| with nogil: |
| sink = GetResultValue(FileOutputStream.Open(c_where)) |
| |
| with nogil: |
| check_status( |
| WriteMetaDataFile(deref(self._metadata), sink.get())) |
| |
| |
| cdef class ParquetSchema(_Weakrefable): |
| """A Parquet schema.""" |
| |
| def __cinit__(self, FileMetaData container): |
| self.parent = container |
| self.schema = container._metadata.schema() |
| |
| def __repr__(self): |
| return f"{object.__repr__(self)}\n{frombytes(self.schema.ToString(), safe=True)}" |
| |
| def __reduce__(self): |
| return ParquetSchema, (self.parent,) |
| |
| def __len__(self): |
| return self.schema.num_columns() |
| |
| def __getitem__(self, i): |
| return self.column(i) |
| |
| def __hash__(self): |
| return hash(self.schema.ToString()) |
| |
| @property |
| def names(self): |
| """Name of each field (list of str).""" |
| return [self[i].name for i in range(len(self))] |
| |
| def to_arrow_schema(self): |
| """ |
| Convert Parquet schema to effective Arrow schema. |
| |
| Returns |
| ------- |
| schema : Schema |
| """ |
| cdef shared_ptr[CSchema] sp_arrow_schema |
| |
| with nogil: |
| check_status(FromParquetSchema( |
| self.schema, default_arrow_reader_properties(), |
| self.parent._metadata.key_value_metadata(), |
| &sp_arrow_schema)) |
| |
| return pyarrow_wrap_schema(sp_arrow_schema) |
| |
| def __eq__(self, other): |
| try: |
| return self.equals(other) |
| except TypeError: |
| return NotImplemented |
| |
| def equals(self, ParquetSchema other): |
| """ |
| Return whether the two schemas are equal. |
| |
| Parameters |
| ---------- |
| other : ParquetSchema |
| Schema to compare against. |
| |
| Returns |
| ------- |
| are_equal : bool |
| """ |
| return self.schema.Equals(deref(other.schema)) |
| |
| def column(self, i): |
| """ |
| Return the schema for a single column. |
| |
| Parameters |
| ---------- |
| i : int |
| Index of column in schema. |
| |
| Returns |
| ------- |
| column_schema : ColumnSchema |
| """ |
| if i < 0 or i >= len(self): |
| raise IndexError(f'{i} out of bounds') |
| |
| return ColumnSchema(self, i) |
| |
| |
| cdef class ColumnSchema(_Weakrefable): |
| """Schema for a single column.""" |
| cdef: |
| int index |
| ParquetSchema parent |
| const ColumnDescriptor* descr |
| |
| def __cinit__(self, ParquetSchema schema, int index): |
| self.parent = schema |
| self.index = index # for pickling support |
| self.descr = schema.schema.Column(index) |
| |
| def __eq__(self, other): |
| try: |
| return self.equals(other) |
| except TypeError: |
| return NotImplemented |
| |
| def __reduce__(self): |
| return ColumnSchema, (self.parent, self.index) |
| |
| def equals(self, ColumnSchema other): |
| """ |
| Return whether the two column schemas are equal. |
| |
| Parameters |
| ---------- |
| other : ColumnSchema |
| Schema to compare against. |
| |
| Returns |
| ------- |
| are_equal : bool |
| """ |
| return self.descr.Equals(deref(other.descr)) |
| |
| def __repr__(self): |
| physical_type = self.physical_type |
| converted_type = self.converted_type |
| if converted_type == 'DECIMAL': |
| converted_type = f'DECIMAL({self.precision}, {self.scale})' |
| elif physical_type == 'FIXED_LEN_BYTE_ARRAY': |
| converted_type = f'FIXED_LEN_BYTE_ARRAY(length={self.length})' |
| |
| return f"""<ParquetColumnSchema> |
| name: {self.name} |
| path: {self.path} |
| max_definition_level: {self.max_definition_level} |
| max_repetition_level: {self.max_repetition_level} |
| physical_type: {physical_type} |
| logical_type: {self.logical_type} |
| converted_type (legacy): {converted_type}""" |
| |
| @property |
| def name(self): |
| """Name of field (str).""" |
| return frombytes(self.descr.name()) |
| |
| @property |
| def path(self): |
| """Nested path to field, separated by periods (str).""" |
| return frombytes(self.descr.path().get().ToDotString()) |
| |
| @property |
| def max_definition_level(self): |
| """Maximum definition level (int).""" |
| return self.descr.max_definition_level() |
| |
| @property |
| def max_repetition_level(self): |
| """Maximum repetition level (int).""" |
| return self.descr.max_repetition_level() |
| |
| @property |
| def physical_type(self): |
| """Name of physical type (str).""" |
| return physical_type_name_from_enum(self.descr.physical_type()) |
| |
| @property |
| def logical_type(self): |
| """Logical type of column (:class:`ParquetLogicalType`).""" |
| return wrap_logical_type(self.descr.logical_type()) |
| |
| @property |
| def converted_type(self): |
