| |
| <!DOCTYPE html> |
| |
| |
| <html lang="en" data-content_root="../../" > |
| |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" /> |
| |
| <title>pyarrow.RecordBatch — Apache Arrow v22.0.0.dev115</title> |
| |
| |
| |
| <script data-cfasync="false"> |
| document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; |
| document.documentElement.dataset.theme = localStorage.getItem("theme") || ""; |
| </script> |
| <!-- |
| this give us a css class that will be invisible only if js is disabled |
| --> |
| <noscript> |
| <style> |
| .pst-js-only { display: none !important; } |
| |
| </style> |
| </noscript> |
| |
| <!-- Loaded before other Sphinx assets --> |
| <link href="../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" /> |
| <link href="../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" /> |
| |
| <link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=03e43079" /> |
| <link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" /> |
| <link rel="stylesheet" type="text/css" href="../../_static/sphinx-design.min.css?v=95c83b7e" /> |
| <link rel="stylesheet" type="text/css" href="../../_static/theme_overrides.css?v=8dcd28dc" /> |
| |
| <!-- So that users can add custom icons --> |
| <script src="../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script> |
| <!-- Pre-loaded scripts that we'll load fully later --> |
| <link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" /> |
| <link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" /> |
| |
| <script src="../../_static/documentation_options.js?v=ae2a2051"></script> |
| <script src="../../_static/doctools.js?v=9bcbadda"></script> |
| <script src="../../_static/sphinx_highlight.js?v=dc90522c"></script> |
| <script src="../../_static/clipboard.min.js?v=a7894cd8"></script> |
| <script src="../../_static/copybutton.js?v=3bb21c8c"></script> |
| <script src="../../_static/design-tabs.js?v=f930bc37"></script> |
| <script>DOCUMENTATION_OPTIONS.pagename = 'python/generated/pyarrow.RecordBatch';</script> |
| <script> |
| DOCUMENTATION_OPTIONS.theme_version = '0.16.1'; |
| DOCUMENTATION_OPTIONS.theme_switcher_json_url = '/docs/_static/versions.json'; |
| DOCUMENTATION_OPTIONS.theme_switcher_version_match = 'dev/'; |
| DOCUMENTATION_OPTIONS.show_version_warning_banner = |
| true; |
| </script> |
| <link rel="canonical" href="https://arrow.apache.org/docs/python/generated/pyarrow.RecordBatch.html" /> |
| <link rel="icon" href="../../_static/favicon.ico"/> |
| <link rel="index" title="Index" href="../../genindex.html" /> |
| <link rel="search" title="Search" href="../../search.html" /> |
| <link rel="next" title="pyarrow.Table" href="pyarrow.Table.html" /> |
| <link rel="prev" title="pyarrow.ChunkedArray" href="pyarrow.ChunkedArray.html" /> |
| |
| <meta name="viewport" content="width=device-width, initial-scale=1"/> |
| <meta name="docsearch:language" content="en"/> |
| <meta name="docsearch:version" content="22.0.0.dev115" /> |
| |
| <!-- Matomo --> |
| <script> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| /* We explicitly disable cookie tracking to avoid privacy issues */ |
| _paq.push(['disableCookies']); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '20']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| </head> |
| |
| |
| <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> |
| |
| |
| |
| <div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div> |
| |
| <div id="pst-scroll-pixel-helper"></div> |
| |
| <button type="button" class="btn rounded-pill" id="pst-back-to-top"> |
| <i class="fa-solid fa-arrow-up"></i>Back to top</button> |
| |
| |
| <dialog id="pst-search-dialog"> |
| |
| <form class="bd-search d-flex align-items-center" |
| action="../../search.html" |
| method="get"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <input type="search" |
| class="form-control" |
| name="q" |
| placeholder="Search the docs ..." |
| aria-label="Search the docs ..." |
| autocomplete="off" |
| autocorrect="off" |
| autocapitalize="off" |
| spellcheck="false"/> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> |
| </form> |
| </dialog> |
| |
| <div class="pst-async-banner-revealer d-none"> |
| <aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside> |
| </div> |
| |
| |
| <header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none"> |
| <div class="bd-header__inner bd-page-width"> |
| <button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation"> |
| <span class="fa-solid fa-bars"></span> |
| </button> |
| |
| |
| <div class=" navbar-header-items__start"> |
| |
| <div class="navbar-item"> |
| |
| |
| |
| |
| |
| <a class="navbar-brand logo" href="../../index.html"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| <img src="../../_static/arrow.png" class="logo__image only-light" alt="Apache Arrow v22.0.0.dev115 - Home"/> |
| <img src="../../_static/arrow-dark.png" class="logo__image only-dark pst-js-only" alt="Apache Arrow v22.0.0.dev115 - Home"/> |
| |
| |
| </a></div> |
| |
| </div> |
| |
| <div class=" navbar-header-items"> |
| |
| <div class="me-auto navbar-header-items__center"> |
| |
| <div class="navbar-item"> |
| <nav> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item "> |
| <a class="nav-link nav-internal" href="../../format/index.html"> |
| Specifications |
| </a> |
| </li> |
| |
| |
| <li class="nav-item "> |
| <a class="nav-link nav-internal" href="../../developers/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item current active"> |
| <a class="nav-link nav-internal" href="../../implementations.html"> |
| Implementations |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| <div class="navbar-header-items__end"> |
| |
| <div class="navbar-item navbar-persistent--container"> |
| |
| |
| <button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <span class="search-button__default-text">Search</span> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span> |
| </button> |
| </div> |
| |
| |
| <div class="navbar-item"><div class="kapa-ai-bot"> |
| <script |
| async |
| src="https://widget.kapa.ai/kapa-widget.bundle.js" |
| data-website-id="9db461d5-ac77-4b3f-a5c5-75efa78339d2" |
| data-project-name="Apache Arrow" |
| data-project-color="#000000" |
| data-project-logo="https://arrow.apache.org/img/arrow-logo_chevrons_white-txt_black-bg.png" |
| data-modal-disclaimer="This is a custom LLM with access to all [Arrow documentation](https://arrow.apache.org/docs/). Please include the language you are using in your question, e.g., Python, C++, Java, R, etc." |
| data-consent-required="true" |
| data-user-analytics-cookie-enabled="false" |
| data-consent-screen-disclaimer="By clicking "I agree, let's chat", you consent to the use of the AI assistant in accordance with kapa.ai's [Privacy Policy](https://www.kapa.ai/content/privacy-policy). This service uses reCAPTCHA, which requires your consent to Google's [Privacy Policy](https://policies.google.com/privacy) and [Terms of Service](https://policies.google.com/terms). By proceeding, you explicitly agree to both kapa.ai's and Google's privacy policies." |
| ></script> |
| |
| </div> |
| |
| </div> |
| |
| <div class="navbar-item"> |
| <div class="version-switcher__container dropdown pst-js-only"> |
| <button id="pst-version-switcher-button-2" |
| type="button" |
| class="version-switcher__button btn btn-sm dropdown-toggle" |
| data-bs-toggle="dropdown" |
| aria-haspopup="listbox" |
| aria-controls="pst-version-switcher-list-2" |
| aria-label="Version switcher list" |
| > |
| Choose version <!-- this text may get changed later by javascript --> |
| <span class="caret"></span> |
| </button> |
| <div id="pst-version-switcher-list-2" |
| class="version-switcher__menu dropdown-menu list-group-flush py-0" |
| role="listbox" aria-labelledby="pst-version-switcher-button-2"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div></div> |
| |
| <div class="navbar-item"> |
| |
| <button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i> |
| <i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i> |
| <i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i> |
| </button></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/arrow" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i> |
| <span class="sr-only">GitHub</span></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://www.linkedin.com/company/apache-arrow/" title="LinkedIn" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-linkedin fa-lg" aria-hidden="true"></i> |
| <span class="sr-only">LinkedIn</span></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://bsky.app/profile/arrow.apache.org" title="BlueSky" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-bluesky fa-lg" aria-hidden="true"></i> |
| <span class="sr-only">BlueSky</span></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="navbar-persistent--mobile"> |
| |
| <button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <span class="search-button__default-text">Search</span> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span> |
| </button> |
| </div> |
| |
| |
| |
| <button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page"> |
| <span class="fa-solid fa-outdent"></span> |
| </button> |
| |
| </div> |
| |
| </header> |
| |
| |
| <div class="bd-container"> |
| <div class="bd-container__inner bd-page-width"> |
| |
| |
| |
| <dialog id="pst-primary-sidebar-modal"></dialog> |
| <div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar"> |
| |
| |
| |
| <div class="sidebar-header-items sidebar-primary__section"> |
| |
| |
| <div class="sidebar-header-items__center"> |
| |
| |
| |
| <div class="navbar-item"> |
| <nav> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item "> |
| <a class="nav-link nav-internal" href="../../format/index.html"> |
| Specifications |
| </a> |
| </li> |
| |
| |
| <li class="nav-item "> |
| <a class="nav-link nav-internal" href="../../developers/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item current active"> |
| <a class="nav-link nav-internal" href="../../implementations.html"> |
| Implementations |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| |
| </div> |
| |
| |
| |
| <div class="sidebar-header-items__end"> |
| |
| <div class="navbar-item"><div class="kapa-ai-bot"> |
| <script |
| async |
| src="https://widget.kapa.ai/kapa-widget.bundle.js" |
| data-website-id="9db461d5-ac77-4b3f-a5c5-75efa78339d2" |
| data-project-name="Apache Arrow" |
| data-project-color="#000000" |
| data-project-logo="https://arrow.apache.org/img/arrow-logo_chevrons_white-txt_black-bg.png" |
| data-modal-disclaimer="This is a custom LLM with access to all [Arrow documentation](https://arrow.apache.org/docs/). Please include the language you are using in your question, e.g., Python, C++, Java, R, etc." |
| data-consent-required="true" |
| data-user-analytics-cookie-enabled="false" |
| data-consent-screen-disclaimer="By clicking "I agree, let's chat", you consent to the use of the AI assistant in accordance with kapa.ai's [Privacy Policy](https://www.kapa.ai/content/privacy-policy). This service uses reCAPTCHA, which requires your consent to Google's [Privacy Policy](https://policies.google.com/privacy) and [Terms of Service](https://policies.google.com/terms). By proceeding, you explicitly agree to both kapa.ai's and Google's privacy policies." |
| ></script> |
| |
| </div> |
| |
| </div> |
| |
| <div class="navbar-item"> |
| <div class="version-switcher__container dropdown pst-js-only"> |
| <button id="pst-version-switcher-button-3" |
| type="button" |
| class="version-switcher__button btn btn-sm dropdown-toggle" |
| data-bs-toggle="dropdown" |
| aria-haspopup="listbox" |
| aria-controls="pst-version-switcher-list-3" |
| aria-label="Version switcher list" |
| > |
| Choose version <!-- this text may get changed later by javascript --> |
| <span class="caret"></span> |
| </button> |
| <div id="pst-version-switcher-list-3" |
| class="version-switcher__menu dropdown-menu list-group-flush py-0" |
| role="listbox" aria-labelledby="pst-version-switcher-button-3"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div></div> |
| |
| <div class="navbar-item"> |
| |
| <button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i> |
| <i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i> |
| <i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i> |
| </button></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/arrow" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i> |
| <span class="sr-only">GitHub</span></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://www.linkedin.com/company/apache-arrow/" title="LinkedIn" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-linkedin fa-lg" aria-hidden="true"></i> |
| <span class="sr-only">LinkedIn</span></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://bsky.app/profile/arrow.apache.org" title="BlueSky" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-bluesky fa-lg" aria-hidden="true"></i> |
| <span class="sr-only">BlueSky</span></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| <div class="sidebar-primary-items__start sidebar-primary__section"> |
| <div class="sidebar-primary-item"> |
| <nav class="bd-docs-nav bd-links" |
| aria-label="Section Navigation"> |
| <p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p> |
| <div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav"> |
| <li class="toctree-l1 has-children"><a class="reference internal" href="../../cpp/index.html">C++</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l2 has-children"><a class="reference internal" href="../../cpp/getting_started.html">Getting Started</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/build_system.html">Using Arrow C++ in your own project</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/conventions.html">Conventions</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/tutorials/basic_arrow.html">Basic Arrow Data Structures</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/tutorials/io_tutorial.html">Arrow File I/O</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/tutorials/compute_tutorial.html">Arrow Compute</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/tutorials/datasets_tutorial.html">Arrow Datasets</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l2 has-children"><a class="reference internal" href="../../cpp/user_guide.html">User Guide</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/overview.html">High-Level Overview</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/memory.html">Memory Management</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/arrays.html">Arrays</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/datatypes.html">Data Types</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/tables.html">Tabular Data</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/compute.html">Compute Functions</a></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../../cpp/gandiva.html">The Gandiva Expression Compiler</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../cpp/gandiva/expr_projector_filter.html">Gandiva Expression, Projector, and Filter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../cpp/gandiva/external_func.html">Gandiva External Functions Development Guide</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../../cpp/acero.html">Acero: A C++ streaming execution engine</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../cpp/acero/overview.html">Acero Overview</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../cpp/acero/user_guide.html">Acero User’s Guide</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../cpp/acero/substrait.html">Using Acero with Substrait</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/io.html">Input / output and filesystems</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/ipc.html">Reading and writing the Arrow IPC format</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/orc.html">Reading and Writing ORC files</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/parquet.html">Reading and writing Parquet files</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/csv.html">Reading and Writing CSV files</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/json.html">Reading JSON files</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/dataset.html">Tabular Datasets</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/flight.html">Arrow Flight RPC</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/gdb.html">Debugging code using Arrow</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/threading.html">Thread Management</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/opentelemetry.html">OpenTelemetry</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/env_vars.html">Environment Variables</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l2 has-children"><a class="reference internal" href="../../cpp/examples/index.html">Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/examples/cmake_minimal_build.html">Minimal build using CMake</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/examples/compute_and_write_example.html">Compute and Write CSV Example</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/examples/dataset_documentation_example.html">Arrow Datasets