blob: b9e695dfcb0797eab3109c81bd7f8bdd0406783a [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// From Apache Impala (incubating) as of 2016-01-29
#pragma once
#include <string.h>
#include <algorithm>
#include <cstdint>
#include "arrow/util/bit_util.h"
#include "arrow/util/bpacking.h"
#include "arrow/util/logging.h"
#include "arrow/util/macros.h"
#include "arrow/util/ubsan.h"
namespace arrow {
namespace BitUtil {
/// Utility class to write bit/byte streams. This class can write data to either be
/// bit packed or byte aligned (and a single stream that has a mix of both).
/// This class does not allocate memory.
class BitWriter {
public:
/// buffer: buffer to write bits to. Buffer should be preallocated with
/// 'buffer_len' bytes.
BitWriter(uint8_t* buffer, int buffer_len) : buffer_(buffer), max_bytes_(buffer_len) {
Clear();
}
void Clear() {
buffered_values_ = 0;
byte_offset_ = 0;
bit_offset_ = 0;
}
/// The number of current bytes written, including the current byte (i.e. may include a
/// fraction of a byte). Includes buffered values.
int bytes_written() const {
return byte_offset_ + static_cast<int>(BitUtil::BytesForBits(bit_offset_));
}
uint8_t* buffer() const { return buffer_; }
int buffer_len() const { return max_bytes_; }
/// Writes a value to buffered_values_, flushing to buffer_ if necessary. This is bit
/// packed. Returns false if there was not enough space. num_bits must be <= 32.
bool PutValue(uint64_t v, int num_bits);
/// Writes v to the next aligned byte using num_bytes. If T is larger than
/// num_bytes, the extra high-order bytes will be ignored. Returns false if
/// there was not enough space.
/// Assume the v is stored in buffer_ as a litte-endian format
template <typename T>
bool PutAligned(T v, int num_bytes);
/// Write a Vlq encoded int to the buffer. Returns false if there was not enough
/// room. The value is written byte aligned.
/// For more details on vlq:
/// en.wikipedia.org/wiki/Variable-length_quantity
bool PutVlqInt(uint32_t v);
// Writes an int zigzag encoded.
bool PutZigZagVlqInt(int32_t v);
/// Get a pointer to the next aligned byte and advance the underlying buffer
/// by num_bytes.
/// Returns NULL if there was not enough space.
uint8_t* GetNextBytePtr(int num_bytes = 1);
/// Flushes all buffered values to the buffer. Call this when done writing to
/// the buffer. If 'align' is true, buffered_values_ is reset and any future
/// writes will be written to the next byte boundary.
void Flush(bool align = false);
private:
uint8_t* buffer_;
int max_bytes_;
/// Bit-packed values are initially written to this variable before being memcpy'd to
/// buffer_. This is faster than writing values byte by byte directly to buffer_.
uint64_t buffered_values_;
int byte_offset_; // Offset in buffer_
int bit_offset_; // Offset in buffered_values_
};
/// Utility class to read bit/byte stream. This class can read bits or bytes
/// that are either byte aligned or not. It also has utilities to read multiple
/// bytes in one read (e.g. encoded int).
class BitReader {
public:
/// 'buffer' is the buffer to read from. The buffer's length is 'buffer_len'.
BitReader(const uint8_t* buffer, int buffer_len)
: buffer_(buffer), max_bytes_(buffer_len), byte_offset_(0), bit_offset_(0) {
int num_bytes = std::min(8, max_bytes_ - byte_offset_);
memcpy(&buffered_values_, buffer_ + byte_offset_, num_bytes);
buffered_values_ = arrow::BitUtil::FromLittleEndian(buffered_values_);
}
BitReader()
: buffer_(NULL),
max_bytes_(0),
buffered_values_(0),
byte_offset_(0),
bit_offset_(0) {}
void Reset(const uint8_t* buffer, int buffer_len) {
buffer_ = buffer;
max_bytes_ = buffer_len;
byte_offset_ = 0;
bit_offset_ = 0;
int num_bytes = std::min(8, max_bytes_ - byte_offset_);
memcpy(&buffered_values_, buffer_ + byte_offset_, num_bytes);
buffered_values_ = arrow::BitUtil::FromLittleEndian(buffered_values_);
}
/// Gets the next value from the buffer. Returns true if 'v' could be read or false if
/// there are not enough bytes left. num_bits must be <= 32.
template <typename T>
bool GetValue(int num_bits, T* v);
/// Get a number of values from the buffer. Return the number of values actually read.
template <typename T>
int GetBatch(int num_bits, T* v, int batch_size);
/// Reads a 'num_bytes'-sized value from the buffer and stores it in 'v'. T
/// needs to be a little-endian native type and big enough to store
/// 'num_bytes'. The value is assumed to be byte-aligned so the stream will
/// be advanced to the start of the next byte before 'v' is read. Returns
/// false if there are not enough bytes left.