| """Legacy converted type (str or None).""" |
| return converted_type_name_from_enum(self.descr.converted_type()) |
| |
| # FIXED_LEN_BYTE_ARRAY attribute |
| @property |
| def length(self): |
| """Array length if fixed length byte array type, None otherwise (int or None).""" |
| return self.descr.type_length() |
| |
| # Decimal attributes |
| @property |
| def precision(self): |
| """Precision if decimal type, None otherwise (int or None).""" |
| return self.descr.type_precision() |
| |
| @property |
| def scale(self): |
| """Scale if decimal type, None otherwise (int or None).""" |
| return self.descr.type_scale() |
| |
| |
| cdef physical_type_name_from_enum(ParquetType type_): |
| return { |
| ParquetType_BOOLEAN: 'BOOLEAN', |
| ParquetType_INT32: 'INT32', |
| ParquetType_INT64: 'INT64', |
| ParquetType_INT96: 'INT96', |
| ParquetType_FLOAT: 'FLOAT', |
| ParquetType_DOUBLE: 'DOUBLE', |
| ParquetType_BYTE_ARRAY: 'BYTE_ARRAY', |
| ParquetType_FIXED_LEN_BYTE_ARRAY: 'FIXED_LEN_BYTE_ARRAY', |
| }.get(type_, 'UNKNOWN') |
| |
| |
| cdef logical_type_name_from_enum(ParquetLogicalTypeId type_): |
| return { |
| ParquetLogicalType_UNDEFINED: 'UNDEFINED', |
| ParquetLogicalType_STRING: 'STRING', |
| ParquetLogicalType_MAP: 'MAP', |
| ParquetLogicalType_LIST: 'LIST', |
| ParquetLogicalType_ENUM: 'ENUM', |
| ParquetLogicalType_DECIMAL: 'DECIMAL', |
| ParquetLogicalType_DATE: 'DATE', |
| ParquetLogicalType_TIME: 'TIME', |
| ParquetLogicalType_TIMESTAMP: 'TIMESTAMP', |
| ParquetLogicalType_INT: 'INT', |
| ParquetLogicalType_FLOAT16: 'FLOAT16', |
| ParquetLogicalType_JSON: 'JSON', |
| ParquetLogicalType_BSON: 'BSON', |
| ParquetLogicalType_UUID: 'UUID', |
| ParquetLogicalType_NONE: 'NONE', |
| }.get(type_, 'UNKNOWN') |
| |
| |
| cdef converted_type_name_from_enum(ParquetConvertedType type_): |
| return { |
| ParquetConvertedType_NONE: 'NONE', |
| ParquetConvertedType_UTF8: 'UTF8', |
| ParquetConvertedType_MAP: 'MAP', |
| ParquetConvertedType_MAP_KEY_VALUE: 'MAP_KEY_VALUE', |
| ParquetConvertedType_LIST: 'LIST', |
| ParquetConvertedType_ENUM: 'ENUM', |
| ParquetConvertedType_DECIMAL: 'DECIMAL', |
| ParquetConvertedType_DATE: 'DATE', |
| ParquetConvertedType_TIME_MILLIS: 'TIME_MILLIS', |
| ParquetConvertedType_TIME_MICROS: 'TIME_MICROS', |
| ParquetConvertedType_TIMESTAMP_MILLIS: 'TIMESTAMP_MILLIS', |
| ParquetConvertedType_TIMESTAMP_MICROS: 'TIMESTAMP_MICROS', |
| ParquetConvertedType_UINT_8: 'UINT_8', |
| ParquetConvertedType_UINT_16: 'UINT_16', |
| ParquetConvertedType_UINT_32: 'UINT_32', |
| ParquetConvertedType_UINT_64: 'UINT_64', |
| ParquetConvertedType_INT_8: 'INT_8', |
| ParquetConvertedType_INT_16: 'INT_16', |
| ParquetConvertedType_INT_32: 'INT_32', |
| ParquetConvertedType_INT_64: 'INT_64', |
| ParquetConvertedType_JSON: 'JSON', |
| ParquetConvertedType_BSON: 'BSON', |
| ParquetConvertedType_INTERVAL: 'INTERVAL', |
| }.get(type_, 'UNKNOWN') |
| |
| |
| cdef encoding_name_from_enum(ParquetEncoding encoding_): |
| return { |
| ParquetEncoding_PLAIN: 'PLAIN', |
| ParquetEncoding_PLAIN_DICTIONARY: 'PLAIN_DICTIONARY', |
| ParquetEncoding_RLE: 'RLE', |
| ParquetEncoding_BIT_PACKED: 'BIT_PACKED', |
| ParquetEncoding_DELTA_BINARY_PACKED: 'DELTA_BINARY_PACKED', |
| ParquetEncoding_DELTA_LENGTH_BYTE_ARRAY: 'DELTA_LENGTH_BYTE_ARRAY', |
| ParquetEncoding_DELTA_BYTE_ARRAY: 'DELTA_BYTE_ARRAY', |
| ParquetEncoding_RLE_DICTIONARY: 'RLE_DICTIONARY', |
| ParquetEncoding_BYTE_STREAM_SPLIT: 'BYTE_STREAM_SPLIT', |
| }.get(encoding_, 'UNKNOWN') |
| |
| |
| cdef encoding_enum_from_name(str encoding_name): |
| enc = { |
| 'PLAIN': ParquetEncoding_PLAIN, |
| 'BIT_PACKED': ParquetEncoding_BIT_PACKED, |
| 'RLE': ParquetEncoding_RLE, |
| 'BYTE_STREAM_SPLIT': ParquetEncoding_BYTE_STREAM_SPLIT, |
| 'DELTA_BINARY_PACKED': ParquetEncoding_DELTA_BINARY_PACKED, |
| 'DELTA_LENGTH_BYTE_ARRAY': ParquetEncoding_DELTA_LENGTH_BYTE_ARRAY, |
| 'DELTA_BYTE_ARRAY': ParquetEncoding_DELTA_BYTE_ARRAY, |
| 'RLE_DICTIONARY': 'dict', |
| 'PLAIN_DICTIONARY': 'dict', |
| }.get(encoding_name, None) |
| if enc is None: |
| raise ValueError(f"Unsupported column encoding: {encoding_name!r}") |
| elif enc == 'dict': |
| raise ValueError(f"{encoding_name!r} is already used by default.") |
| else: |
| return enc |
| |
| |
| cdef compression_name_from_enum(ParquetCompression compression_): |
| return { |
| ParquetCompression_UNCOMPRESSED: 'UNCOMPRESSED', |
| ParquetCompression_SNAPPY: 'SNAPPY', |
| ParquetCompression_GZIP: 'GZIP', |
| ParquetCompression_LZO: 'LZO', |