example</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/examples/parquet_column_encryption.html">Parquet column encryption</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/examples/row_columnar_conversion.html">Row to columnar conversion</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/examples/tuple_range_conversion.html">std::tuple-like ranges to Arrow</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/examples/converting_recordbatch_to_tensor.html">Converting RecordBatch to Tensor</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l2 has-children"><a class="reference internal" href="../../cpp/api.html">API Reference</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/support.html">Programming Support</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/memory.html">Memory (management)</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/thread.html">Thread (management)</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/datatype.html">Data Types</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/array.html">Arrays</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/extension.html">Extension</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/scalar.html">Scalars</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/builder.html">Array Builders</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/table.html">Two-dimensional Datasets</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/c_abi.html">C Interfaces</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/compute.html">Compute Functions</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/acero.html">Streaming Execution (Acero)</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/gandiva.html">Gandiva Expression Compiler</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/tensor.html">Tensors</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/utilities.html">Utilities</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/async.html">Asynchronous programming</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/io.html">Input / output</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/ipc.html">Arrow IPC</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/formats.html">File Formats</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/cuda.html">CUDA support</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/flight.html">Arrow Flight RPC</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/flightsql.html">Arrow Flight SQL</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/filesystem.html">Filesystems</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../cpp/api/dataset.html">Dataset</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l2 has-children"><a class="reference internal" href="../../developers/cpp/index.html">C++ Development</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../developers/cpp/building.html">Building Arrow C++</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../developers/cpp/development.html">Development Guidelines</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../developers/cpp/windows.html">Developing on Windows</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../developers/cpp/emscripten.html">Cross compiling for WebAssembly with Emscripten</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../developers/cpp/conventions.html">Conventions</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../developers/cpp/fuzzing.html">Fuzzing Arrow C++</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../developers/cpp/compute.html">Developing Arrow C++ Compute</a></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../../developers/cpp/acero.html">Developing Acero</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../developers/cpp/acero/swiss_table.html">Swiss Table</a></li> |
| </ul> |
| </details></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l2"><a class="reference external" href="https://arrow.apache.org/cookbook/cpp/">C++ Cookbook</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l1 has-children"><a class="reference internal" href="../../c_glib/index.html">C GLib</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l2"><a class="reference internal" href="../../c_glib/arrow-glib/index.html">Apache Arrow GLib</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../c_glib/arrow-cuda-glib/index.html">Apache Arrow CUDA GLib</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../c_glib/arrow-dataset-glib/index.html">Apache Arrow Dataset</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../c_glib/arrow-flight-glib/index.html">Apache Arrow Flight GLib</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../c_glib/arrow-flight-sql-glib/index.html">Apache Arrow Flight SQL GLib</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../c_glib/parquet-glib/index.html">Apache Parquet GLib</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../c_glib/gandiva-glib/index.html">Gandiva GLib</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow/blob/main/csharp/README.md">C#</a></li> |
| <li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/go/">Go</a></li> |
| <li class="toctree-l1 has-children"><a class="reference internal" href="../../java/index.html">Java</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/quickstartguide.html">Quick Start Guide</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/overview.html">High-Level Overview</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/install.html">Installing Java Modules</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/memory.html">Memory Management</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/vector.html">ValueVector</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/vector_schema_root.html">Tabular Data</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/table.html">Table</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/ipc.html">Reading/Writing IPC formats</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/algorithm.html">Java Algorithms</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/flight.html">Arrow Flight RPC</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/flight_sql.html">Arrow Flight SQL</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/flight_sql_jdbc_driver.html">Arrow Flight SQL JDBC Driver</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/dataset.html">Dataset</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/substrait.html">Substrait</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/cdata.html">C Data Interface</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/jdbc.html">Arrow JDBC Adapter</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../java/reference/index.html">Reference (javadoc)</a></li> |
| <li class="toctree-l2"><a class="reference external" href="https://arrow.apache.org/cookbook/java/">Java cookbook</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/js/current/">JavaScript</a></li> |
| <li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/julia/">Julia</a></li> |
| <li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow/blob/main/matlab/README.md">MATLAB</a></li> |
| <li class="toctree-l1 current active has-children"><a class="reference internal" href="../index.html">Python</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current"> |
| <li class="toctree-l2"><a class="reference internal" href="../install.html">Installing PyArrow</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../getstarted.html">Getting Started</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../data.html">Data Types and In-Memory Data Model</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../compute.html">Compute Functions</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../memory.html">Memory and IO Interfaces</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../ipc.html">Streaming, Serialization, and IPC</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../filesystems.html">Filesystem Interface</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../numpy.html">NumPy Integration</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas.html">Pandas Integration</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../interchange_protocol.html">Dataframe Interchange Protocol</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../dlpack.html">The DLPack Protocol</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../timestamps.html">Timestamps</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../orc.html">Reading and Writing the Apache ORC Format</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../csv.html">Reading and Writing CSV files</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../feather.html">Feather File Format</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../json.html">Reading JSON files</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../parquet.html">Reading and Writing the Apache Parquet Format</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../dataset.html">Tabular Datasets</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../flight.html">Arrow Flight RPC</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../extending_types.html">Extending PyArrow</a></li> |
| <li class="toctree-l2 has-children"><a class="reference internal" href="../integration.html">PyArrow Integrations</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../integration/substrait.html">Substrait</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../integration/python_r.html">Integrating PyArrow with R</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../integration/python_java.html">Integrating PyArrow with Java</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../integration/extending.html">Using pyarrow from C++ and Cython Code</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../integration/cuda.html">CUDA Integration</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l2"><a class="reference internal" href="../env_vars.html">Environment Variables</a></li> |
| <li class="toctree-l2 current active has-children"><a class="reference internal" href="../api.html">API Reference</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current"> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/datatypes.html">Data Types and Schemas</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.null.html">pyarrow.null</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.bool_.html">pyarrow.bool_</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.int8.html">pyarrow.int8</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.int16.html">pyarrow.int16</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.int32.html">pyarrow.int32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.int64.html">pyarrow.int64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.uint8.html">pyarrow.uint8</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.uint16.html">pyarrow.uint16</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.uint32.html">pyarrow.uint32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.uint64.html">pyarrow.uint64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.float16.html">pyarrow.float16</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.float32.html">pyarrow.float32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.float64.html">pyarrow.float64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.time32.html">pyarrow.time32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.time64.html">pyarrow.time64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.timestamp.html">pyarrow.timestamp</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.date32.html">pyarrow.date32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.date64.html">pyarrow.date64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.duration.html">pyarrow.duration</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.month_day_nano_interval.html">pyarrow.month_day_nano_interval</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.binary.html">pyarrow.binary</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.string.html">pyarrow.string</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.utf8.html">pyarrow.utf8</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.large_binary.html">pyarrow.large_binary</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.large_string.html">pyarrow.large_string</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.large_utf8.html">pyarrow.large_utf8</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.binary_view.html">pyarrow.binary_view</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.string_view.html">pyarrow.string_view</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.decimal128.html">pyarrow.decimal128</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.decimal256.html">pyarrow.decimal256</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.list_.html">pyarrow.list_</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.large_list.html">pyarrow.large_list</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.list_view.html">pyarrow.list_view</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.large_list_view.html">pyarrow.large_list_view</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.map_.html">pyarrow.map_</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.struct.html">pyarrow.struct</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dictionary.html">pyarrow.dictionary</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.run_end_encoded.html">pyarrow.run_end_encoded</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fixed_shape_tensor.html">pyarrow.fixed_shape_tensor</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.union.html">pyarrow.union</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dense_union.html">pyarrow.dense_union</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.sparse_union.html">pyarrow.sparse_union</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.opaque.html">pyarrow.opaque</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.bool8.html">pyarrow.bool8</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.uuid.html">pyarrow.uuid</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.json_.html">pyarrow.json_</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.field.html">pyarrow.field</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.schema.html">pyarrow.schema</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.from_numpy_dtype.html">pyarrow.from_numpy_dtype</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.unify_schemas.html">pyarrow.unify_schemas</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DataType.html">pyarrow.DataType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DictionaryType.html">pyarrow.DictionaryType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ListType.html">pyarrow.ListType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ListViewType.html">pyarrow.ListViewType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedSizeListType.html">pyarrow.FixedSizeListType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeListType.html">pyarrow.LargeListType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeListViewType.html">pyarrow.LargeListViewType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.MapType.html">pyarrow.MapType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.StructType.html">pyarrow.StructType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UnionType.html">pyarrow.UnionType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DenseUnionType.html">pyarrow.DenseUnionType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.SparseUnionType.html">pyarrow.SparseUnionType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.TimestampType.html">pyarrow.TimestampType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Time32Type.html">pyarrow.Time32Type</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Time64Type.html">pyarrow.Time64Type</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DurationType.html">pyarrow.DurationType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedSizeBinaryType.html">pyarrow.FixedSizeBinaryType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal32Type.html">pyarrow.Decimal32Type</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal64Type.html">pyarrow.Decimal64Type</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal128Type.html">pyarrow.Decimal128Type</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal256Type.html">pyarrow.Decimal256Type</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Field.html">pyarrow.Field</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Schema.html">pyarrow.Schema</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.RunEndEncodedType.html">pyarrow.RunEndEncodedType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.BaseExtensionType.html">pyarrow.BaseExtensionType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ExtensionType.html">pyarrow.ExtensionType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UnknownExtensionType.html">pyarrow.UnknownExtensionType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.register_extension_type.html">pyarrow.register_extension_type</