blob: d2e37db0cc1de849f40ae35677edd697cf8b94f1 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <array>
#include <cstdint>
#include <limits>
#include <string>
#include <type_traits>
#include "arrow/util/macros.h"
#include "arrow/util/type_traits.h"
#include "arrow/util/visibility.h"
namespace arrow {
enum class DecimalStatus {
kSuccess,
kDivideByZero,
kOverflow,
kRescaleDataLoss,
};
/// Represents a signed 128-bit integer in two's complement.
///
/// This class is also compiled into LLVM IR - so, it should not have cpp references like
/// streams and boost.
class ARROW_EXPORT BasicDecimal128 {
public:
static constexpr int bit_width = 128;
/// \brief Create a BasicDecimal128 from the two's complement representation.
constexpr BasicDecimal128(int64_t high, uint64_t low) noexcept
: low_bits_(low), high_bits_(high) {}
/// \brief Empty constructor creates a BasicDecimal128 with a value of 0.
constexpr BasicDecimal128() noexcept : BasicDecimal128(0, 0) {}
/// \brief Convert any integer value into a BasicDecimal128.
template <typename T,
typename = typename std::enable_if<
std::is_integral<T>::value && (sizeof(T) <= sizeof(uint64_t)), T>::type>
constexpr BasicDecimal128(T value) noexcept
: BasicDecimal128(value >= T{0} ? 0 : -1, static_cast<uint64_t>(value)) { // NOLINT
}
/// \brief Create a BasicDecimal128 from an array of bytes. Bytes are assumed to be in
/// native-endian byte order.
explicit BasicDecimal128(const uint8_t* bytes);
/// \brief Negate the current value (in-place)
BasicDecimal128& Negate();
/// \brief Absolute value (in-place)
BasicDecimal128& Abs();
/// \brief Absolute value
static BasicDecimal128 Abs(const BasicDecimal128& left);
/// \brief Add a number to this one. The result is truncated to 128 bits.
BasicDecimal128& operator+=(const BasicDecimal128& right);
/// \brief Subtract a number from this one. The result is truncated to 128 bits.
BasicDecimal128& operator-=(const BasicDecimal128& right);
/// \brief Multiply this number by another number. The result is truncated to 128 bits.
BasicDecimal128& operator*=(const BasicDecimal128& right);
/// Divide this number by right and return the result.
///
/// This operation is not destructive.
/// The answer rounds to zero. Signs work like:
/// 21 / 5 -> 4, 1
/// -21 / 5 -> -4, -1
/// 21 / -5 -> -4, 1
/// -21 / -5 -> 4, -1
/// \param[in] divisor the number to divide by
/// \param[out] result the quotient
/// \param[out] remainder the remainder after the division
DecimalStatus Divide(const BasicDecimal128& divisor, BasicDecimal128* result,
BasicDecimal128* remainder) const;
/// \brief In-place division.
BasicDecimal128& operator/=(const BasicDecimal128& right);
/// \brief Bitwise "or" between two BasicDecimal128.
BasicDecimal128& operator|=(const BasicDecimal128& right);
/// \brief Bitwise "and" between two BasicDecimal128.
BasicDecimal128& operator&=(const BasicDecimal128& right);
/// \brief Shift left by the given number of bits.
BasicDecimal128& operator<<=(uint32_t bits);
/// \brief Shift right by the given number of bits. Negative values will
BasicDecimal128& operator>>=(uint32_t bits);
/// \brief Get the high bits of the two's complement representation of the number.
inline constexpr int64_t high_bits() const { return high_bits_; }
/// \brief Get the low bits of the two's complement representation of the number.
inline constexpr uint64_t low_bits() const { return low_bits_; }
/// \brief Return the raw bytes of the value in native-endian byte order.
std::array<uint8_t, 16> ToBytes() const;
void ToBytes(uint8_t* out) const;
/// \brief separate the integer and fractional parts for the given scale.
void GetWholeAndFraction(int32_t scale, BasicDecimal128* whole,
BasicDecimal128* fraction) const;
/// \brief Scale multiplier for given scale value.
static const BasicDecimal128& GetScaleMultiplier(int32_t scale);
/// \brief Convert BasicDecimal128 from one scale to another
DecimalStatus Rescale(int32_t original_scale, int32_t new_scale,
BasicDecimal128* out) const;
/// \brief Scale up.
BasicDecimal128 IncreaseScaleBy(int32_t increase_by) const;
/// \brief Scale down.