/// Assume the v was stored in buffer_ as a litte-endian format
template <typename T>
bool GetAligned(int num_bytes, T* v);
/// Reads a vlq encoded int from the stream. The encoded int must start at
/// the beginning of a byte. Return false if there were not enough bytes in
/// the buffer.
bool GetVlqInt(uint32_t* v);
// Reads a zigzag encoded int `into` v.
bool GetZigZagVlqInt(int32_t* v);
/// Returns the number of bytes left in the stream, not including the current
/// byte (i.e., there may be an additional fraction of a byte).
int bytes_left() {
return max_bytes_ -
(byte_offset_ + static_cast<int>(BitUtil::BytesForBits(bit_offset_)));
}
/// Maximum byte length of a vlq encoded int
static constexpr int kMaxVlqByteLength = 5;
private:
const uint8_t* buffer_;
int max_bytes_;
/// Bytes are memcpy'd from buffer_ and values are read from this variable. This is
/// faster than reading values byte by byte directly from buffer_.
uint64_t buffered_values_;
int byte_offset_; // Offset in buffer_
int bit_offset_; // Offset in buffered_values_
};
inline bool BitWriter::PutValue(uint64_t v, int num_bits) {
// TODO: revisit this limit if necessary (can be raised to 64 by fixing some edge cases)
DCHECK_LE(num_bits, 32);
DCHECK_EQ(v >> num_bits, 0) << "v = " << v << ", num_bits = " << num_bits;
if (ARROW_PREDICT_FALSE(byte_offset_ * 8 + bit_offset_ + num_bits > max_bytes_ * 8))
return false;
buffered_values_ |= v << bit_offset_;
bit_offset_ += num_bits;
if (ARROW_PREDICT_FALSE(bit_offset_ >= 64)) {
// Flush buffered_values_ and write out bits of v that did not fit
buffered_values_ = arrow::BitUtil::ToLittleEndian(buffered_values_);
memcpy(buffer_ + byte_offset_, &buffered_values_, 8);
buffered_values_ = 0;
byte_offset_ += 8;
bit_offset_ -= 64;
buffered_values_ = v >> (num_bits - bit_offset_);
}
DCHECK_LT(bit_offset_, 64);
return true;
}
inline void BitWriter::Flush(bool align) {
int num_bytes = static_cast<int>(BitUtil::BytesForBits(bit_offset_));
DCHECK_LE(byte_offset_ + num_bytes, max_bytes_);
auto buffered_values = arrow::BitUtil::ToLittleEndian(buffered_values_);
memcpy(buffer_ + byte_offset_, &buffered_values, num_bytes);
if (align) {
buffered_values_ = 0;
byte_offset_ += num_bytes;
bit_offset_ = 0;
}
}
inline uint8_t* BitWriter::GetNextBytePtr(int num_bytes) {
Flush(/* align */ true);
DCHECK_LE(byte_offset_, max_bytes_);
if (byte_offset_ + num_bytes > max_bytes_) return NULL;
uint8_t* ptr = buffer_ + byte_offset_;
byte_offset_ += num_bytes;
return ptr;
}
template <typename T>
inline bool BitWriter::PutAligned(T val, int num_bytes) {
uint8_t* ptr = GetNextBytePtr(num_bytes);
if (ptr == NULL) return false;
val = arrow::BitUtil::ToLittleEndian(val);
memcpy(ptr, &val, num_bytes);
return true;
}
namespace detail {
template <typename T>
inline void GetValue_(int num_bits, T* v, int max_bytes, const uint8_t* buffer,
int* bit_offset, int* byte_offset, uint64_t* buffered_values) {
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4800)
#endif
*v = static_cast<T>(BitUtil::TrailingBits(*buffered_values, *bit_offset + num_bits) >>
*bit_offset);
#ifdef _MSC_VER
#pragma warning(pop)
#endif
*bit_offset += num_bits;
if (*bit_offset >= 64) {
*byte_offset += 8;
*bit_offset -= 64;
int bytes_remaining = max_bytes - *byte_offset;
if (ARROW_PREDICT_TRUE(bytes_remaining >= 8)) {
memcpy(buffered_values, buffer + *byte_offset, 8);
} else {
memcpy(buffered_values, buffer + *byte_offset, bytes_remaining);
}
*buffered_values = arrow::BitUtil::FromLittleEndian(*buffered_values);
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4800 4805)
#endif
// Read bits of v that crossed into new buffered_values_
*v = *v | static_cast<T>(BitUtil::TrailingBits(*buffered_values, *bit_offset)
<< (num_bits - *bit_offset));
#ifdef _MSC_VER
#pragma warning(pop)
#endif
DCHECK_LE(*bit_offset, 64);
}
}
} // namespace detail
template <typename T>
inline bool BitReader::GetValue(int num_bits, T* v) {
return GetBatch(num_bits, v, 1) == 1;
}
template <typename T>
inline int BitReader::GetBatch(int num_bits, T* v, int batch_size) {