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.unregister_extension_type.html">pyarrow.unregister_extension_type</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedShapeTensorType.html">pyarrow.FixedShapeTensorType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.OpaqueType.html">pyarrow.OpaqueType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.JsonType.html">pyarrow.JsonType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UuidType.html">pyarrow.UuidType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Bool8Type.html">pyarrow.Bool8Type</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_boolean.html">pyarrow.types.is_boolean</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_integer.html">pyarrow.types.is_integer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_signed_integer.html">pyarrow.types.is_signed_integer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_unsigned_integer.html">pyarrow.types.is_unsigned_integer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_int8.html">pyarrow.types.is_int8</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_int16.html">pyarrow.types.is_int16</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_int32.html">pyarrow.types.is_int32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_int64.html">pyarrow.types.is_int64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_uint8.html">pyarrow.types.is_uint8</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_uint16.html">pyarrow.types.is_uint16</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_uint32.html">pyarrow.types.is_uint32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_uint64.html">pyarrow.types.is_uint64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_floating.html">pyarrow.types.is_floating</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_float16.html">pyarrow.types.is_float16</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_float32.html">pyarrow.types.is_float32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_float64.html">pyarrow.types.is_float64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_decimal.html">pyarrow.types.is_decimal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_decimal128.html">pyarrow.types.is_decimal128</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_decimal256.html">pyarrow.types.is_decimal256</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_list.html">pyarrow.types.is_list</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_large_list.html">pyarrow.types.is_large_list</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_fixed_size_list.html">pyarrow.types.is_fixed_size_list</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_list_view.html">pyarrow.types.is_list_view</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_large_list_view.html">pyarrow.types.is_large_list_view</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_struct.html">pyarrow.types.is_struct</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_union.html">pyarrow.types.is_union</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_nested.html">pyarrow.types.is_nested</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_run_end_encoded.html">pyarrow.types.is_run_end_encoded</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_temporal.html">pyarrow.types.is_temporal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_timestamp.html">pyarrow.types.is_timestamp</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_date.html">pyarrow.types.is_date</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_date32.html">pyarrow.types.is_date32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_date64.html">pyarrow.types.is_date64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_time.html">pyarrow.types.is_time</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_time32.html">pyarrow.types.is_time32</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_time64.html">pyarrow.types.is_time64</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_duration.html">pyarrow.types.is_duration</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_interval.html">pyarrow.types.is_interval</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_null.html">pyarrow.types.is_null</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_binary.html">pyarrow.types.is_binary</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_unicode.html">pyarrow.types.is_unicode</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_string.html">pyarrow.types.is_string</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_large_binary.html">pyarrow.types.is_large_binary</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_large_unicode.html">pyarrow.types.is_large_unicode</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_large_string.html">pyarrow.types.is_large_string</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_binary_view.html">pyarrow.types.is_binary_view</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_string_view.html">pyarrow.types.is_string_view</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_fixed_size_binary.html">pyarrow.types.is_fixed_size_binary</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_map.html">pyarrow.types.is_map</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_dictionary.html">pyarrow.types.is_dictionary</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.is_primitive.html">pyarrow.types.is_primitive</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.types.TypesEnum.html">pyarrow.types.TypesEnum</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/arrays.html">Arrays and Scalars</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.array.html">pyarrow.array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.nulls.html">pyarrow.nulls</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Array.html">pyarrow.Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.BooleanArray.html">pyarrow.BooleanArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FloatingPointArray.html">pyarrow.FloatingPointArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.IntegerArray.html">pyarrow.IntegerArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Int8Array.html">pyarrow.Int8Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Int16Array.html">pyarrow.Int16Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Int32Array.html">pyarrow.Int32Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Int64Array.html">pyarrow.Int64Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.NullArray.html">pyarrow.NullArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.NumericArray.html">pyarrow.NumericArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UInt8Array.html">pyarrow.UInt8Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UInt16Array.html">pyarrow.UInt16Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UInt32Array.html">pyarrow.UInt32Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UInt64Array.html">pyarrow.UInt64Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.HalfFloatArray.html">pyarrow.HalfFloatArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FloatArray.html">pyarrow.FloatArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DoubleArray.html">pyarrow.DoubleArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.BinaryArray.html">pyarrow.BinaryArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.StringArray.html">pyarrow.StringArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedSizeBinaryArray.html">pyarrow.FixedSizeBinaryArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeBinaryArray.html">pyarrow.LargeBinaryArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeStringArray.html">pyarrow.LargeStringArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.BinaryViewArray.html">pyarrow.BinaryViewArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.StringViewArray.html">pyarrow.StringViewArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Time32Array.html">pyarrow.Time32Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Time64Array.html">pyarrow.Time64Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Date32Array.html">pyarrow.Date32Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Date64Array.html">pyarrow.Date64Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.TimestampArray.html">pyarrow.TimestampArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DurationArray.html">pyarrow.DurationArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.MonthDayNanoIntervalArray.html">pyarrow.MonthDayNanoIntervalArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal32Array.html">pyarrow.Decimal32Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal64Array.html">pyarrow.Decimal64Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal128Array.html">pyarrow.Decimal128Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal256Array.html">pyarrow.Decimal256Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DictionaryArray.html">pyarrow.DictionaryArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ListArray.html">pyarrow.ListArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedSizeListArray.html">pyarrow.FixedSizeListArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeListArray.html">pyarrow.LargeListArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ListViewArray.html">pyarrow.ListViewArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeListViewArray.html">pyarrow.LargeListViewArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.MapArray.html">pyarrow.MapArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.RunEndEncodedArray.html">pyarrow.RunEndEncodedArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.StructArray.html">pyarrow.StructArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UnionArray.html">pyarrow.UnionArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ExtensionArray.html">pyarrow.ExtensionArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedShapeTensorArray.html">pyarrow.FixedShapeTensorArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.OpaqueArray.html">pyarrow.OpaqueArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.JsonArray.html">pyarrow.JsonArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UuidArray.html">pyarrow.UuidArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Bool8Array.html">pyarrow.Bool8Array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.scalar.html">pyarrow.scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.NA.html">pyarrow.NA</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Scalar.html">pyarrow.Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.BooleanScalar.html">pyarrow.BooleanScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Int8Scalar.html">pyarrow.Int8Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Int16Scalar.html">pyarrow.Int16Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Int32Scalar.html">pyarrow.Int32Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Int64Scalar.html">pyarrow.Int64Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.NullScalar.html">pyarrow.NullScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UInt8Scalar.html">pyarrow.UInt8Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UInt16Scalar.html">pyarrow.UInt16Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UInt32Scalar.html">pyarrow.UInt32Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UInt64Scalar.html">pyarrow.UInt64Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.HalfFloatScalar.html">pyarrow.HalfFloatScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FloatScalar.html">pyarrow.FloatScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DoubleScalar.html">pyarrow.DoubleScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.BinaryScalar.html">pyarrow.BinaryScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.StringScalar.html">pyarrow.StringScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedSizeBinaryScalar.html">pyarrow.FixedSizeBinaryScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeBinaryScalar.html">pyarrow.LargeBinaryScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeStringScalar.html">pyarrow.LargeStringScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.BinaryViewScalar.html">pyarrow.BinaryViewScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.StringViewScalar.html">pyarrow.StringViewScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Time32Scalar.html">pyarrow.Time32Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Time64Scalar.html">pyarrow.Time64Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Date32Scalar.html">pyarrow.Date32Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Date64Scalar.html">pyarrow.Date64Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.TimestampScalar.html">pyarrow.TimestampScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DurationScalar.html">pyarrow.DurationScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.MonthDayNanoIntervalScalar.html">pyarrow.MonthDayNanoIntervalScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal128Scalar.html">pyarrow.Decimal128Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Decimal256Scalar.html">pyarrow.Decimal256Scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.DictionaryScalar.html">pyarrow.DictionaryScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.RunEndEncodedScalar.html">pyarrow.RunEndEncodedScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ListScalar.html">pyarrow.ListScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedSizeListScalar.html">pyarrow.FixedSizeListScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeListScalar.html">pyarrow.LargeListScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ListViewScalar.html">pyarrow.ListViewScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.LargeListViewScalar.html">pyarrow.LargeListViewScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.MapScalar.html">pyarrow.MapScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.StructScalar.html">pyarrow.StructScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UnionScalar.html">pyarrow.UnionScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ExtensionScalar.html">pyarrow.ExtensionScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedShapeTensorScalar.html">pyarrow.FixedShapeTensorScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.OpaqueScalar.html">pyarrow.OpaqueScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.JsonScalar.html">pyarrow.JsonScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.UuidScalar.html">pyarrow.UuidScalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Bool8Scalar.html">pyarrow.Bool8Scalar</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/memory.html">Buffers and Memory</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.allocate_buffer.html">pyarrow.allocate_buffer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.py_buffer.html">pyarrow.py_buffer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.foreign_buffer.html">pyarrow.foreign_buffer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Buffer.html">pyarrow.Buffer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ResizableBuffer.html">pyarrow.ResizableBuffer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Codec.html">pyarrow.Codec</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compress.html">pyarrow.compress</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.decompress.html">pyarrow.decompress</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.MemoryPool.html">pyarrow.MemoryPool</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.default_memory_pool.html">pyarrow.default_memory_pool</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.jemalloc_memory_pool.html">pyarrow.jemalloc_memory_pool</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.mimalloc_memory_pool.html">pyarrow.mimalloc_memory_pool</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.system_memory_pool.html">pyarrow.system_memory_pool</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.jemalloc_set_decay_ms.html">pyarrow.jemalloc_set_decay_ms</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.set_memory_pool.html">pyarrow.set_memory_pool</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.log_memory_allocations.html">pyarrow.log_memory_allocations</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.total_allocated_bytes.html">pyarrow.total_allocated_bytes</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 current active has-children"><a class="reference internal" href="../api/tables.html">Tables and Tensors</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current"> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.chunked_array.html">pyarrow.chunked_array</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.concat_arrays.html">pyarrow.concat_arrays</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.concat_tables.html">pyarrow.concat_tables</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.record_batch.html">pyarrow.record_batch</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.concat_batches.html">pyarrow.concat_batches</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.table.html">pyarrow.table</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ChunkedArray.html">pyarrow.ChunkedArray</a></li> |