/// - If 'round' is true, the right-most digits are dropped and the result value is
/// rounded up (+1 for +ve, -1 for -ve) based on the value of the dropped digits
/// (>= 10^reduce_by / 2).
/// - If 'round' is false, the right-most digits are simply dropped.
BasicDecimal128 ReduceScaleBy(int32_t reduce_by, bool round = true) const;
/// \brief Whether this number fits in the given precision
///
/// Return true if the number of significant digits is less or equal to `precision`.
bool FitsInPrecision(int32_t precision) const;
// returns 1 for positive and zero decimal values, -1 for negative decimal values.
inline int64_t Sign() const { return 1 | (high_bits_ >> 63); }
/// \brief count the number of leading binary zeroes.
int32_t CountLeadingBinaryZeros() const;
/// \brief Get the maximum valid unscaled decimal value.
static const BasicDecimal128& GetMaxValue();
private:
uint64_t low_bits_;
int64_t high_bits_;
};
ARROW_EXPORT bool operator==(const BasicDecimal128& left, const BasicDecimal128& right);
ARROW_EXPORT bool operator!=(const BasicDecimal128& left, const BasicDecimal128& right);
ARROW_EXPORT bool operator<(const BasicDecimal128& left, const BasicDecimal128& right);
ARROW_EXPORT bool operator<=(const BasicDecimal128& left, const BasicDecimal128& right);
ARROW_EXPORT bool operator>(const BasicDecimal128& left, const BasicDecimal128& right);
ARROW_EXPORT bool operator>=(const BasicDecimal128& left, const BasicDecimal128& right);
ARROW_EXPORT BasicDecimal128 operator-(const BasicDecimal128& operand);
ARROW_EXPORT BasicDecimal128 operator~(const BasicDecimal128& operand);
ARROW_EXPORT BasicDecimal128 operator+(const BasicDecimal128& left,
const BasicDecimal128& right);
ARROW_EXPORT BasicDecimal128 operator-(const BasicDecimal128& left,
const BasicDecimal128& right);
ARROW_EXPORT BasicDecimal128 operator*(const BasicDecimal128& left,
const BasicDecimal128& right);
ARROW_EXPORT BasicDecimal128 operator/(const BasicDecimal128& left,
const BasicDecimal128& right);
ARROW_EXPORT BasicDecimal128 operator%(const BasicDecimal128& left,
const BasicDecimal128& right);
class ARROW_EXPORT BasicDecimal256 {
private:
// Due to a bug in clang, we have to declare the extend method prior to its
// usage.
template <typename T>
inline static constexpr uint64_t extend(T low_bits) noexcept {
return low_bits >= T() ? uint64_t{0} : ~uint64_t{0};
}
public:
static constexpr int bit_width = 256;
/// \brief Create a BasicDecimal256 from the two's complement representation.
constexpr BasicDecimal256(const std::array<uint64_t, 4>& little_endian_array) noexcept
: little_endian_array_(little_endian_array) {}
/// \brief Empty constructor creates a BasicDecimal256 with a value of 0.
constexpr BasicDecimal256() noexcept : little_endian_array_({0, 0, 0, 0}) {}
/// \brief Convert any integer value into a BasicDecimal256.
template <typename T,
typename = typename std::enable_if<
std::is_integral<T>::value && (sizeof(T) <= sizeof(uint64_t)), T>::type>
constexpr BasicDecimal256(T value) noexcept
: little_endian_array_({static_cast<uint64_t>(value), extend(value), extend(value),
extend(value)}) {}
constexpr BasicDecimal256(const BasicDecimal128& value) noexcept
: little_endian_array_({value.low_bits(), static_cast<uint64_t>(value.high_bits()),
extend(value.high_bits()), extend(value.high_bits())}) {}
/// \brief Create a BasicDecimal256 from an array of bytes. Bytes are assumed to be in
/// native-endian byte order.
explicit BasicDecimal256(const uint8_t* bytes);
/// \brief Negate the current value (in-place)
BasicDecimal256& Negate();
/// \brief Absolute value (in-place)
BasicDecimal256& Abs();
/// \brief Absolute value
static BasicDecimal256 Abs(const BasicDecimal256& left);
/// \brief Add a number to this one. The result is truncated to 256 bits.
BasicDecimal256& operator+=(const BasicDecimal256& right);
/// \brief Subtract a number from this one. The result is truncated to 256 bits.
