blob: f287e493a9082a3fd0f7e72cd93871a995f29a4c [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "arrow/testing/gtest_compat.h"
#include "arrow/util/config.h"
#include "parquet/column_reader.h"
#include "parquet/column_writer.h"
#include "parquet/file_reader.h"
#include "parquet/file_writer.h"
#include "parquet/platform.h"
#include "parquet/test_util.h"
#include "parquet/types.h"
namespace parquet {
using schema::GroupNode;
using schema::NodePtr;
using schema::PrimitiveNode;
using ::testing::ElementsAre;
namespace test {
template <typename TestType>
class TestSerialize : public PrimitiveTypedTest<TestType> {
public:
void SetUp() {
num_columns_ = 4;
num_rowgroups_ = 4;
rows_per_rowgroup_ = 50;
rows_per_batch_ = 10;
this->SetUpSchema(Repetition::OPTIONAL, num_columns_);
}
protected:
int num_columns_;
int num_rowgroups_;
int rows_per_rowgroup_;
int rows_per_batch_;
void FileSerializeTest(Compression::type codec_type) {
FileSerializeTest(codec_type, codec_type);
}
void FileSerializeTest(Compression::type codec_type,
Compression::type expected_codec_type) {
auto sink = CreateOutputStream();
auto gnode = std::static_pointer_cast<GroupNode>(this->node_);
WriterProperties::Builder prop_builder;
for (int i = 0; i < num_columns_; ++i) {
prop_builder.compression(this->schema_.Column(i)->name(), codec_type);
}
std::shared_ptr<WriterProperties> writer_properties = prop_builder.build();
auto file_writer = ParquetFileWriter::Open(sink, gnode, writer_properties);
this->GenerateData(rows_per_rowgroup_);
for (int rg = 0; rg < num_rowgroups_ / 2; ++rg) {
RowGroupWriter* row_group_writer;
row_group_writer = file_writer->AppendRowGroup();
EXPECT_EQ(rows_per_rowgroup_ * rg, file_writer->num_rows());
for (int col = 0; col < num_columns_; ++col) {
auto column_writer =
static_cast<TypedColumnWriter<TestType>*>(row_group_writer->NextColumn());
column_writer->WriteBatch(rows_per_rowgroup_, this->def_levels_.data(), nullptr,
this->values_ptr_);
column_writer->Close();
// Ensure column() API which is specific to BufferedRowGroup cannot be called
ASSERT_THROW(row_group_writer->column(col), ParquetException);
}
EXPECT_EQ(0, row_group_writer->total_compressed_bytes());
EXPECT_NE(0, row_group_writer->total_bytes_written());
EXPECT_NE(0, row_group_writer->total_compressed_bytes_written());
row_group_writer->Close();
EXPECT_EQ(0, row_group_writer->total_compressed_bytes());
EXPECT_NE(0, row_group_writer->total_bytes_written());
EXPECT_NE(0, row_group_writer->total_compressed_bytes_written());
}
// Write half BufferedRowGroups
for (int rg = 0; rg < num_rowgroups_ / 2; ++rg) {
RowGroupWriter* row_group_writer;
row_group_writer = file_writer->AppendBufferedRowGroup();
EXPECT_EQ(rows_per_rowgroup_ * (rg + num_rowgroups_ / 2), file_writer->num_rows());
for (int batch = 0; batch < (rows_per_rowgroup_ / rows_per_batch_); ++batch) {
for (int col = 0; col < num_columns_; ++col) {
auto column_writer =
static_cast<TypedColumnWriter<TestType>*>(row_group_writer->column(col));
column_writer->WriteBatch(
rows_per_batch_, this->def_levels_.data() + (batch * rows_per_batch_),
nullptr, this->values_ptr_ + (batch * rows_per_batch_));
// Ensure NextColumn() API which is specific to RowGroup cannot be called
ASSERT_THROW(row_group_writer->NextColumn(), ParquetException);
}
}
// total_compressed_bytes() may equal to 0 if no dictionary enabled and no buffered
// values.