| ParquetCompression_BROTLI: 'BROTLI', |
| ParquetCompression_LZ4: 'LZ4', |
| ParquetCompression_ZSTD: 'ZSTD', |
| }.get(compression_, 'UNKNOWN') |
| |
| |
| cdef int check_compression_name(name) except -1: |
| if name.upper() not in {'NONE', 'SNAPPY', 'GZIP', 'LZO', 'BROTLI', 'LZ4', |
| 'ZSTD'}: |
| raise ArrowException("Unsupported compression: " + name) |
| return 0 |
| |
| |
| cdef ParquetCompression compression_from_name(name): |
| name = name.upper() |
| if name == 'SNAPPY': |
| return ParquetCompression_SNAPPY |
| elif name == 'GZIP': |
| return ParquetCompression_GZIP |
| elif name == 'LZO': |
| return ParquetCompression_LZO |
| elif name == 'BROTLI': |
| return ParquetCompression_BROTLI |
| elif name == 'LZ4': |
| return ParquetCompression_LZ4 |
| elif name == 'ZSTD': |
| return ParquetCompression_ZSTD |
| else: |
| return ParquetCompression_UNCOMPRESSED |
| |
| |
| cdef class ParquetReader(_Weakrefable): |
| cdef: |
| object source |
| CMemoryPool* pool |
| UniquePtrNoGIL[FileReader] reader |
| FileMetaData _metadata |
| shared_ptr[CRandomAccessFile] rd_handle |
| |
| cdef public: |
| _column_idx_map |
| |
| def __cinit__(self, MemoryPool memory_pool=None): |
| self.pool = maybe_unbox_memory_pool(memory_pool) |
| self._metadata = None |
| |
| def open(self, object source not None, *, bint use_memory_map=False, |
| read_dictionary=None, binary_type=None, list_type=None, |
| FileMetaData metadata=None, |
| int buffer_size=0, bint pre_buffer=False, |
| coerce_int96_timestamp_unit=None, |
| FileDecryptionProperties decryption_properties=None, |
| thrift_string_size_limit=None, |
| thrift_container_size_limit=None, |
| page_checksum_verification=False, |
| arrow_extensions_enabled=False): |
| """ |
| Open a parquet file for reading. |
| |
| Parameters |
| ---------- |
| source : str, pathlib.Path, pyarrow.NativeFile, or file-like object |
| use_memory_map : bool, default False |
| read_dictionary : iterable[int or str], optional |
| binary_type : pyarrow.DataType, optional |
| list_type : subclass of pyarrow.DataType, optional |
| metadata : FileMetaData, optional |
| buffer_size : int, default 0 |
| pre_buffer : bool, default False |
| coerce_int96_timestamp_unit : str, optional |
| decryption_properties : FileDecryptionProperties, optional |
| thrift_string_size_limit : int, optional |
| thrift_container_size_limit : int, optional |
| page_checksum_verification : bool, default False |
| arrow_extensions_enabled : bool, default False |
| """ |
| cdef: |
| shared_ptr[CFileMetaData] c_metadata |
| CReaderProperties properties = default_reader_properties() |
| ArrowReaderProperties arrow_props = ( |
| default_arrow_reader_properties()) |
| FileReaderBuilder builder |
| |
| if pre_buffer and not is_threading_enabled(): |
| pre_buffer = False |
| |
| if metadata is not None: |
| c_metadata = metadata.sp_metadata |
| |
| if buffer_size > 0: |
| properties.enable_buffered_stream() |
| properties.set_buffer_size(buffer_size) |
| elif buffer_size == 0: |
| properties.disable_buffered_stream() |
| else: |
| raise ValueError('Buffer size must be larger than zero') |
| |
| if thrift_string_size_limit is not None: |
| if thrift_string_size_limit <= 0: |
| raise ValueError("thrift_string_size_limit " |
| "must be larger than zero") |
| properties.set_thrift_string_size_limit(thrift_string_size_limit) |
| if thrift_container_size_limit is not None: |
| if thrift_container_size_limit <= 0: |
| raise ValueError("thrift_container_size_limit " |
| "must be larger than zero") |
| properties.set_thrift_container_size_limit( |
| thrift_container_size_limit) |
| |
| if decryption_properties is not None: |
| properties.file_decryption_properties( |
| decryption_properties.unwrap()) |
| |
| arrow_props.set_pre_buffer(pre_buffer) |
| |
| properties.set_page_checksum_verification(page_checksum_verification) |
| |
| if binary_type is not None: |
| c_binary_type = pyarrow_unwrap_data_type(binary_type) |
| arrow_props.set_binary_type(c_binary_type.get().id()) |
| |
| if list_type is not None: |
| arrow_props.set_list_type(_unwrap_list_type(list_type)) |
| |
| if coerce_int96_timestamp_unit is None: |
| # use the default defined in default_arrow_reader_properties() |
| pass |
| else: |
| arrow_props.set_coerce_int96_timestamp_unit( |
| string_to_timeunit(coerce_int96_timestamp_unit)) |
| |
| arrow_props.set_arrow_extensions_enabled(arrow_extensions_enabled) |
| |
| self.source = source |
| get_reader(source, use_memory_map, &self.rd_handle) |
| |