| <li class="toctree-l4 current active"><a class="current reference internal" href="#">pyarrow.RecordBatch</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Table.html">pyarrow.Table</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.TableGroupBy.html">pyarrow.TableGroupBy</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.RecordBatchReader.html">pyarrow.RecordBatchReader</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.interchange.from_dataframe.html">pyarrow.interchange.from_dataframe</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.Tensor.html">pyarrow.Tensor</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/compute.html">Compute Functions</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.all.html">pyarrow.compute.all</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.any.html">pyarrow.compute.any</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.approximate_median.html">pyarrow.compute.approximate_median</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.count.html">pyarrow.compute.count</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.count_distinct.html">pyarrow.compute.count_distinct</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.index.html">pyarrow.compute.index</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.max.html">pyarrow.compute.max</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.mean.html">pyarrow.compute.mean</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.min.html">pyarrow.compute.min</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.min_max.html">pyarrow.compute.min_max</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.mode.html">pyarrow.compute.mode</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.pivot_wider.html">pyarrow.compute.pivot_wider</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.product.html">pyarrow.compute.product</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.quantile.html">pyarrow.compute.quantile</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.stddev.html">pyarrow.compute.stddev</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.sum.html">pyarrow.compute.sum</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.tdigest.html">pyarrow.compute.tdigest</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.variance.html">pyarrow.compute.variance</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.cumulative_sum.html">pyarrow.compute.cumulative_sum</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.cumulative_sum_checked.html">pyarrow.compute.cumulative_sum_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.cumulative_prod.html">pyarrow.compute.cumulative_prod</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.cumulative_prod_checked.html">pyarrow.compute.cumulative_prod_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.cumulative_max.html">pyarrow.compute.cumulative_max</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.cumulative_min.html">pyarrow.compute.cumulative_min</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.abs.html">pyarrow.compute.abs</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.abs_checked.html">pyarrow.compute.abs_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.add.html">pyarrow.compute.add</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.add_checked.html">pyarrow.compute.add_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.divide.html">pyarrow.compute.divide</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.divide_checked.html">pyarrow.compute.divide_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.multiply.html">pyarrow.compute.multiply</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.multiply_checked.html">pyarrow.compute.multiply_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.negate.html">pyarrow.compute.negate</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.negate_checked.html">pyarrow.compute.negate_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.power.html">pyarrow.compute.power</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.power_checked.html">pyarrow.compute.power_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.sign.html">pyarrow.compute.sign</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.sqrt.html">pyarrow.compute.sqrt</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.sqrt_checked.html">pyarrow.compute.sqrt_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.subtract.html">pyarrow.compute.subtract</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.subtract_checked.html">pyarrow.compute.subtract_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.bit_wise_and.html">pyarrow.compute.bit_wise_and</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.bit_wise_not.html">pyarrow.compute.bit_wise_not</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.bit_wise_or.html">pyarrow.compute.bit_wise_or</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.bit_wise_xor.html">pyarrow.compute.bit_wise_xor</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.shift_left.html">pyarrow.compute.shift_left</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.shift_left_checked.html">pyarrow.compute.shift_left_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.shift_right.html">pyarrow.compute.shift_right</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.shift_right_checked.html">pyarrow.compute.shift_right_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ceil.html">pyarrow.compute.ceil</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.floor.html">pyarrow.compute.floor</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.round.html">pyarrow.compute.round</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.round_to_multiple.html">pyarrow.compute.round_to_multiple</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.trunc.html">pyarrow.compute.trunc</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ln.html">pyarrow.compute.ln</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ln_checked.html">pyarrow.compute.ln_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.log10.html">pyarrow.compute.log10</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.log10_checked.html">pyarrow.compute.log10_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.log1p.html">pyarrow.compute.log1p</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.log1p_checked.html">pyarrow.compute.log1p_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.log2.html">pyarrow.compute.log2</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.log2_checked.html">pyarrow.compute.log2_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.logb.html">pyarrow.compute.logb</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.logb_checked.html">pyarrow.compute.logb_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.acos.html">pyarrow.compute.acos</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.acos_checked.html">pyarrow.compute.acos_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.asin.html">pyarrow.compute.asin</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.asin_checked.html">pyarrow.compute.asin_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.atan.html">pyarrow.compute.atan</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.atan2.html">pyarrow.compute.atan2</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.cos.html">pyarrow.compute.cos</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.cos_checked.html">pyarrow.compute.cos_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.sin.html">pyarrow.compute.sin</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.sin_checked.html">pyarrow.compute.sin_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.tan.html">pyarrow.compute.tan</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.tan_checked.html">pyarrow.compute.tan_checked</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.equal.html">pyarrow.compute.equal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.greater.html">pyarrow.compute.greater</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.greater_equal.html">pyarrow.compute.greater_equal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.less.html">pyarrow.compute.less</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.less_equal.html">pyarrow.compute.less_equal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.not_equal.html">pyarrow.compute.not_equal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.max_element_wise.html">pyarrow.compute.max_element_wise</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.min_element_wise.html">pyarrow.compute.min_element_wise</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.and_.html">pyarrow.compute.and_</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.and_kleene.html">pyarrow.compute.and_kleene</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.and_not.html">pyarrow.compute.and_not</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.and_not_kleene.html">pyarrow.compute.and_not_kleene</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.invert.html">pyarrow.compute.invert</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.or_.html">pyarrow.compute.or_</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.or_kleene.html">pyarrow.compute.or_kleene</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.xor.html">pyarrow.compute.xor</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_is_alnum.html">pyarrow.compute.ascii_is_alnum</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_is_alpha.html">pyarrow.compute.ascii_is_alpha</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_is_decimal.html">pyarrow.compute.ascii_is_decimal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_is_lower.html">pyarrow.compute.ascii_is_lower</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_is_printable.html">pyarrow.compute.ascii_is_printable</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_is_space.html">pyarrow.compute.ascii_is_space</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_is_upper.html">pyarrow.compute.ascii_is_upper</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_alnum.html">pyarrow.compute.utf8_is_alnum</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_alpha.html">pyarrow.compute.utf8_is_alpha</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_decimal.html">pyarrow.compute.utf8_is_decimal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_digit.html">pyarrow.compute.utf8_is_digit</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_lower.html">pyarrow.compute.utf8_is_lower</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_numeric.html">pyarrow.compute.utf8_is_numeric</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_printable.html">pyarrow.compute.utf8_is_printable</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_space.html">pyarrow.compute.utf8_is_space</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_upper.html">pyarrow.compute.utf8_is_upper</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_is_title.html">pyarrow.compute.ascii_is_title</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_is_title.html">pyarrow.compute.utf8_is_title</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.string_is_ascii.html">pyarrow.compute.string_is_ascii</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_capitalize.html">pyarrow.compute.ascii_capitalize</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_lower.html">pyarrow.compute.ascii_lower</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_reverse.html">pyarrow.compute.ascii_reverse</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_swapcase.html">pyarrow.compute.ascii_swapcase</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_title.html">pyarrow.compute.ascii_title</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_upper.html">pyarrow.compute.ascii_upper</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.binary_length.html">pyarrow.compute.binary_length</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.binary_repeat.html">pyarrow.compute.binary_repeat</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.binary_replace_slice.html">pyarrow.compute.binary_replace_slice</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.binary_reverse.html">pyarrow.compute.binary_reverse</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.replace_substring.html">pyarrow.compute.replace_substring</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.replace_substring_regex.html">pyarrow.compute.replace_substring_regex</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_capitalize.html">pyarrow.compute.utf8_capitalize</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_length.html">pyarrow.compute.utf8_length</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_lower.html">pyarrow.compute.utf8_lower</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_replace_slice.html">pyarrow.compute.utf8_replace_slice</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_reverse.html">pyarrow.compute.utf8_reverse</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_swapcase.html">pyarrow.compute.utf8_swapcase</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_title.html">pyarrow.compute.utf8_title</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_upper.html">pyarrow.compute.utf8_upper</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_center.html">pyarrow.compute.ascii_center</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_lpad.html">pyarrow.compute.ascii_lpad</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_rpad.html">pyarrow.compute.ascii_rpad</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_center.html">pyarrow.compute.utf8_center</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_lpad.html">pyarrow.compute.utf8_lpad</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_rpad.html">pyarrow.compute.utf8_rpad</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_zero_fill.html">pyarrow.compute.utf8_zero_fill</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_ltrim.html">pyarrow.compute.ascii_ltrim</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_ltrim_whitespace.html">pyarrow.compute.ascii_ltrim_whitespace</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_rtrim.html">pyarrow.compute.ascii_rtrim</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_rtrim_whitespace.html">pyarrow.compute.ascii_rtrim_whitespace</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_trim.html">pyarrow.compute.ascii_trim</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_trim_whitespace.html">pyarrow.compute.ascii_trim_whitespace</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_ltrim.html">pyarrow.compute.utf8_ltrim</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_ltrim_whitespace.html">pyarrow.compute.utf8_ltrim_whitespace</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_rtrim.html">pyarrow.compute.utf8_rtrim</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_rtrim_whitespace.html">pyarrow.compute.utf8_rtrim_whitespace</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_trim.html">pyarrow.compute.utf8_trim</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_trim_whitespace.html">pyarrow.compute.utf8_trim_whitespace</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ascii_split_whitespace.html">pyarrow.compute.ascii_split_whitespace</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.split_pattern.html">pyarrow.compute.split_pattern</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.split_pattern_regex.html">pyarrow.compute.split_pattern_regex</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_split_whitespace.html">pyarrow.compute.utf8_split_whitespace</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.extract_regex.html">pyarrow.compute.extract_regex</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.binary_join.html">pyarrow.compute.binary_join</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.binary_join_element_wise.html">pyarrow.compute.binary_join_element_wise</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.binary_slice.html">pyarrow.compute.binary_slice</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.utf8_slice_codeunits.html">pyarrow.compute.utf8_slice_codeunits</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.count_substring.html">pyarrow.compute.count_substring</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.count_substring_regex.html">pyarrow.compute.count_substring_regex</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ends_with.html">pyarrow.compute.ends_with</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.find_substring.html">pyarrow.compute.find_substring</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.find_substring_regex.html">pyarrow.compute.find_substring_regex</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.index_in.html">pyarrow.compute.index_in</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.is_in.html">pyarrow.compute.is_in</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.match_like.html">pyarrow.compute.match_like</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.match_substring.html">pyarrow.compute.match_substring</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.match_substring_regex.html">pyarrow.compute.match_substring_regex</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.starts_with.html">pyarrow.compute.starts_with</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.indices_nonzero.html">pyarrow.compute.indices_nonzero</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.is_finite.html">pyarrow.compute.is_finite</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.is_inf.html">pyarrow.compute.is_inf</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.is_nan.html">pyarrow.compute.is_nan</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.is_null.html">pyarrow.compute.is_null</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.is_valid.html">pyarrow.compute.is_valid</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.true_unless_null.html">pyarrow.compute.true_unless_null</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.case_when.html">pyarrow.compute.case_when</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.choose.html">pyarrow.compute.choose</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.coalesce.html">pyarrow.compute.coalesce</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.if_else.html">pyarrow.compute.if_else</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.cast.html">pyarrow.compute.cast</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ceil_temporal.html">pyarrow.compute.ceil_temporal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.floor_temporal.html">pyarrow.compute.floor_temporal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.round_temporal.html">pyarrow.compute.round_temporal</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.run_end_decode.html">pyarrow.compute.run_end_decode</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.run_end_encode.html">pyarrow.compute.run_end_encode</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.strftime.html">pyarrow.compute.strftime</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.strptime.html">pyarrow.compute.strptime</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.day.html">pyarrow.compute.day</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.day_of_week.html">pyarrow.compute.day_of_week</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.day_of_year.html">pyarrow.compute.day_of_year</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.hour.html">pyarrow.compute.hour</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.iso_week.html">pyarrow.compute.iso_week</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.iso_year.html">pyarrow.compute.iso_year</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.iso_calendar.html">pyarrow.compute.iso_calendar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.is_leap_year.html">pyarrow.compute.is_leap_year</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.microsecond.html">pyarrow.compute.microsecond</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.millisecond.html">pyarrow.compute.millisecond</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.minute.html">pyarrow.compute.minute</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.month.html">pyarrow.compute.month</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.nanosecond.html">pyarrow.compute.nanosecond</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.quarter.html">pyarrow.compute.quarter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.second.html">pyarrow.compute.second</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.subsecond.html">pyarrow.compute.subsecond</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.us_week.html">pyarrow.compute.us_week</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.us_year.html">pyarrow.compute.us_year</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.week.html">pyarrow.compute.week</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.year.html">pyarrow.compute.year</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.year_month_day.html">pyarrow.compute.year_month_day</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.day_time_interval_between.html">pyarrow.compute.day_time_interval_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.days_between.html">pyarrow.compute.days_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.hours_between.html">pyarrow.compute.hours_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.microseconds_between.html">pyarrow.compute.microseconds_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.milliseconds_between.html">pyarrow.compute.milliseconds_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.minutes_between.html">pyarrow.compute.minutes_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.month_day_nano_interval_between.html">pyarrow.compute.month_day_nano_interval_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.month_interval_between.html">pyarrow.compute.month_interval_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.nanoseconds_between.html">pyarrow.compute.nanoseconds_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.quarters_between.html">pyarrow.compute.quarters_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.seconds_between.html">pyarrow.compute.seconds_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.weeks_between.html">pyarrow.compute.weeks_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.years_between.html">pyarrow.compute.years_between</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.assume_timezone.html">pyarrow.compute.assume_timezone</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.local_timestamp.html">pyarrow.compute.local_timestamp</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.dictionary_encode.html">pyarrow.compute.dictionary_encode</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.unique.html">pyarrow.compute.unique</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.value_counts.html">pyarrow.compute.value_counts</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.array_filter.html">pyarrow.compute.array_filter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.array_take.html">pyarrow.compute.array_take</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.drop_null.html">pyarrow.compute.drop_null</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.filter.html">pyarrow.compute.filter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.take.html">pyarrow.compute.take</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.array_sort_indices.html">pyarrow.compute.array_sort_indices</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.partition_nth_indices.html">pyarrow.compute.partition_nth_indices</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.select_k_unstable.html">pyarrow.compute.select_k_unstable</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.sort_indices.html">pyarrow.compute.sort_indices</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.fill_null.html">pyarrow.compute.fill_null</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.fill_null_backward.html">pyarrow.compute.fill_null_backward</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.fill_null_forward.html">pyarrow.compute.fill_null_forward</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.list_element.html">pyarrow.compute.list_element</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.list_flatten.html">pyarrow.compute.list_flatten</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.list_parent_indices.html">pyarrow.compute.list_parent_indices</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.list_slice.html">pyarrow.compute.list_slice</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.list_value_length.html">pyarrow.compute.list_value_length</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.make_struct.html">pyarrow.compute.make_struct</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.map_lookup.html">pyarrow.compute.map_lookup</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.replace_with_mask.html">pyarrow.compute.replace_with_mask</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.struct_field.html">pyarrow.compute.struct_field</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.pairwise_diff.html">pyarrow.compute.pairwise_diff</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ArraySortOptions.html">pyarrow.compute.ArraySortOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.AssumeTimezoneOptions.html">pyarrow.compute.AssumeTimezoneOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.CastOptions.html">pyarrow.compute.CastOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.CountOptions.html">pyarrow.compute.CountOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.CumulativeSumOptions.html">pyarrow.compute.CumulativeSumOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.DayOfWeekOptions.html">pyarrow.compute.DayOfWeekOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.DictionaryEncodeOptions.html">pyarrow.compute.DictionaryEncodeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ElementWiseAggregateOptions.html">pyarrow.compute.ElementWiseAggregateOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ExtractRegexOptions.html">pyarrow.compute.ExtractRegexOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.FilterOptions.html">pyarrow.compute.FilterOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.IndexOptions.html">pyarrow.compute.IndexOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.JoinOptions.html">pyarrow.compute.JoinOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ListSliceOptions.html">pyarrow.compute.ListSliceOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.MakeStructOptions.html">pyarrow.compute.MakeStructOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.MapLookupOptions.html">pyarrow.compute.MapLookupOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.MatchSubstringOptions.html">pyarrow.compute.MatchSubstringOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ModeOptions.html">pyarrow.compute.ModeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.NullOptions.html">pyarrow.compute.NullOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.PadOptions.html">pyarrow.compute.PadOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ZeroFillOptions.html">pyarrow.compute.ZeroFillOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.PairwiseOptions.html">pyarrow.compute.PairwiseOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.PartitionNthOptions.html">pyarrow.compute.PartitionNthOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.PivotWiderOptions.html">pyarrow.compute.PivotWiderOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.QuantileOptions.html">pyarrow.compute.QuantileOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ReplaceSliceOptions.html">pyarrow.compute.ReplaceSliceOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ReplaceSubstringOptions.html">pyarrow.compute.ReplaceSubstringOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.RoundOptions.html">pyarrow.compute.RoundOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.RoundTemporalOptions.html">pyarrow.compute.RoundTemporalOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.RoundToMultipleOptions.html">pyarrow.compute.RoundToMultipleOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.RunEndEncodeOptions.html">pyarrow.compute.RunEndEncodeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.ScalarAggregateOptions.html">pyarrow.compute.ScalarAggregateOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.SelectKOptions.html">pyarrow.compute.SelectKOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.SetLookupOptions.html">pyarrow.compute.SetLookupOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.SliceOptions.html">pyarrow.compute.SliceOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.SortOptions.html">pyarrow.compute.SortOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.SplitOptions.html">pyarrow.compute.SplitOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.SplitPatternOptions.html">pyarrow.compute.SplitPatternOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.StrftimeOptions.html">pyarrow.compute.StrftimeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.StrptimeOptions.html">pyarrow.compute.StrptimeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.StructFieldOptions.html">pyarrow.compute.StructFieldOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.TakeOptions.html">pyarrow.compute.TakeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.TDigestOptions.html">pyarrow.compute.TDigestOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.TrimOptions.html">pyarrow.compute.TrimOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.VarianceOptions.html">pyarrow.compute.VarianceOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.WeekOptions.html">pyarrow.compute.WeekOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.register_scalar_function.html">pyarrow.compute.register_scalar_function</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.UdfContext.html">pyarrow.compute.UdfContext</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.field.html">pyarrow.compute.field</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.compute.scalar.html">pyarrow.compute.scalar</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/acero.html">Acero - Streaming Execution Engine</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.acero.Declaration.html">pyarrow.acero.Declaration</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.acero.ExecNodeOptions.html">pyarrow.acero.ExecNodeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.acero.TableSourceNodeOptions.html">pyarrow.acero.TableSourceNodeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.acero.ScanNodeOptions.html">pyarrow.acero.ScanNodeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.acero.FilterNodeOptions.html">pyarrow.acero.FilterNodeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.acero.ProjectNodeOptions.html">pyarrow.acero.ProjectNodeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.acero.AggregateNodeOptions.html">pyarrow.acero.AggregateNodeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.acero.OrderByNodeOptions.html">pyarrow.acero.OrderByNodeOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.acero.HashJoinNodeOptions.html">pyarrow.acero.HashJoinNodeOptions</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/substrait.html">Substrait</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.substrait.run_query.html">pyarrow.substrait.run_query</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.substrait.BoundExpressions.html">pyarrow.substrait.BoundExpressions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.substrait.deserialize_expressions.html">pyarrow.substrait.deserialize_expressions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.substrait.serialize_expressions.html">pyarrow.substrait.serialize_expressions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.substrait.serialize_schema.html">pyarrow.substrait.serialize_schema</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.substrait.deserialize_schema.html">pyarrow.substrait.deserialize_schema</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.substrait.SubstraitSchema.html">pyarrow.substrait.SubstraitSchema</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.substrait.get_supported_functions.html">pyarrow.substrait.get_supported_functions</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/files.html">Streams and File Access</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.input_stream.html">pyarrow.input_stream</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.output_stream.html">pyarrow.output_stream</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.memory_map.html">pyarrow.memory_map</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.create_memory_map.html">pyarrow.create_memory_map</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.NativeFile.html">pyarrow.NativeFile</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.OSFile.html">pyarrow.OSFile</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.PythonFile.html">pyarrow.PythonFile</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.BufferReader.html">pyarrow.BufferReader</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.BufferOutputStream.html">pyarrow.BufferOutputStream</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.FixedSizeBufferWriter.html">pyarrow.FixedSizeBufferWriter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.MemoryMappedFile.html">pyarrow.MemoryMappedFile</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.CompressedInputStream.html">pyarrow.CompressedInputStream</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.CompressedOutputStream.html">pyarrow.CompressedOutputStream</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/ipc.html">Serialization and