EXPECT_EQ(0, row_group_writer->total_bytes_written());
EXPECT_EQ(0, row_group_writer->total_compressed_bytes_written());
for (int col = 0; col < num_columns_; ++col) {
auto column_writer =
static_cast<TypedColumnWriter<TestType>*>(row_group_writer->column(col));
column_writer->Close();
}
row_group_writer->Close();
EXPECT_EQ(0, row_group_writer->total_compressed_bytes());
EXPECT_NE(0, row_group_writer->total_bytes_written());
EXPECT_NE(0, row_group_writer->total_compressed_bytes_written());
}
file_writer->Close();
PARQUET_ASSIGN_OR_THROW(auto buffer, sink->Finish());
int num_rows_ = num_rowgroups_ * rows_per_rowgroup_;
auto source = std::make_shared<::arrow::io::BufferReader>(buffer);
auto file_reader = ParquetFileReader::Open(source);
ASSERT_EQ(num_columns_, file_reader->metadata()->num_columns());
ASSERT_EQ(num_rowgroups_, file_reader->metadata()->num_row_groups());
ASSERT_EQ(num_rows_, file_reader->metadata()->num_rows());
for (int rg = 0; rg < num_rowgroups_; ++rg) {
auto rg_reader = file_reader->RowGroup(rg);
auto rg_metadata = rg_reader->metadata();
ASSERT_EQ(num_columns_, rg_metadata->num_columns());
ASSERT_EQ(rows_per_rowgroup_, rg_metadata->num_rows());
// Check that the specified compression was actually used.
ASSERT_EQ(expected_codec_type, rg_metadata->ColumnChunk(0)->compression());
const int64_t total_byte_size = rg_metadata->total_byte_size();
const int64_t total_compressed_size = rg_metadata->total_compressed_size();
if (expected_codec_type == Compression::UNCOMPRESSED) {
ASSERT_EQ(total_byte_size, total_compressed_size);
} else {
ASSERT_NE(total_byte_size, total_compressed_size);
}
int64_t total_column_byte_size = 0;
int64_t total_column_compressed_size = 0;
for (int i = 0; i < num_columns_; ++i) {
int64_t values_read;
ASSERT_FALSE(rg_metadata->ColumnChunk(i)->has_index_page());
total_column_byte_size += rg_metadata->ColumnChunk(i)->total_uncompressed_size();
total_column_compressed_size +=
rg_metadata->ColumnChunk(i)->total_compressed_size();
std::vector<int16_t> def_levels_out(rows_per_rowgroup_);
std::vector<int16_t> rep_levels_out(rows_per_rowgroup_);
auto col_reader =
std::static_pointer_cast<TypedColumnReader<TestType>>(rg_reader->Column(i));
this->SetupValuesOut(rows_per_rowgroup_);
col_reader->ReadBatch(rows_per_rowgroup_, def_levels_out.data(),
rep_levels_out.data(), this->values_out_ptr_, &values_read);
this->SyncValuesOut();
ASSERT_EQ(rows_per_rowgroup_, values_read);
ASSERT_EQ(this->values_, this->values_out_);
ASSERT_EQ(this->def_levels_, def_levels_out);
}
ASSERT_EQ(total_byte_size, total_column_byte_size);
ASSERT_EQ(total_compressed_size, total_column_compressed_size);
}
}
void UnequalNumRows(int64_t max_rows, const std::vector<int64_t> rows_per_column) {
auto sink = CreateOutputStream();
auto gnode = std::static_pointer_cast<GroupNode>(this->node_);
std::shared_ptr<WriterProperties> props = WriterProperties::Builder().build();
auto file_writer = ParquetFileWriter::Open(sink, gnode, props);
RowGroupWriter* row_group_writer;
row_group_writer = file_writer->AppendRowGroup();
this->GenerateData(max_rows);
for (int col = 0; col < num_columns_; ++col) {
auto column_writer =