| with nogil: |
| check_status(builder.Open(self.rd_handle, properties, c_metadata)) |
| |
| # Set up metadata |
| with nogil: |
| c_metadata = builder.raw_reader().metadata() |
| cdef FileMetaData result = FileMetaData.__new__(FileMetaData) |
| self._metadata = result |
| result.init(c_metadata) |
| |
| if read_dictionary is not None: |
| self._set_read_dictionary(read_dictionary, &arrow_props) |
| |
| with nogil: |
| check_status(builder.memory_pool(self.pool) |
| .properties(arrow_props) |
| .Build(&self.reader)) |
| |
| cdef _set_read_dictionary(self, read_dictionary, |
| ArrowReaderProperties* props): |
| for column in read_dictionary: |
| if not isinstance(column, int): |
| column = self.column_name_idx(column) |
| props.set_read_dictionary(column, True) |
| |
| @property |
| def column_paths(self): |
| cdef: |
| FileMetaData container = self.metadata |
| const CFileMetaData* metadata = container._metadata |
| vector[c_string] path |
| int i = 0 |
| |
| paths = [] |
| for i in range(0, metadata.num_columns()): |
| path = (metadata.schema().Column(i) |
| .path().get().ToDotVector()) |
| paths.append([frombytes(x) for x in path]) |
| |
| return paths |
| |
| @property |
| def metadata(self): |
| return self._metadata |
| |
| @property |
| def schema_arrow(self): |
| cdef shared_ptr[CSchema] out |
| with nogil: |
| check_status(self.reader.get().GetSchema(&out)) |
| return pyarrow_wrap_schema(out) |
| |
| @property |
| def num_row_groups(self): |
| return self.reader.get().num_row_groups() |
| |
| def set_use_threads(self, bint use_threads): |
| """ |
| Parameters |
| ---------- |
| use_threads : bool |
| """ |
| if is_threading_enabled(): |
| self.reader.get().set_use_threads(use_threads) |
| else: |
| self.reader.get().set_use_threads(False) |
| |
| def set_batch_size(self, int64_t batch_size): |
| """ |
| Parameters |
| ---------- |
| batch_size : int64 |
| """ |
| self.reader.get().set_batch_size(batch_size) |
| |
| def iter_batches(self, int64_t batch_size, row_groups, column_indices=None, |
| bint use_threads=True): |
| """ |
| Parameters |
| ---------- |
| batch_size : int64 |
| row_groups : list[int] |
| column_indices : list[int], optional |
| use_threads : bool, default True |
| |
| Yields |
| ------ |
| next : RecordBatch |
| """ |
| cdef: |
| vector[int] c_row_groups |
| vector[int] c_column_indices |
| shared_ptr[CRecordBatch] record_batch |
| UniquePtrNoGIL[CRecordBatchReader] recordbatchreader |
| |
| self.set_batch_size(batch_size) |
| |
| if use_threads: |
| self.set_use_threads(use_threads) |
| |
| for row_group in row_groups: |
| c_row_groups.push_back(row_group) |
| |
| if column_indices is not None: |
| for index in column_indices: |
| c_column_indices.push_back(index) |
| with nogil: |
| recordbatchreader = GetResultValue( |
| self.reader.get().GetRecordBatchReader( |
| c_row_groups, c_column_indices |
| ) |
| ) |
| else: |
| with nogil: |
| recordbatchreader = GetResultValue( |
| self.reader.get().GetRecordBatchReader( |
| c_row_groups |
| ) |
| ) |
| |
| while True: |
| with nogil: |
| check_status( |
| recordbatchreader.get().ReadNext(&record_batch) |
| ) |
| if record_batch.get() == NULL: |
| break |
| |
| yield pyarrow_wrap_batch(record_batch) |
| |
| def read_row_group(self, int i, column_indices=None, |
| bint use_threads=True): |
| """ |
| Parameters |
| ---------- |
| i : int |
| column_indices : list[int], optional |
| use_threads : bool, default True |
| |
| Returns |
| ------- |
| table : pyarrow.Table |
| """ |
| return self.read_row_groups([i], column_indices, use_threads) |
| |
| def read_row_groups(self, row_groups not None, column_indices=None, |
| bint use_threads=True): |
| """ |
| Parameters |
| ---------- |
| row_groups : list[int] |
| column_indices : list[int], optional |
| use_threads : bool, default True |
| |
| Returns |
| ------- |
| table : pyarrow.Table |
| """ |
| cdef: |
| CResult[shared_ptr[CTable]] table_result |
| vector[int] c_row_groups |
| vector[int] c_column_indices |
| |
| self.set_use_threads(use_threads) |
| |
| for row_group in row_groups: |
| c_row_groups.push_back(row_group) |
| |
| if column_indices is not None: |
| for index in column_indices: |
| c_column_indices.push_back(index) |
| |
| with nogil: |
| table_result = self.reader.get().ReadRowGroups(c_row_groups, |
| c_column_indices) |
| else: |
| # Read all columns |
| with nogil: |
| table_result = self.reader.get().ReadRowGroups(c_row_groups) |
| return pyarrow_wrap_table(GetResultValue(table_result)) |