DCHECK(buffer_ != NULL);
// TODO: revisit this limit if necessary
DCHECK_LE(num_bits, 32);
DCHECK_LE(num_bits, static_cast<int>(sizeof(T) * 8));
int bit_offset = bit_offset_;
int byte_offset = byte_offset_;
uint64_t buffered_values = buffered_values_;
int max_bytes = max_bytes_;
const uint8_t* buffer = buffer_;
uint64_t needed_bits = num_bits * batch_size;
constexpr uint64_t kBitsPerByte = 8;
uint64_t remaining_bits = (max_bytes - byte_offset) * kBitsPerByte - bit_offset;
if (remaining_bits < needed_bits) {
batch_size = static_cast<int>(remaining_bits) / num_bits;
}
int i = 0;
if (ARROW_PREDICT_FALSE(bit_offset != 0)) {
for (; i < batch_size && bit_offset != 0; ++i) {
detail::GetValue_(num_bits, &v[i], max_bytes, buffer, &bit_offset, &byte_offset,
&buffered_values);
}
}
if (sizeof(T) == 4) {
int num_unpacked =
internal::unpack32(reinterpret_cast<const uint32_t*>(buffer + byte_offset),
reinterpret_cast<uint32_t*>(v + i), batch_size - i, num_bits);
i += num_unpacked;
byte_offset += num_unpacked * num_bits / 8;
} else {
const int buffer_size = 1024;
uint32_t unpack_buffer[buffer_size];
while (i < batch_size) {
int unpack_size = std::min(buffer_size, batch_size - i);
int num_unpacked =
internal::unpack32(reinterpret_cast<const uint32_t*>(buffer + byte_offset),
unpack_buffer, unpack_size, num_bits);
if (num_unpacked == 0) {
break;
}
for (int k = 0; k < num_unpacked; ++k) {
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4800)
#endif
v[i + k] = static_cast<T>(unpack_buffer[k]);
#ifdef _MSC_VER
#pragma warning(pop)
#endif
}
i += num_unpacked;
byte_offset += num_unpacked * num_bits / 8;
}
}
int bytes_remaining = max_bytes - byte_offset;
if (bytes_remaining >= 8) {
memcpy(&buffered_values, buffer + byte_offset, 8);
} else {
memcpy(&buffered_values, buffer + byte_offset, bytes_remaining);
}
buffered_values = arrow::BitUtil::FromLittleEndian(buffered_values);
for (; i < batch_size; ++i) {
detail::GetValue_(num_bits, &v[i], max_bytes, buffer, &bit_offset, &byte_offset,
&buffered_values);
}
bit_offset_ = bit_offset;
byte_offset_ = byte_offset;
buffered_values_ = buffered_values;
return batch_size;
}
template <typename T>
inline bool BitReader::GetAligned(int num_bytes, T* v) {
if (ARROW_PREDICT_FALSE(num_bytes > static_cast<int>(sizeof(T)))) {
return false;
}
int bytes_read = static_cast<int>(BitUtil::BytesForBits(bit_offset_));
if (ARROW_PREDICT_FALSE(byte_offset_ + bytes_read + num_bytes > max_bytes_)) {
return false;
}
// Advance byte_offset to next unread byte and read num_bytes
byte_offset_ += bytes_read;
memcpy(v, buffer_ + byte_offset_, num_bytes);
*v = arrow::BitUtil::FromLittleEndian(*v);
byte_offset_ += num_bytes;
// Reset buffered_values_
bit_offset_ = 0;
int bytes_remaining = max_bytes_ - byte_offset_;
if (ARROW_PREDICT_TRUE(bytes_remaining >= 8)) {
memcpy(&buffered_values_, buffer_ + byte_offset_, 8);
} else {
memcpy(&buffered_values_, buffer_ + byte_offset_, bytes_remaining);
}
buffered_values_ = arrow::BitUtil::FromLittleEndian(buffered_values_);
return true;
}
inline bool BitWriter::PutVlqInt(uint32_t v) {
bool result = true;
while ((v & 0xFFFFFF80UL) != 0UL) {
result &= PutAligned<uint8_t>(static_cast<uint8_t>((v & 0x7F) | 0x80), 1);
v >>= 7;
}
result &= PutAligned<uint8_t>(static_cast<uint8_t>(v & 0x7F), 1);
return result;
}
inline bool BitReader::GetVlqInt(uint32_t* v) {
uint32_t tmp = 0;
for (int i = 0; i < kMaxVlqByteLength; i++) {
uint8_t byte = 0;
if (ARROW_PREDICT_FALSE(!GetAligned<uint8_t>(1, &byte))) {
return false;
}
tmp |= static_cast<uint32_t>(byte & 0x7F) << (7 * i);
if ((byte & 0x80) == 0) {
*v = tmp;
return true;
}
}
return false;
}
inline bool BitWriter::PutZigZagVlqInt(int32_t v) {
auto u_v = ::arrow::util::SafeCopy<uint32_t>(v);
return PutVlqInt((u_v << 1) ^ (u_v >> 31));
}
inline bool BitReader::GetZigZagVlqInt(int32_t* v) {
uint32_t u;
if (!GetVlqInt(&u)) return false;
*v = ::arrow::util::SafeCopy<int32_t>((u >> 1) ^ (u << 31));
return true;
}
} // namespace BitUtil
} // namespace arrow