IPC</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.new_file.html">pyarrow.ipc.new_file</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.open_file.html">pyarrow.ipc.open_file</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.new_stream.html">pyarrow.ipc.new_stream</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.open_stream.html">pyarrow.ipc.open_stream</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.read_message.html">pyarrow.ipc.read_message</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.read_record_batch.html">pyarrow.ipc.read_record_batch</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.get_record_batch_size.html">pyarrow.ipc.get_record_batch_size</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.read_tensor.html">pyarrow.ipc.read_tensor</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.write_tensor.html">pyarrow.ipc.write_tensor</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.get_tensor_size.html">pyarrow.ipc.get_tensor_size</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.IpcReadOptions.html">pyarrow.ipc.IpcReadOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.IpcWriteOptions.html">pyarrow.ipc.IpcWriteOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.Message.html">pyarrow.ipc.Message</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.MessageReader.html">pyarrow.ipc.MessageReader</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.RecordBatchFileReader.html">pyarrow.ipc.RecordBatchFileReader</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.RecordBatchFileWriter.html">pyarrow.ipc.RecordBatchFileWriter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.RecordBatchStreamReader.html">pyarrow.ipc.RecordBatchStreamReader</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.ipc.RecordBatchStreamWriter.html">pyarrow.ipc.RecordBatchStreamWriter</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/flight.html">Arrow Flight</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.Action.html">pyarrow.flight.Action</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.ActionType.html">pyarrow.flight.ActionType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.DescriptorType.html">pyarrow.flight.DescriptorType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightDescriptor.html">pyarrow.flight.FlightDescriptor</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightEndpoint.html">pyarrow.flight.FlightEndpoint</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightInfo.html">pyarrow.flight.FlightInfo</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.Location.html">pyarrow.flight.Location</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.MetadataRecordBatchReader.html">pyarrow.flight.MetadataRecordBatchReader</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.MetadataRecordBatchWriter.html">pyarrow.flight.MetadataRecordBatchWriter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.Ticket.html">pyarrow.flight.Ticket</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.Result.html">pyarrow.flight.Result</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.connect.html">pyarrow.flight.connect</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightCallOptions.html">pyarrow.flight.FlightCallOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightClient.html">pyarrow.flight.FlightClient</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightStreamReader.html">pyarrow.flight.FlightStreamReader</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightStreamWriter.html">pyarrow.flight.FlightStreamWriter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.ClientMiddlewareFactory.html">pyarrow.flight.ClientMiddlewareFactory</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.ClientMiddleware.html">pyarrow.flight.ClientMiddleware</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightDataStream.html">pyarrow.flight.FlightDataStream</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightMetadataWriter.html">pyarrow.flight.FlightMetadataWriter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightServerBase.html">pyarrow.flight.FlightServerBase</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.GeneratorStream.html">pyarrow.flight.GeneratorStream</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.RecordBatchStream.html">pyarrow.flight.RecordBatchStream</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.ServerCallContext.html">pyarrow.flight.ServerCallContext</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.ServerMiddlewareFactory.html">pyarrow.flight.ServerMiddlewareFactory</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.ServerMiddleware.html">pyarrow.flight.ServerMiddleware</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.ClientAuthHandler.html">pyarrow.flight.ClientAuthHandler</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.ServerAuthHandler.html">pyarrow.flight.ServerAuthHandler</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightError.html">pyarrow.flight.FlightError</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightCancelledError.html">pyarrow.flight.FlightCancelledError</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightInternalError.html">pyarrow.flight.FlightInternalError</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightServerError.html">pyarrow.flight.FlightServerError</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightTimedOutError.html">pyarrow.flight.FlightTimedOutError</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightUnauthenticatedError.html">pyarrow.flight.FlightUnauthenticatedError</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightUnauthorizedError.html">pyarrow.flight.FlightUnauthorizedError</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightUnavailableError.html">pyarrow.flight.FlightUnavailableError</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightWriteSizeExceededError.html">pyarrow.flight.FlightWriteSizeExceededError</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.FlightMethod.html">pyarrow.flight.FlightMethod</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.flight.CallInfo.html">pyarrow.flight.CallInfo</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/formats.html">Tabular File Formats</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.ConvertOptions.html">pyarrow.csv.ConvertOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.CSVStreamingReader.html">pyarrow.csv.CSVStreamingReader</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.CSVWriter.html">pyarrow.csv.CSVWriter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.ISO8601.html">pyarrow.csv.ISO8601</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.ParseOptions.html">pyarrow.csv.ParseOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.ReadOptions.html">pyarrow.csv.ReadOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.WriteOptions.html">pyarrow.csv.WriteOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.open_csv.html">pyarrow.csv.open_csv</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.read_csv.html">pyarrow.csv.read_csv</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.write_csv.html">pyarrow.csv.write_csv</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.csv.InvalidRow.html">pyarrow.csv.InvalidRow</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.feather.read_feather.html">pyarrow.feather.read_feather</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.feather.read_table.html">pyarrow.feather.read_table</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.feather.write_feather.html">pyarrow.feather.write_feather</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.json.ReadOptions.html">pyarrow.json.ReadOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.json.ParseOptions.html">pyarrow.json.ParseOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.json.open_json.html">pyarrow.json.open_json</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.json.read_json.html">pyarrow.json.read_json</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.ParquetDataset.html">pyarrow.parquet.ParquetDataset</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.ParquetFile.html">pyarrow.parquet.ParquetFile</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.ParquetWriter.html">pyarrow.parquet.ParquetWriter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.read_table.html">pyarrow.parquet.read_table</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.read_metadata.html">pyarrow.parquet.read_metadata</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.read_pandas.html">pyarrow.parquet.read_pandas</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.read_schema.html">pyarrow.parquet.read_schema</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.write_metadata.html">pyarrow.parquet.write_metadata</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.write_table.html">pyarrow.parquet.write_table</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.write_to_dataset.html">pyarrow.parquet.write_to_dataset</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.FileMetaData.html">pyarrow.parquet.FileMetaData</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.RowGroupMetaData.html">pyarrow.parquet.RowGroupMetaData</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.SortingColumn.html">pyarrow.parquet.SortingColumn</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.ColumnChunkMetaData.html">pyarrow.parquet.ColumnChunkMetaData</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.Statistics.html">pyarrow.parquet.Statistics</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.ParquetSchema.html">pyarrow.parquet.ParquetSchema</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.ColumnSchema.html">pyarrow.parquet.ColumnSchema</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.ParquetLogicalType.html">pyarrow.parquet.ParquetLogicalType</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.encryption.CryptoFactory.html">pyarrow.parquet.encryption.CryptoFactory</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.encryption.KmsClient.html">pyarrow.parquet.encryption.KmsClient</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.encryption.KmsConnectionConfig.html">pyarrow.parquet.encryption.KmsConnectionConfig</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.encryption.EncryptionConfiguration.html">pyarrow.parquet.encryption.EncryptionConfiguration</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.parquet.encryption.DecryptionConfiguration.html">pyarrow.parquet.encryption.DecryptionConfiguration</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.orc.ORCFile.html">pyarrow.orc.ORCFile</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.orc.ORCWriter.html">pyarrow.orc.ORCWriter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.orc.read_table.html">pyarrow.orc.read_table</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.orc.write_table.html">pyarrow.orc.write_table</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/filesystems.html">Filesystems</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.FileInfo.html">pyarrow.fs.FileInfo</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.FileSelector.html">pyarrow.fs.FileSelector</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.FileSystem.html">pyarrow.fs.FileSystem</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.LocalFileSystem.html">pyarrow.fs.LocalFileSystem</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.S3FileSystem.html">pyarrow.fs.S3FileSystem</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.GcsFileSystem.html">pyarrow.fs.GcsFileSystem</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.HadoopFileSystem.html">pyarrow.fs.HadoopFileSystem</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.SubTreeFileSystem.html">pyarrow.fs.SubTreeFileSystem</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.AzureFileSystem.html">pyarrow.fs.AzureFileSystem</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.PyFileSystem.html">pyarrow.fs.PyFileSystem</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.FileSystemHandler.html">pyarrow.fs.FileSystemHandler</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.FSSpecHandler.html">pyarrow.fs.FSSpecHandler</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.copy_files.html">pyarrow.fs.copy_files</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.initialize_s3.html">pyarrow.fs.initialize_s3</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.finalize_s3.html">pyarrow.fs.finalize_s3</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.resolve_s3_region.html">pyarrow.fs.resolve_s3_region</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.fs.S3LogLevel.html">pyarrow.fs.S3LogLevel</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/dataset.html">Dataset</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.dataset.html">pyarrow.dataset.dataset</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.parquet_dataset.html">pyarrow.dataset.parquet_dataset</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.partitioning.html">pyarrow.dataset.partitioning</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.field.html">pyarrow.dataset.field</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.scalar.html">pyarrow.dataset.scalar</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.write_dataset.html">pyarrow.dataset.write_dataset</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.FileFormat.html">pyarrow.dataset.FileFormat</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.CsvFileFormat.html">pyarrow.dataset.CsvFileFormat</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.CsvFragmentScanOptions.html">pyarrow.dataset.CsvFragmentScanOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.IpcFileFormat.html">pyarrow.dataset.IpcFileFormat</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.JsonFileFormat.html">pyarrow.dataset.JsonFileFormat</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.ParquetFileFormat.html">pyarrow.dataset.ParquetFileFormat</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.ParquetReadOptions.html">pyarrow.dataset.ParquetReadOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.ParquetFragmentScanOptions.html">pyarrow.dataset.ParquetFragmentScanOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.ParquetFileFragment.html">pyarrow.dataset.ParquetFileFragment</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.OrcFileFormat.html">pyarrow.dataset.OrcFileFormat</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.Partitioning.html">pyarrow.dataset.Partitioning</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.PartitioningFactory.html">pyarrow.dataset.PartitioningFactory</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.DirectoryPartitioning.html">pyarrow.dataset.DirectoryPartitioning</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.HivePartitioning.html">pyarrow.dataset.HivePartitioning</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.FilenamePartitioning.html">pyarrow.dataset.FilenamePartitioning</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.Dataset.html">pyarrow.dataset.Dataset</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.FileSystemDataset.html">pyarrow.dataset.FileSystemDataset</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.FileSystemFactoryOptions.html">pyarrow.dataset.FileSystemFactoryOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.FileSystemDatasetFactory.html">pyarrow.dataset.FileSystemDatasetFactory</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.UnionDataset.html">pyarrow.dataset.UnionDataset</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.Fragment.html">pyarrow.dataset.Fragment</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.FragmentScanOptions.html">pyarrow.dataset.FragmentScanOptions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.TaggedRecordBatch.html">pyarrow.dataset.TaggedRecordBatch</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.Scanner.html">pyarrow.dataset.Scanner</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.Expression.html">pyarrow.dataset.Expression</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.InMemoryDataset.html">pyarrow.dataset.InMemoryDataset</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.WrittenFile.html">pyarrow.dataset.WrittenFile</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.dataset.get_partition_keys.html">pyarrow.dataset.get_partition_keys</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/cuda.html">CUDA Integration</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.Context.html">pyarrow.cuda.Context</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.CudaBuffer.html">pyarrow.cuda.CudaBuffer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.new_host_buffer.html">pyarrow.cuda.new_host_buffer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.HostBuffer.html">pyarrow.cuda.HostBuffer</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.BufferReader.html">pyarrow.cuda.BufferReader</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.BufferWriter.html">pyarrow.cuda.BufferWriter</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.serialize_record_batch.html">pyarrow.cuda.serialize_record_batch</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.read_record_batch.html">pyarrow.cuda.read_record_batch</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.read_message.html">pyarrow.cuda.read_message</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cuda.IpcMemHandle.html">pyarrow.cuda.IpcMemHandle</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l3 has-children"><a class="reference internal" href="../api/misc.html">Miscellaneous</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.cpu_count.html">pyarrow.cpu_count</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.set_cpu_count.html">pyarrow.set_cpu_count</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.io_thread_count.html">pyarrow.io_thread_count</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.set_io_thread_count.html">pyarrow.set_io_thread_count</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.get_include.html">pyarrow.get_include</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.get_libraries.html">pyarrow.get_libraries</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="pyarrow.get_library_dirs.html">pyarrow.get_library_dirs</a></li> |