| |
| def read_all(self, column_indices=None, bint use_threads=True): |
| """ |
| Parameters |
| ---------- |
| column_indices : list[int], optional |
| use_threads : bool, default True |
| |
| Returns |
| ------- |
| table : pyarrow.Table |
| """ |
| cdef: |
| CResult[shared_ptr[CTable]] table_result |
| vector[int] c_column_indices |
| |
| self.set_use_threads(use_threads) |
| |
| if column_indices is not None: |
| for index in column_indices: |
| c_column_indices.push_back(index) |
| |
| with nogil: |
| table_result = self.reader.get().ReadTable(c_column_indices) |
| else: |
| # Read all columns |
| with nogil: |
| table_result = self.reader.get().ReadTable() |
| return pyarrow_wrap_table(GetResultValue(table_result)) |
| |
| def scan_contents(self, column_indices=None, batch_size=65536): |
| """ |
| Parameters |
| ---------- |
| column_indices : list[int], optional |
| batch_size : int32, default 65536 |
| |
| Returns |
| ------- |
| num_rows : int64 |
| """ |
| cdef: |
| vector[int] c_column_indices |
| int32_t c_batch_size |
| int64_t c_num_rows |
| |
| if column_indices is not None: |
| for index in column_indices: |
| c_column_indices.push_back(index) |
| |
| c_batch_size = batch_size |
| |
| with nogil: |
| check_status(self.reader.get() |
| .ScanContents(c_column_indices, c_batch_size, |
| &c_num_rows)) |
| |
| return c_num_rows |
| |
| def column_name_idx(self, column_name): |
| """ |
| Find the index of a column by its name. |
| |
| Parameters |
| ---------- |
| column_name : str |
| Name of the column; separation of nesting levels is done via ".". |
| |
| Returns |
| ------- |
| column_idx : int |
| Integer index of the column in the schema. |
| """ |
| cdef: |
| FileMetaData container = self.metadata |
| const CFileMetaData* metadata = container._metadata |
| int i = 0 |
| |
| if self._column_idx_map is None: |
| self._column_idx_map = {} |
| for i in range(0, metadata.num_columns()): |
| col_bytes = tobytes(metadata.schema().Column(i) |
| .path().get().ToDotString()) |
| self._column_idx_map[col_bytes] = i |
| |
| return self._column_idx_map[tobytes(column_name)] |
| |
| def read_column(self, int column_index): |
| """ |
| Read the column at the specified index. |
| |
| Parameters |
| ---------- |
| column_index : int |
| Index of the column. |
| |
| Returns |
| ------- |
| column : pyarrow.ChunkedArray |
| """ |
| cdef shared_ptr[CChunkedArray] out |
| with nogil: |
| check_status(self.reader.get() |
| .ReadColumn(column_index, &out)) |
| return pyarrow_wrap_chunked_array(out) |
| |
| def close(self): |
| if not self.closed: |
| with nogil: |
| check_status(self.rd_handle.get().Close()) |
| |
| @property |
| def closed(self): |
| if self.rd_handle == NULL: |
| return True |
| with nogil: |
| closed = self.rd_handle.get().closed() |
| return closed |
| |
| |
| cdef CSortingColumn _convert_sorting_column(SortingColumn sorting_column): |
| cdef CSortingColumn c_sorting_column |
| |
| c_sorting_column.column_idx = sorting_column.column_index |
| c_sorting_column.descending = sorting_column.descending |
| c_sorting_column.nulls_first = sorting_column.nulls_first |
| |
| return c_sorting_column |
| |
| |
| cdef vector[CSortingColumn] _convert_sorting_columns(sorting_columns) except *: |
| if not (isinstance(sorting_columns, Sequence) |
| and all(isinstance(col, SortingColumn) for col in sorting_columns)): |
| raise ValueError( |
| "'sorting_columns' must be a list of `SortingColumn`") |
| |
| cdef vector[CSortingColumn] c_sorting_columns = [_convert_sorting_column(col) |
| for col in sorting_columns] |
| |
| return c_sorting_columns |
| |
| |
| cdef shared_ptr[WriterProperties] _create_writer_properties( |
| use_dictionary=None, |
| compression=None, |
| version=None, |
| write_statistics=None, |
| data_page_size=None, |
| max_rows_per_page=None, |
| compression_level=None, |
| use_byte_stream_split=False, |
| column_encoding=None, |
| data_page_version=None, |
| FileEncryptionProperties encryption_properties=None, |
| write_batch_size=None, |
| dictionary_pagesize_limit=None, |
| write_page_index=False, |
| write_page_checksum=False, |
| sorting_columns=None, |
| store_decimal_as_integer=False, |
| use_content_defined_chunking=False) except *: |
| |
| """General writer properties""" |
| cdef: |
| shared_ptr[WriterProperties] properties |
| WriterProperties.Builder props |
| CdcOptions cdc_options |
| |
| # data_page_version |
| |
| if data_page_version is not None: |
| if data_page_version == "1.0": |