static_cast<TypedColumnWriter<TestType>*>(row_group_writer->NextColumn());
column_writer->WriteBatch(rows_per_column[col], this->def_levels_.data(), nullptr,
this->values_ptr_);
column_writer->Close();
}
row_group_writer->Close();
file_writer->Close();
}
void UnequalNumRowsBuffered(int64_t max_rows,
const std::vector<int64_t> rows_per_column) {
auto sink = CreateOutputStream();
auto gnode = std::static_pointer_cast<GroupNode>(this->node_);
std::shared_ptr<WriterProperties> props = WriterProperties::Builder().build();
auto file_writer = ParquetFileWriter::Open(sink, gnode, props);
RowGroupWriter* row_group_writer;
row_group_writer = file_writer->AppendBufferedRowGroup();
this->GenerateData(max_rows);
for (int col = 0; col < num_columns_; ++col) {
auto column_writer =
static_cast<TypedColumnWriter<TestType>*>(row_group_writer->column(col));
column_writer->WriteBatch(rows_per_column[col], this->def_levels_.data(), nullptr,
this->values_ptr_);
column_writer->Close();
}
row_group_writer->Close();
file_writer->Close();
}
void RepeatedUnequalRows() {
// Optional and repeated, so definition and repetition levels
this->SetUpSchema(Repetition::REPEATED);
const int kNumRows = 100;
this->GenerateData(kNumRows);
auto sink = CreateOutputStream();
auto gnode = std::static_pointer_cast<GroupNode>(this->node_);
std::shared_ptr<WriterProperties> props = WriterProperties::Builder().build();
auto file_writer = ParquetFileWriter::Open(sink, gnode, props);
RowGroupWriter* row_group_writer;
row_group_writer = file_writer->AppendRowGroup();
this->GenerateData(kNumRows);
std::vector<int16_t> definition_levels(kNumRows, 1);
std::vector<int16_t> repetition_levels(kNumRows, 0);
{
auto column_writer =
static_cast<TypedColumnWriter<TestType>*>(row_group_writer->NextColumn());
column_writer->WriteBatch(kNumRows, definition_levels.data(),
repetition_levels.data(), this->values_ptr_);
column_writer->Close();
}
definition_levels[1] = 0;
repetition_levels[3] = 1;
{
auto column_writer =
static_cast<TypedColumnWriter<TestType>*>(row_group_writer->NextColumn());
column_writer->WriteBatch(kNumRows, definition_levels.data(),
repetition_levels.data(), this->values_ptr_);
column_writer->Close();
}
}
void ZeroRowsRowGroup() {
auto sink = CreateOutputStream();
auto gnode = std::static_pointer_cast<GroupNode>(this->node_);
std::shared_ptr<WriterProperties> props = WriterProperties::Builder().build();
auto file_writer = ParquetFileWriter::Open(sink, gnode, props);
RowGroupWriter* row_group_writer;
row_group_writer = file_writer->AppendRowGroup();
for (int col = 0; col < num_columns_; ++col) {
auto column_writer =
static_cast<TypedColumnWriter<TestType>*>(row_group_writer->NextColumn());
column_writer->Close();
}
row_group_writer->Close();
row_group_writer = file_writer->AppendBufferedRowGroup();
for (int col = 0; col < num_columns_; ++col) {
auto column_writer =
static_cast<TypedColumnWriter<TestType>*>(row_group_writer->column(col));
column_writer->Close();
}
row_group_writer->Close();
file_writer->Close();
}
};
typedef ::testing::Types<Int32Type, Int64Type, Int96Type, FloatType, DoubleType,
BooleanType, ByteArrayType, FLBAType>
TestTypes;
TYPED_TEST_SUITE(TestSerialize, TestTypes);