| </ul> |
| </details></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l2"><a class="reference internal" href="../getting_involved.html">Getting Involved</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../benchmarks.html">Benchmarks</a></li> |
| <li class="toctree-l2"><a class="reference external" href="https://arrow.apache.org/cookbook/py/">Python cookbook</a></li> |
| </ul> |
| </details></li> |
| <li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/docs/r">R</a></li> |
| <li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow/blob/main/ruby/README.md">Ruby</a></li> |
| <li class="toctree-l1"><a class="reference external" href="https://docs.rs/crate/arrow/">Rust</a></li> |
| <li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow-swift/blob/main/Arrow/README.md">Swift</a></li> |
| <li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/nanoarrow/">nanoarrow</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../status.html">Implementation Status</a></li> |
| </ul> |
| </div> |
| </nav></div> |
| </div> |
| |
| |
| <div class="sidebar-primary-items__end sidebar-primary__section"> |
| <div class="sidebar-primary-item"> |
| <div id="ethical-ad-placement" |
| class="flat" |
| data-ea-publisher="readthedocs" |
| data-ea-type="readthedocs-sidebar" |
| data-ea-manual="true"> |
| </div></div> |
| </div> |
| |
| |
| </div> |
| |
| <main id="main-content" class="bd-main" role="main"> |
| |
| |
| <div class="bd-content"> |
| <div class="bd-article-container"> |
| |
| <div class="bd-header-article d-print-none"> |
| <div class="header-article-items header-article__inner"> |
| |
| <div class="header-article-items__start"> |
| |
| <div class="header-article-item"> |
| |
| <nav aria-label="Breadcrumb" class="d-print-none"> |
| <ul class="bd-breadcrumbs"> |
| |
| <li class="breadcrumb-item breadcrumb-home"> |
| <a href="../../index.html" class="nav-link" aria-label="Home"> |
| <i class="fa-solid fa-home"></i> |
| </a> |
| </li> |
| |
| <li class="breadcrumb-item"><a href="../../implementations.html" class="nav-link">Implementations</a></li> |
| |
| |
| <li class="breadcrumb-item"><a href="../index.html" class="nav-link">Python</a></li> |
| |
| |
| <li class="breadcrumb-item"><a href="../api.html" class="nav-link">API Reference</a></li> |
| |
| |
| <li class="breadcrumb-item"><a href="../api/tables.html" class="nav-link">Tables and Tensors</a></li> |
| |
| <li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">pyarrow.RecordBatch</span></li> |
| </ul> |
| </nav> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| </div> |
| |
| |
| |
| |
| <div id="searchbox"></div> |
| <article class="bd-article"> |
| |
| <section id="pyarrow-recordbatch"> |
| <h1>pyarrow.RecordBatch<a class="headerlink" href="#pyarrow-recordbatch" title="Link to this heading">#</a></h1> |
| <dl class="py class"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch"> |
| <em class="property"><span class="k"><span class="pre">class</span></span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyarrow.</span></span><span class="sig-name descname"><span class="pre">RecordBatch</span></span><a class="headerlink" href="#pyarrow.RecordBatch" title="Link to this definition">#</a></dt> |
| <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">_Tabular</span></code></p> |
| <p>Batch of rows of columns of equal length</p> |
| <div class="admonition warning"> |
| <p class="admonition-title">Warning</p> |
| <p>Do not call this class’s constructor directly, use one of the |
| <code class="docutils literal notranslate"><span class="pre">RecordBatch.from_*</span></code> functions instead.</p> |
| </div> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>Constructing a RecordBatch from arrays:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> <span class="n">names</span><span class="o">=</span><span class="n">names</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,2,4,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> <span class="n">names</span><span class="o">=</span><span class="n">names</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 2 Flamingo</span> |
| <span class="go">1 2 Parrot</span> |
| <span class="go">2 4 Dog</span> |
| <span class="go">3 4 Horse</span> |
| <span class="go">4 5 Brittle stars</span> |
| <span class="go">5 100 Centipede</span> |
| </pre></div> |
| </div> |
| <p>Constructing a RecordBatch from pandas DataFrame:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'year'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2020</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2021</span><span class="p">,</span> <span class="mi">2022</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'month'</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">9</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'day'</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="mi">13</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">year: int64</span> |
| <span class="go">month: int64</span> |
| <span class="go">day: int64</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [2020,2022,2021,2022]</span> |
| <span class="go">month: [3,5,7,9]</span> |
| <span class="go">day: [1,5,9,13]</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> year month day n_legs animals</span> |
| <span class="go">0 2020 3 1 2 Flamingo</span> |
| <span class="go">1 2022 5 5 4 Horse</span> |
| <span class="go">2 2021 7 9 5 Brittle stars</span> |
| <span class="go">3 2022 9 13 100 Centipede</span> |
| </pre></div> |
| </div> |
| <p>Constructing a RecordBatch from pylist:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pylist</span> <span class="o">=</span> <span class="p">[{</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span> <span class="s1">'animals'</span><span class="p">:</span> <span class="s1">'Flamingo'</span><span class="p">},</span> |
| <span class="gp">... </span> <span class="p">{</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="mi">4</span><span class="p">,</span> <span class="s1">'animals'</span><span class="p">:</span> <span class="s1">'Dog'</span><span class="p">}]</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pylist</span><span class="p">(</span><span class="n">pylist</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 2 Flamingo</span> |
| <span class="go">1 4 Dog</span> |
| </pre></div> |
| </div> |
| <p>You can also construct a RecordBatch using <a class="reference internal" href="pyarrow.record_batch.html#pyarrow.record_batch" title="pyarrow.record_batch"><code class="xref py py-func docutils literal notranslate"><span class="pre">pyarrow.record_batch()</span></code></a>:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">record_batch</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> <span class="n">names</span><span class="o">=</span><span class="n">names</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 2 Flamingo</span> |
| <span class="go">1 2 Parrot</span> |
| <span class="go">2 4 Dog</span> |
| <span class="go">3 4 Horse</span> |
| <span class="go">4 5 Brittle stars</span> |
| <span class="go">5 100 Centipede</span> |
| </pre></div> |
| </div> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">record_batch</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">year: int64</span> |
| <span class="go">month: int64</span> |
| <span class="go">day: int64</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [2020,2022,2021,2022]</span> |
| <span class="go">month: [3,5,7,9]</span> |
| <span class="go">day: [1,5,9,13]</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| </pre></div> |
| </div> |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.__init__"> |
| <span class="sig-name descname"><span class="pre">__init__</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.__init__" title="Link to this definition">#</a></dt> |
| <dd></dd></dl> |
| |
| <p class="rubric">Methods</p> |
| <div class="pst-scrollable-table-container"><table class="autosummary longtable table"> |
| <tbody> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.__init__" title="pyarrow.RecordBatch.__init__"><code class="xref py py-obj docutils literal notranslate"><span class="pre">__init__</span></code></a>(*args, **kwargs)</p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.add_column" title="pyarrow.RecordBatch.add_column"><code class="xref py py-obj docutils literal notranslate"><span class="pre">add_column</span></code></a>(self, int i, field_, column)</p></td> |
| <td><p>Add column to RecordBatch at position i.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.append_column" title="pyarrow.RecordBatch.append_column"><code class="xref py py-obj docutils literal notranslate"><span class="pre">append_column</span></code></a>(self, field_, column)</p></td> |
| <td><p>Append column at end of columns.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.cast" title="pyarrow.RecordBatch.cast"><code class="xref py py-obj docutils literal notranslate"><span class="pre">cast</span></code></a>(self, Schema target_schema[, safe, options])</p></td> |
| <td><p>Cast record batch values to another schema.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.column" title="pyarrow.RecordBatch.column"><code class="xref py py-obj docutils literal notranslate"><span class="pre">column</span></code></a>(self, i)</p></td> |
| <td><p>Select single column from Table or RecordBatch.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.copy_to" title="pyarrow.RecordBatch.copy_to"><code class="xref py py-obj docutils literal notranslate"><span class="pre">copy_to</span></code></a>(self, destination)</p></td> |
| <td><p>Copy the entire RecordBatch to destination device.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.drop_columns" title="pyarrow.RecordBatch.drop_columns"><code class="xref py py-obj docutils literal notranslate"><span class="pre">drop_columns</span></code></a>(self, columns)</p></td> |
| <td><p>Drop one or more columns and return a new Table or RecordBatch.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.drop_null" title="pyarrow.RecordBatch.drop_null"><code class="xref py py-obj docutils literal notranslate"><span class="pre">drop_null</span></code></a>(self)</p></td> |
| <td><p>Remove rows that contain missing values from a Table or RecordBatch.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.equals" title="pyarrow.RecordBatch.equals"><code class="xref py py-obj docutils literal notranslate"><span class="pre">equals</span></code></a>(self, other, bool check_metadata=False)</p></td> |
| <td><p>Check if contents of two record batches are equal.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.field" title="pyarrow.RecordBatch.field"><code class="xref py py-obj docutils literal notranslate"><span class="pre">field</span></code></a>(self, i)</p></td> |
| <td><p>Select a schema field by its column name or numeric index.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.filter" title="pyarrow.RecordBatch.filter"><code class="xref py py-obj docutils literal notranslate"><span class="pre">filter</span></code></a>(self, mask[, null_selection_behavior])</p></td> |
| <td><p>Select rows from the table or record batch based on a boolean mask.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.from_arrays" title="pyarrow.RecordBatch.from_arrays"><code class="xref py py-obj docutils literal notranslate"><span class="pre">from_arrays</span></code></a>(list arrays[, names, schema, ...])</p></td> |
| <td><p>Construct a RecordBatch from multiple pyarrow.Arrays</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.from_pandas" title="pyarrow.RecordBatch.from_pandas"><code class="xref py py-obj docutils literal notranslate"><span class="pre">from_pandas</span></code></a>(cls, df, Schema schema=None[, ...])</p></td> |
| <td><p>Convert pandas.DataFrame to an Arrow RecordBatch</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.from_pydict" title="pyarrow.RecordBatch.from_pydict"><code class="xref py py-obj docutils literal notranslate"><span class="pre">from_pydict</span></code></a>(cls, mapping[, schema, metadata])</p></td> |
| <td><p>Construct a Table or RecordBatch from Arrow arrays or columns.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.from_pylist" title="pyarrow.RecordBatch.from_pylist"><code class="xref py py-obj docutils literal notranslate"><span class="pre">from_pylist</span></code></a>(cls, mapping[, schema, metadata])</p></td> |
| <td><p>Construct a Table or RecordBatch from list of rows / dictionaries.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.from_struct_array" title="pyarrow.RecordBatch.from_struct_array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">from_struct_array</span></code></a>(StructArray struct_array)</p></td> |
| <td><p>Construct a RecordBatch from a StructArray.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.get_total_buffer_size" title="pyarrow.RecordBatch.get_total_buffer_size"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_total_buffer_size</span></code></a>(self)</p></td> |
| <td><p>The sum of bytes in each buffer referenced by the record batch</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.itercolumns" title="pyarrow.RecordBatch.itercolumns"><code class="xref py py-obj docutils literal notranslate"><span class="pre">itercolumns</span></code></a>(self)</p></td> |
| <td><p>Iterator over all columns in their numerical order.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.remove_column" title="pyarrow.RecordBatch.remove_column"><code class="xref py py-obj docutils literal notranslate"><span class="pre">remove_column</span></code></a>(self, int i)</p></td> |
| <td><p>Create new RecordBatch with the indicated column removed.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.rename_columns" title="pyarrow.RecordBatch.rename_columns"><code class="xref py py-obj docutils literal notranslate"><span class="pre">rename_columns</span></code></a>(self, names)</p></td> |
| <td><p>Create new record batch with columns renamed to provided names.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.replace_schema_metadata" title="pyarrow.RecordBatch.replace_schema_metadata"><code class="xref py py-obj docutils literal notranslate"><span class="pre">replace_schema_metadata</span></code></a>(self[, metadata])</p></td> |
| <td><p>Create shallow copy of record batch by replacing schema key-value metadata with the indicated new metadata (which may be None, which deletes any existing metadata</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.select" title="pyarrow.RecordBatch.select"><code class="xref py py-obj docutils literal notranslate"><span class="pre">select</span></code></a>(self, columns)</p></td> |
| <td><p>Select columns of the RecordBatch.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.serialize" title="pyarrow.RecordBatch.serialize"><code class="xref py py-obj docutils literal notranslate"><span class="pre">serialize</span></code></a>(self[, memory_pool])</p></td> |
| <td><p>Write RecordBatch to Buffer as encapsulated IPC message, which does not include a Schema.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.set_column" title="pyarrow.RecordBatch.set_column"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_column</span></code></a>(self, int i, field_, column)</p></td> |
| <td><p>Replace column in RecordBatch at position.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.slice" title="pyarrow.RecordBatch.slice"><code class="xref py py-obj docutils literal notranslate"><span class="pre">slice</span></code></a>(self[, offset, length])</p></td> |
| <td><p>Compute zero-copy slice of this RecordBatch</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.sort_by" title="pyarrow.RecordBatch.sort_by"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sort_by</span></code></a>(self, sorting, **kwargs)</p></td> |
| <td><p>Sort the Table or RecordBatch by one or multiple columns.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.take" title="pyarrow.RecordBatch.take"><code class="xref py py-obj docutils literal notranslate"><span class="pre">take</span></code></a>(self, indices)</p></td> |
| <td><p>Select rows from a Table or RecordBatch.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.to_pandas" title="pyarrow.RecordBatch.to_pandas"><code class="xref py py-obj docutils literal notranslate"><span class="pre">to_pandas</span></code></a>(self[, memory_pool, categories, ...])</p></td> |