| props.data_page_version(ParquetDataPageVersion_V1) |
| elif data_page_version == "2.0": |
| props.data_page_version(ParquetDataPageVersion_V2) |
| else: |
| raise ValueError( |
| f"Unsupported Parquet data page version: {data_page_version}") |
| |
| # version |
| |
| if version is not None: |
| if version == "1.0": |
| props.version(ParquetVersion_V1) |
| elif version == "2.4": |
| props.version(ParquetVersion_V2_4) |
| elif version == "2.6": |
| props.version(ParquetVersion_V2_6) |
| else: |
| raise ValueError(f"Unsupported Parquet format version: {version}") |
| |
| # compression |
| |
| if isinstance(compression, basestring): |
| check_compression_name(compression) |
| props.compression(compression_from_name(compression)) |
| elif compression is not None: |
| for column, codec in compression.iteritems(): |
| check_compression_name(codec) |
| props.compression(tobytes(column), compression_from_name(codec)) |
| |
| if isinstance(compression_level, int): |
| props.compression_level(compression_level) |
| elif compression_level is not None: |
| for column, level in compression_level.iteritems(): |
| props.compression_level(tobytes(column), level) |
| |
| # use_dictionary |
| |
| if isinstance(use_dictionary, bool): |
| if use_dictionary: |
| props.enable_dictionary() |
| if column_encoding is not None: |
| raise ValueError( |
| "To use 'column_encoding' set 'use_dictionary' to False") |
| else: |
| props.disable_dictionary() |
| elif use_dictionary is not None: |
| # Deactivate dictionary encoding by default |
| props.disable_dictionary() |
| for column in use_dictionary: |
| props.enable_dictionary(tobytes(column)) |
| if (column_encoding is not None and |
| column_encoding.get(column) is not None): |
| raise ValueError( |
| "To use 'column_encoding' set 'use_dictionary' to False") |
| |
| # write_statistics |
| |
| if isinstance(write_statistics, bool): |
| if write_statistics: |
| props.enable_statistics() |
| else: |
| props.disable_statistics() |
| elif write_statistics is not None: |
| # Deactivate statistics by default and enable for specified columns |
| props.disable_statistics() |
| for column in write_statistics: |
| props.enable_statistics(tobytes(column)) |
| |
| # sorting_columns |
| |
| if sorting_columns is not None: |
| props.set_sorting_columns(_convert_sorting_columns(sorting_columns)) |
| |
| # use_byte_stream_split |
| |
| if isinstance(use_byte_stream_split, bool): |
| if use_byte_stream_split: |
| if column_encoding is not None: |
| raise ValueError( |
| "'use_byte_stream_split' cannot be passed" |
| "together with 'column_encoding'") |
| else: |
| props.encoding(ParquetEncoding_BYTE_STREAM_SPLIT) |
| elif use_byte_stream_split is not None: |
| for column in use_byte_stream_split: |
| if column_encoding is None: |
| column_encoding = {column: 'BYTE_STREAM_SPLIT'} |
| elif column_encoding.get(column, None) is None: |
| column_encoding[column] = 'BYTE_STREAM_SPLIT' |
| else: |
| raise ValueError( |
| "'use_byte_stream_split' cannot be passed" |
| "together with 'column_encoding'") |
| |
| # store_decimal_as_integer |
| |
| if isinstance(store_decimal_as_integer, bool): |
| if store_decimal_as_integer: |
| props.enable_store_decimal_as_integer() |
| else: |
| props.disable_store_decimal_as_integer() |
| else: |
| raise TypeError("'store_decimal_as_integer' must be a boolean") |
| |
| # column_encoding |
| # encoding map - encode individual columns |
| |
| if column_encoding is not None: |
| if isinstance(column_encoding, dict): |
| for column, _encoding in column_encoding.items(): |
| props.encoding(tobytes(column), |
| encoding_enum_from_name(_encoding)) |
| elif isinstance(column_encoding, str): |
| props.encoding(encoding_enum_from_name(column_encoding)) |
| else: |
| raise TypeError( |
| "'column_encoding' should be a dictionary or a string") |
| |
| # size limits |
| if data_page_size is not None: |
| props.data_pagesize(data_page_size) |
| |
| if max_rows_per_page is not None: |
| props.max_rows_per_page(max_rows_per_page) |
| |
| if write_batch_size is not None: |
| props.write_batch_size(write_batch_size) |
| |
| if dictionary_pagesize_limit is not None: |
| props.dictionary_pagesize_limit(dictionary_pagesize_limit) |
| |
| # content defined chunking |
| |
| if use_content_defined_chunking is True: |
| props.enable_content_defined_chunking() |
| elif use_content_defined_chunking is False: |
| props.disable_content_defined_chunking() |
| elif isinstance(use_content_defined_chunking, dict): |