BasicDecimal256& operator-=(const BasicDecimal256& right);
/// \brief Get the bits of the two's complement representation of the number. The 4
/// elements are in little endian order. The bits within each uint64_t element are in
/// native endian order. For example,
/// BasicDecimal256(123).little_endian_array() = {123, 0, 0, 0};
/// BasicDecimal256(-2).little_endian_array() = {0xFF...FE, 0xFF...FF, 0xFF...FF,
/// 0xFF...FF}.
inline const std::array<uint64_t, 4>& little_endian_array() const {
return little_endian_array_;
}
/// \brief Get the lowest bits of the two's complement representation of the number.
inline constexpr uint64_t low_bits() const { return little_endian_array_[0]; }
/// \brief Return the raw bytes of the value in native-endian byte order.
std::array<uint8_t, 32> ToBytes() const;
void ToBytes(uint8_t* out) const;
/// \brief Scale multiplier for given scale value.
static const BasicDecimal256& GetScaleMultiplier(int32_t scale);
/// \brief Convert BasicDecimal256 from one scale to another
DecimalStatus Rescale(int32_t original_scale, int32_t new_scale,
BasicDecimal256* out) const;
/// \brief Scale up.
BasicDecimal256 IncreaseScaleBy(int32_t increase_by) const;
/// \brief Scale down.
/// - If 'round' is true, the right-most digits are dropped and the result value is
/// rounded up (+1 for positive, -1 for negative) based on the value of the
/// dropped digits (>= 10^reduce_by / 2).
/// - If 'round' is false, the right-most digits are simply dropped.
BasicDecimal256 ReduceScaleBy(int32_t reduce_by, bool round = true) const;
/// \brief Whether this number fits in the given precision
///
/// Return true if the number of significant digits is less or equal to `precision`.
bool FitsInPrecision(int32_t precision) const;
inline int64_t Sign() const {
return 1 | (static_cast<int64_t>(little_endian_array_[3]) >> 63);
}
inline int64_t IsNegative() const {
return static_cast<int64_t>(little_endian_array_[3]) < 0;
}
/// \brief Multiply this number by another number. The result is truncated to 256 bits.
BasicDecimal256& operator*=(const BasicDecimal256& right);
/// Divide this number by right and return the result.
///
/// This operation is not destructive.
/// The answer rounds to zero. Signs work like:
/// 21 / 5 -> 4, 1
/// -21 / 5 -> -4, -1
/// 21 / -5 -> -4, 1
/// -21 / -5 -> 4, -1
/// \param[in] divisor the number to divide by
/// \param[out] result the quotient
/// \param[out] remainder the remainder after the division
DecimalStatus Divide(const BasicDecimal256& divisor, BasicDecimal256* result,
BasicDecimal256* remainder) const;
/// \brief Shift left by the given number of bits.
BasicDecimal256& operator<<=(uint32_t bits);
/// \brief In-place division.
BasicDecimal256& operator/=(const BasicDecimal256& right);
private:
std::array<uint64_t, 4> little_endian_array_;
};
ARROW_EXPORT inline bool operator==(const BasicDecimal256& left,
const BasicDecimal256& right) {
return left.little_endian_array() == right.little_endian_array();
}
ARROW_EXPORT inline bool operator!=(const BasicDecimal256& left,
const BasicDecimal256& right) {
return left.little_endian_array() != right.little_endian_array();
}
ARROW_EXPORT bool operator<(const BasicDecimal256& left, const BasicDecimal256& right);
ARROW_EXPORT inline bool operator<=(const BasicDecimal256& left,
const BasicDecimal256& right) {
return !operator<(right, left);
}
ARROW_EXPORT inline bool operator>(const BasicDecimal256& left,
const BasicDecimal256& right) {
return operator<(right, left);
}
ARROW_EXPORT inline bool operator>=(const BasicDecimal256& left,
const BasicDecimal256& right) {
return !operator<(left, right);
}
ARROW_EXPORT BasicDecimal256 operator-(const BasicDecimal256& operand);
ARROW_EXPORT BasicDecimal256 operator~(const BasicDecimal256& operand);
ARROW_EXPORT BasicDecimal256 operator+(const BasicDecimal256& left,
const BasicDecimal256& right);
ARROW_EXPORT BasicDecimal256 operator*(const BasicDecimal256& left,
const BasicDecimal256& right);
ARROW_EXPORT BasicDecimal256 operator/(const BasicDecimal256& left,
const BasicDecimal256& right);
} // namespace arrow