TYPED_TEST(TestSerialize, SmallFileUncompressed) {
ASSERT_NO_FATAL_FAILURE(this->FileSerializeTest(Compression::UNCOMPRESSED));
}
TYPED_TEST(TestSerialize, TooFewRows) {
std::vector<int64_t> num_rows = {100, 100, 100, 99};
ASSERT_THROW(this->UnequalNumRows(100, num_rows), ParquetException);
ASSERT_THROW(this->UnequalNumRowsBuffered(100, num_rows), ParquetException);
}
TYPED_TEST(TestSerialize, TooManyRows) {
std::vector<int64_t> num_rows = {100, 100, 100, 101};
ASSERT_THROW(this->UnequalNumRows(101, num_rows), ParquetException);
ASSERT_THROW(this->UnequalNumRowsBuffered(101, num_rows), ParquetException);
}
TYPED_TEST(TestSerialize, ZeroRows) { ASSERT_NO_THROW(this->ZeroRowsRowGroup()); }
TYPED_TEST(TestSerialize, RepeatedTooFewRows) {
ASSERT_THROW(this->RepeatedUnequalRows(), ParquetException);
}
#ifdef ARROW_WITH_SNAPPY
TYPED_TEST(TestSerialize, SmallFileSnappy) {
ASSERT_NO_FATAL_FAILURE(this->FileSerializeTest(Compression::SNAPPY));
}
#endif
#ifdef ARROW_WITH_BROTLI
TYPED_TEST(TestSerialize, SmallFileBrotli) {
ASSERT_NO_FATAL_FAILURE(this->FileSerializeTest(Compression::BROTLI));
}
#endif
#ifdef ARROW_WITH_ZLIB
TYPED_TEST(TestSerialize, SmallFileGzip) {
ASSERT_NO_FATAL_FAILURE(this->FileSerializeTest(Compression::GZIP));
}
#endif
#ifdef ARROW_WITH_LZ4
TYPED_TEST(TestSerialize, SmallFileLz4) {
ASSERT_NO_FATAL_FAILURE(this->FileSerializeTest(Compression::LZ4));
}
TYPED_TEST(TestSerialize, SmallFileLz4Hadoop) {
ASSERT_NO_FATAL_FAILURE(this->FileSerializeTest(Compression::LZ4_HADOOP));
}
#endif
#ifdef ARROW_WITH_ZSTD
TYPED_TEST(TestSerialize, SmallFileZstd) {
ASSERT_NO_FATAL_FAILURE(this->FileSerializeTest(Compression::ZSTD));
}
#endif
TEST(TestBufferedRowGroupWriter, DisabledDictionary) {
// PARQUET-1706:
// Wrong dictionary_page_offset when writing only data pages via BufferedPageWriter
auto sink = CreateOutputStream();
auto writer_props = parquet::WriterProperties::Builder().disable_dictionary()->build();
schema::NodeVector fields;
fields.push_back(
PrimitiveNode::Make("col", parquet::Repetition::REQUIRED, parquet::Type::INT32));
auto schema = std::static_pointer_cast<GroupNode>(
GroupNode::Make("schema", Repetition::REQUIRED, fields));
auto file_writer = parquet::ParquetFileWriter::Open(sink, schema, writer_props);
auto rg_writer = file_writer->AppendBufferedRowGroup();
auto col_writer = static_cast<Int32Writer*>(rg_writer->column(0));
int value = 0;
col_writer->WriteBatch(1, nullptr, nullptr, &value);
rg_writer->Close();
file_writer->Close();
PARQUET_ASSIGN_OR_THROW(auto buffer, sink->Finish());
auto source = std::make_shared<::arrow::io::BufferReader>(buffer);
auto file_reader = ParquetFileReader::Open(source);
ASSERT_EQ(1, file_reader->metadata()->num_row_groups());
auto rg_reader = file_reader->RowGroup(0);
ASSERT_EQ(1, rg_reader->metadata()->num_columns());
ASSERT_EQ(1, rg_reader->metadata()->num_rows());
ASSERT_FALSE(rg_reader->metadata()->ColumnChunk(0)->has_dictionary_page());
}
TEST(TestBufferedRowGroupWriter, MultiPageDisabledDictionary) {
constexpr int kValueCount = 10000;
constexpr int kPageSize = 16384;
auto sink = CreateOutputStream();
auto writer_props = parquet::WriterProperties::Builder()