| defined_keys = use_content_defined_chunking.keys() |
| mandatory_keys = {"min_chunk_size", "max_chunk_size"} |
| allowed_keys = {"min_chunk_size", "max_chunk_size", "norm_level"} |
| unknown_keys = defined_keys - allowed_keys |
| missing_keys = mandatory_keys - defined_keys |
| if unknown_keys: |
| raise ValueError( |
| f"Unknown options in 'use_content_defined_chunking': {unknown_keys}") |
| if missing_keys: |
| raise ValueError( |
| f"Missing options in 'use_content_defined_chunking': {missing_keys}") |
| cdc_options.min_chunk_size = use_content_defined_chunking["min_chunk_size"] |
| cdc_options.max_chunk_size = use_content_defined_chunking["max_chunk_size"] |
| cdc_options.norm_level = use_content_defined_chunking.get("norm_level", 0) |
| props.enable_content_defined_chunking() |
| props.content_defined_chunking_options(cdc_options) |
| else: |
| raise TypeError( |
| "'use_content_defined_chunking' should be either boolean or a dictionary") |
| |
| # encryption |
| |
| if encryption_properties is not None: |
| props.encryption( |
| (<FileEncryptionProperties>encryption_properties).unwrap()) |
| |
| # For backwards compatibility reasons we cap the maximum row group size |
| # at 64Mi rows. This could be changed in the future, though it would be |
| # a breaking change. |
| # |
| # The user can always specify a smaller row group size (and the default |
| # is smaller) when calling write_table. If the call to write_table uses |
| # a size larger than this then it will be latched to this value. |
| props.max_row_group_length(_MAX_ROW_GROUP_SIZE) |
| |
| # checksum |
| |
| if write_page_checksum: |
| props.enable_page_checksum() |
| else: |
| props.disable_page_checksum() |
| |
| # page index |
| |
| if write_page_index: |
| props.enable_write_page_index() |
| else: |
| props.disable_write_page_index() |
| |
| properties = props.build() |
| |
| return properties |
| |
| |
| cdef shared_ptr[ArrowWriterProperties] _create_arrow_writer_properties( |
| use_deprecated_int96_timestamps=False, |
| coerce_timestamps=None, |
| allow_truncated_timestamps=False, |
| writer_engine_version=None, |
| use_compliant_nested_type=True, |
| store_schema=True, |
| write_time_adjusted_to_utc=False) except *: |
| """Arrow writer properties""" |
| cdef: |
| shared_ptr[ArrowWriterProperties] arrow_properties |
| ArrowWriterProperties.Builder arrow_props |
| |
| # Store the original Arrow schema so things like dictionary types can |
| # be automatically reconstructed |
| if store_schema: |
| arrow_props.store_schema() |
| |
| # int96 support |
| |
| if use_deprecated_int96_timestamps: |
| arrow_props.enable_deprecated_int96_timestamps() |
| else: |
| arrow_props.disable_deprecated_int96_timestamps() |
| |
| # coerce_timestamps |
| |
| if coerce_timestamps == 'ms': |
| arrow_props.coerce_timestamps(TimeUnit_MILLI) |
| elif coerce_timestamps == 'us': |
| arrow_props.coerce_timestamps(TimeUnit_MICRO) |
| elif coerce_timestamps is not None: |
| raise ValueError(f'Invalid value for coerce_timestamps: {coerce_timestamps}') |
| |
| # allow_truncated_timestamps |
| |
| if allow_truncated_timestamps: |
| arrow_props.allow_truncated_timestamps() |
| else: |
| arrow_props.disallow_truncated_timestamps() |
| |
| # use_compliant_nested_type |
| |
| if use_compliant_nested_type: |
| arrow_props.enable_compliant_nested_types() |
| else: |
| arrow_props.disable_compliant_nested_types() |
| |
| # writer_engine_version |
| |
| if writer_engine_version == "V1": |
| warnings.warn("V1 parquet writer engine is a no-op. Use V2.") |
| arrow_props.set_engine_version(ArrowWriterEngineVersion.V1) |
| elif writer_engine_version != "V2": |
| raise ValueError(f"Unsupported Writer Engine Version: {writer_engine_version}") |
| |
| arrow_props.set_time_adjusted_to_utc(write_time_adjusted_to_utc) |
| |
| arrow_properties = arrow_props.build() |
| |
| return arrow_properties |
| |
| cdef _name_to_index_map(Schema arrow_schema): |
| cdef: |
| shared_ptr[CSchema] sp_arrow_schema |
| shared_ptr[SchemaDescriptor] sp_parquet_schema |
| shared_ptr[WriterProperties] props = _create_writer_properties() |
| shared_ptr[ArrowWriterProperties] arrow_props = _create_arrow_writer_properties( |
| use_deprecated_int96_timestamps=False, |
| coerce_timestamps=None, |
| allow_truncated_timestamps=False, |
| writer_engine_version="V2" |
| ) |
| |
| sp_arrow_schema = pyarrow_unwrap_schema(arrow_schema) |
| |
| with nogil: |
| check_status(ToParquetSchema( |
| sp_arrow_schema.get(), deref(props.get()), deref(arrow_props.get()), &sp_parquet_schema)) |
| |
| out = dict() |
| |
| cdef SchemaDescriptor* parquet_schema = sp_parquet_schema.get() |
| |
| for i in range(parquet_schema.num_columns()): |
| name = frombytes(parquet_schema.Column(i).path().get().ToDotString()) |
| out[name] = i |
| |
| return out |
| |
| |
| cdef class ParquetWriter(_Weakrefable): |
| cdef: |
| unique_ptr[FileWriter] writer |
| shared_ptr[COutputStream] sink |
| bint own_sink |
| |
| def __cinit__(self, where, Schema schema not None, use_dictionary=None, |
| compression=None, version=None, |
| write_statistics=None, |
| MemoryPool memory_pool=None, |
| use_deprecated_int96_timestamps=False, |
| coerce_timestamps=None, |
| data_page_size=None, |
| max_rows_per_page=None, |
| allow_truncated_timestamps=False, |
| compression_level=None, |
| use_byte_stream_split=False, |
| column_encoding=None, |
| writer_engine_version=None, |
| data_page_version=None, |
| use_compliant_nested_type=True, |
| encryption_properties=None, |
| write_batch_size=None, |
| dictionary_pagesize_limit=None, |
| store_schema=True, |
| write_page_index=False, |
| write_page_checksum=False, |
| sorting_columns=None, |
| store_decimal_as_integer=False, |
| use_content_defined_chunking=False, |
| write_time_adjusted_to_utc=False): |
| cdef: |
| shared_ptr[WriterProperties] properties |
| shared_ptr[ArrowWriterProperties] arrow_properties |
| c_string c_where |
| CMemoryPool* pool |
| |
| try: |
| where = _stringify_path(where) |
| except TypeError: |
| get_writer(where, &self.sink) |
| self.own_sink = False |
| else: |
| c_where = tobytes(where) |
| with nogil: |
| self.sink = GetResultValue(FileOutputStream.Open(c_where)) |
| self.own_sink = True |
| |
| properties = _create_writer_properties( |
| use_dictionary=use_dictionary, |
| compression=compression, |
| version=version, |
| write_statistics=write_statistics, |
| data_page_size=data_page_size, |
| max_rows_per_page=max_rows_per_page, |
| compression_level=compression_level, |
| use_byte_stream_split=use_byte_stream_split, |
| column_encoding=column_encoding, |
| data_page_version=data_page_version, |
| encryption_properties=encryption_properties, |
| write_batch_size=write_batch_size, |
| dictionary_pagesize_limit=dictionary_pagesize_limit, |
| write_page_index=write_page_index, |
| write_page_checksum=write_page_checksum, |
| sorting_columns=sorting_columns, |
| store_decimal_as_integer=store_decimal_as_integer, |
| use_content_defined_chunking=use_content_defined_chunking |
| ) |
| arrow_properties = _create_arrow_writer_properties( |
| use_deprecated_int96_timestamps=use_deprecated_int96_timestamps, |
| coerce_timestamps=coerce_timestamps, |
| allow_truncated_timestamps=allow_truncated_timestamps, |
| writer_engine_version=writer_engine_version, |
| use_compliant_nested_type=use_compliant_nested_type, |
| store_schema=store_schema, |
| write_time_adjusted_to_utc=write_time_adjusted_to_utc, |
| ) |
| |
| pool = maybe_unbox_memory_pool(memory_pool) |
| with nogil: |
| self.writer = move(GetResultValue( |
| FileWriter.Open(deref(schema.schema), pool, |
| self.sink, properties, arrow_properties))) |
| |
| def close(self): |
| with nogil: |
| check_status(self.writer.get().Close()) |
| if self.own_sink: |
| check_status(self.sink.get().Close()) |
| |
| def write_table(self, Table table, row_group_size=None): |
| cdef: |
| CTable* ctable = table.table |
| int64_t c_row_group_size |
| |
| if row_group_size is None or row_group_size == -1: |
| c_row_group_size = min(ctable.num_rows(), _DEFAULT_ROW_GROUP_SIZE) |
| elif row_group_size == 0: |
| raise ValueError('Row group size cannot be 0') |
| else: |
| c_row_group_size = row_group_size |
| |
| with nogil: |
| check_status(self.writer.get() |
| .WriteTable(deref(ctable), c_row_group_size)) |
| |
| def add_key_value_metadata(self, key_value_metadata): |
| cdef: |
| shared_ptr[const CKeyValueMetadata] c_metadata |
| |
| c_metadata = pyarrow_unwrap_metadata(KeyValueMetadata(key_value_metadata)) |
| with nogil: |
| check_status(self.writer.get() |
| .AddKeyValueMetadata(c_metadata)) |
| |
| @property |
| def metadata(self): |
| cdef: |
| shared_ptr[CFileMetaData] metadata |
| FileMetaData result |
| with nogil: |
| metadata = self.writer.get().metadata() |
| if metadata: |
| result = FileMetaData.__new__(FileMetaData) |
| result.init(metadata) |
| return result |
| raise RuntimeError( |
| 'file metadata is only available after writer close') |