.disable_dictionary()
->data_pagesize(kPageSize)
->build();
schema::NodeVector fields;
fields.push_back(
PrimitiveNode::Make("col", parquet::Repetition::REQUIRED, parquet::Type::INT32));
auto schema = std::static_pointer_cast<GroupNode>(
GroupNode::Make("schema", Repetition::REQUIRED, fields));
auto file_writer = parquet::ParquetFileWriter::Open(sink, schema, writer_props);
auto rg_writer = file_writer->AppendBufferedRowGroup();
auto col_writer = static_cast<Int32Writer*>(rg_writer->column(0));
std::vector<int32_t> values_in;
for (int i = 0; i < kValueCount; ++i) {
values_in.push_back((i % 100) + 1);
}
col_writer->WriteBatch(kValueCount, nullptr, nullptr, values_in.data());
rg_writer->Close();
file_writer->Close();
PARQUET_ASSIGN_OR_THROW(auto buffer, sink->Finish());
auto source = std::make_shared<::arrow::io::BufferReader>(buffer);
auto file_reader = ParquetFileReader::Open(source);
auto file_metadata = file_reader->metadata();
ASSERT_EQ(1, file_reader->metadata()->num_row_groups());
std::vector<int32_t> values_out(kValueCount);
for (int r = 0; r < file_metadata->num_row_groups(); ++r) {
auto rg_reader = file_reader->RowGroup(r);
ASSERT_EQ(1, rg_reader->metadata()->num_columns());
ASSERT_EQ(kValueCount, rg_reader->metadata()->num_rows());
int64_t total_values_read = 0;
std::shared_ptr<parquet::ColumnReader> col_reader;
ASSERT_NO_THROW(col_reader = rg_reader->Column(0));
parquet::Int32Reader* int32_reader =
static_cast<parquet::Int32Reader*>(col_reader.get());
int64_t vn = kValueCount;
int32_t* vx = values_out.data();
while (int32_reader->HasNext()) {
int64_t values_read;
int32_reader->ReadBatch(vn, nullptr, nullptr, vx, &values_read);
vn -= values_read;
vx += values_read;
total_values_read += values_read;
}
ASSERT_EQ(kValueCount, total_values_read);
ASSERT_EQ(values_in, values_out);
}
}
TEST(ParquetRoundtrip, AllNulls) {
auto primitive_node =
PrimitiveNode::Make("nulls", Repetition::OPTIONAL, nullptr, Type::INT32);
schema::NodeVector columns({primitive_node});
auto root_node = GroupNode::Make("root", Repetition::REQUIRED, columns, nullptr);
auto sink = CreateOutputStream();
auto file_writer =
ParquetFileWriter::Open(sink, std::static_pointer_cast<GroupNode>(root_node));
auto row_group_writer = file_writer->AppendRowGroup();
auto column_writer = static_cast<Int32Writer*>(row_group_writer->NextColumn());
int32_t values[3];
int16_t def_levels[] = {0, 0, 0};
column_writer->WriteBatch(3, def_levels, nullptr, values);
column_writer->Close();
row_group_writer->Close();
file_writer->Close();
ReaderProperties props = default_reader_properties();
props.enable_buffered_stream();
PARQUET_ASSIGN_OR_THROW(auto buffer, sink->Finish());
auto source = std::make_shared<::arrow::io::BufferReader>(buffer);
auto file_reader = ParquetFileReader::Open(source, props);
auto row_group_reader = file_reader->RowGroup(0);
auto column_reader = std::static_pointer_cast<Int32Reader>(row_group_reader->Column(0));
int64_t values_read;
def_levels[0] = -1;
def_levels[1] = -1;
def_levels[2] = -1;
column_reader->ReadBatch(3, def_levels, nullptr, values, &values_read);
EXPECT_THAT(def_levels, ElementsAre(0, 0, 0));
}
} // namespace test
} // namespace parquet