| <td><p>Convert to a pandas-compatible NumPy array or DataFrame, as appropriate</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.to_pydict" title="pyarrow.RecordBatch.to_pydict"><code class="xref py py-obj docutils literal notranslate"><span class="pre">to_pydict</span></code></a>(self, *[, maps_as_pydicts])</p></td> |
| <td><p>Convert the Table or RecordBatch to a dict or OrderedDict.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.to_pylist" title="pyarrow.RecordBatch.to_pylist"><code class="xref py py-obj docutils literal notranslate"><span class="pre">to_pylist</span></code></a>(self, *[, maps_as_pydicts])</p></td> |
| <td><p>Convert the Table or RecordBatch to a list of rows / dictionaries.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.to_string" title="pyarrow.RecordBatch.to_string"><code class="xref py py-obj docutils literal notranslate"><span class="pre">to_string</span></code></a>(self, *[, show_metadata, preview_cols])</p></td> |
| <td><p>Return human-readable string representation of Table or RecordBatch.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.to_struct_array" title="pyarrow.RecordBatch.to_struct_array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">to_struct_array</span></code></a>(self)</p></td> |
| <td><p>Convert to a struct array.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.to_tensor" title="pyarrow.RecordBatch.to_tensor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">to_tensor</span></code></a>(self, bool null_to_nan=False, ...)</p></td> |
| <td><p>Convert to a <a class="reference internal" href="pyarrow.Tensor.html#pyarrow.Tensor" title="pyarrow.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code></a>.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.validate" title="pyarrow.RecordBatch.validate"><code class="xref py py-obj docutils literal notranslate"><span class="pre">validate</span></code></a>(self, *[, full])</p></td> |
| <td><p>Perform validation checks.</p></td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <p class="rubric">Attributes</p> |
| <div class="pst-scrollable-table-container"><table class="autosummary longtable table"> |
| <tbody> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.column_names" title="pyarrow.RecordBatch.column_names"><code class="xref py py-obj docutils literal notranslate"><span class="pre">column_names</span></code></a></p></td> |
| <td><p>Names of the Table or RecordBatch columns.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.columns" title="pyarrow.RecordBatch.columns"><code class="xref py py-obj docutils literal notranslate"><span class="pre">columns</span></code></a></p></td> |
| <td><p>List of all columns in numerical order.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.device_type" title="pyarrow.RecordBatch.device_type"><code class="xref py py-obj docutils literal notranslate"><span class="pre">device_type</span></code></a></p></td> |
| <td><p>The device type where the arrays in the RecordBatch reside.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.is_cpu" title="pyarrow.RecordBatch.is_cpu"><code class="xref py py-obj docutils literal notranslate"><span class="pre">is_cpu</span></code></a></p></td> |
| <td><p>Whether the RecordBatch's arrays are CPU-accessible.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.nbytes" title="pyarrow.RecordBatch.nbytes"><code class="xref py py-obj docutils literal notranslate"><span class="pre">nbytes</span></code></a></p></td> |
| <td><p>Total number of bytes consumed by the elements of the record batch.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.num_columns" title="pyarrow.RecordBatch.num_columns"><code class="xref py py-obj docutils literal notranslate"><span class="pre">num_columns</span></code></a></p></td> |
| <td><p>Number of columns</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.num_rows" title="pyarrow.RecordBatch.num_rows"><code class="xref py py-obj docutils literal notranslate"><span class="pre">num_rows</span></code></a></p></td> |
| <td><p>Number of rows</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.schema" title="pyarrow.RecordBatch.schema"><code class="xref py py-obj docutils literal notranslate"><span class="pre">schema</span></code></a></p></td> |
| <td><p>Schema of the RecordBatch and its columns</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#pyarrow.RecordBatch.shape" title="pyarrow.RecordBatch.shape"><code class="xref py py-obj docutils literal notranslate"><span class="pre">shape</span></code></a></p></td> |
| <td><p>Dimensions of the table or record batch: (#rows, #columns).</p></td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.__dataframe__"> |
| <span class="sig-name descname"><span class="pre">__dataframe__</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nan_as_null</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">allow_copy</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.13)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.__dataframe__" title="Link to this definition">#</a></dt> |
| <dd><p>Return the dataframe interchange object implementing the interchange protocol.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>nan_as_null</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>Whether to tell the DataFrame to overwrite null values in the data |
| with <code class="docutils literal notranslate"><span class="pre">NaN</span></code> (or <code class="docutils literal notranslate"><span class="pre">NaT</span></code>).</p> |
| </dd> |
| <dt><strong>allow_copy</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#True" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">True</span></code></a></span></dt><dd><p>Whether to allow memory copying when exporting. If set to False |
| it would cause non-zero-copy exports to fail.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><code class="xref py py-obj docutils literal notranslate"><span class="pre">DataFrame</span></code> <code class="xref py py-obj docutils literal notranslate"><span class="pre">interchange</span></code> object</dt><dd><p>The object which consuming library can use to ingress the dataframe.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Notes</p> |
| <p>Details on the interchange protocol: |
| <a class="reference external" href="https://data-apis.org/dataframe-protocol/latest/index.html">https://data-apis.org/dataframe-protocol/latest/index.html</a> |
| <cite>nan_as_null</cite> currently has no effect; once support for nullable extension |
| dtypes is added, this value should be propagated to columns.</p> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.add_column"> |
| <span class="sig-name descname"><span class="pre">add_column</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">int</span> <span class="pre">i</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">field_</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">column</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.add_column" title="Link to this definition">#</a></dt> |
| <dd><p>Add column to RecordBatch at position i.</p> |
| <p>A new record batch is returned with the column added, the original record batch |
| object is left unchanged.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>i</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a></span></dt><dd><p>Index to place the column at.</p> |
| </dd> |
| <dt><strong>field_</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a> or <a class="reference internal" href="pyarrow.Field.html#pyarrow.Field" title="pyarrow.Field"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Field</span></code></a></span></dt><dd><p>If a string is passed then the type is deduced from the column |
| data.</p> |
| </dd> |
| <dt><strong>column</strong><span class="classifier"><a class="reference internal" href="pyarrow.Array.html#pyarrow.Array" title="pyarrow.Array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Array</span></code></a> or <code class="xref py py-obj docutils literal notranslate"><span class="pre">value</span></code> coercible to <a class="reference external" href="https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray" title="(in NumPy v2.3)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">array</span></code></a></span></dt><dd><p>Column data.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd><p>New record batch with the passed column added.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Add column:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">year</span> <span class="o">=</span> <span class="p">[</span><span class="mi">2021</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2019</span><span class="p">,</span> <span class="mi">2021</span><span class="p">]</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">add_column</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="s2">"year"</span><span class="p">,</span> <span class="n">year</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">year: int64</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [2021,2022,2019,2021]</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| </pre></div> |
| </div> |
| <p>Original record batch is left unchanged:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">batch</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.append_column"> |
| <span class="sig-name descname"><span class="pre">append_column</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">field_</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">column</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.append_column" title="Link to this definition">#</a></dt> |
| <dd><p>Append column at end of columns.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>field_</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a> or <a class="reference internal" href="pyarrow.Field.html#pyarrow.Field" title="pyarrow.Field"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Field</span></code></a></span></dt><dd><p>If a string is passed then the type is deduced from the column |
| data.</p> |
| </dd> |
| <dt><strong>column</strong><span class="classifier"><a class="reference internal" href="pyarrow.Array.html#pyarrow.Array" title="pyarrow.Array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Array</span></code></a> or <code class="xref py py-obj docutils literal notranslate"><span class="pre">value</span></code> coercible to <a class="reference external" href="https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray" title="(in NumPy v2.3)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">array</span></code></a></span></dt><dd><p>Column data.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a> or <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd><p>New table or record batch with the passed column added.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Append column at the end:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">year</span> <span class="o">=</span> <span class="p">[</span><span class="mi">2021</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2019</span><span class="p">,</span> <span class="mi">2021</span><span class="p">]</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">append_column</span><span class="p">(</span><span class="s1">'year'</span><span class="p">,</span> <span class="p">[</span><span class="n">year</span><span class="p">])</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">year: int64</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [[2,4,5,100]]</span> |
| <span class="go">animals: [["Flamingo","Horse","Brittle stars","Centipede"]]</span> |
| <span class="go">year: [[2021,2022,2019,2021]]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.cast"> |
| <span class="sig-name descname"><span class="pre">cast</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Schema</span> <span class="pre">target_schema</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">safe=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">options=None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.cast" title="Link to this definition">#</a></dt> |
| <dd><p>Cast record batch values to another schema.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>target_schema</strong><span class="classifier"><a class="reference internal" href="pyarrow.Schema.html#pyarrow.Schema" title="pyarrow.Schema"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Schema</span></code></a></span></dt><dd><p>Schema to cast to, the names and order of fields must match.</p> |
| </dd> |
| <dt><strong>safe</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#True" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">True</span></code></a></span></dt><dd><p>Check for overflows or other unsafe conversions.</p> |
| </dd> |
| <dt><strong>options</strong><span class="classifier"><code class="xref py py-obj docutils literal notranslate"><span class="pre">CastOptions</span></code>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>Additional checks pass by CastOptions</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">-- schema metadata --</span> |
| <span class="go">pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, ...</span> |
| </pre></div> |
| </div> |
| <p>Define new schema and cast batch values:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">my_schema</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">schema</span><span class="p">([</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'n_legs'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">duration</span><span class="p">(</span><span class="s1">'s'</span><span class="p">)),</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'animals'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">string</span><span class="p">())]</span> |
| <span class="gp">... </span> <span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">target_schema</span><span class="o">=</span><span class="n">my_schema</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: duration[s]</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.column"> |
| <span class="sig-name descname"><span class="pre">column</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">i</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.column" title="Link to this definition">#</a></dt> |
| <dd><p>Select single column from Table or RecordBatch.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>i</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a> or <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a></span></dt><dd><p>The index or name of the column to retrieve.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl> |
| <dt><strong>column</strong><span class="classifier"><a class="reference internal" href="pyarrow.Array.html#pyarrow.Array" title="pyarrow.Array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Array</span></code></a> (<code class="xref py py-obj docutils literal notranslate"><span class="pre">for</span></code> <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a>) or <a class="reference internal" href="pyarrow.ChunkedArray.html#pyarrow.ChunkedArray" title="pyarrow.ChunkedArray"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ChunkedArray</span></code></a> (<code class="xref py py-obj docutils literal notranslate"><span class="pre">for</span></code> <a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a>)</span></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Select a column by numeric index:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> |
| <span class="go"><pyarrow.lib.ChunkedArray object at ...></span> |
| <span class="go">[</span> |
| <span class="go"> [</span> |
| <span class="go"> 2,</span> |
| <span class="go"> 4,</span> |
| <span class="go"> 5,</span> |
| <span class="go"> 100</span> |
| <span class="go"> ]</span> |
| <span class="go">]</span> |
| </pre></div> |
| </div> |
| <p>Select a column by its name:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="s2">"animals"</span><span class="p">)</span> |
| <span class="go"><pyarrow.lib.ChunkedArray object at ...></span> |
| <span class="go">[</span> |
| <span class="go"> [</span> |
| <span class="go"> "Flamingo",</span> |
| <span class="go"> "Horse",</span> |
| <span class="go"> "Brittle stars",</span> |
| <span class="go"> "Centipede"</span> |
| <span class="go"> ]</span> |
| <span class="go">]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py attribute"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.column_names"> |
| <span class="sig-name descname"><span class="pre">column_names</span></span><a class="headerlink" href="#pyarrow.RecordBatch.column_names" title="Link to this definition">#</a></dt> |
| <dd><p>Names of the Table or RecordBatch columns.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Returns<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a> of <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s1">'n_legs'</span><span class="p">,</span> <span class="s1">'animals'</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">column_names</span> |
| <span class="go">['n_legs', 'animals']</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py attribute"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.columns"> |
| <span class="sig-name descname"><span class="pre">columns</span></span><a class="headerlink" href="#pyarrow.RecordBatch.columns" title="Link to this definition">#</a></dt> |
| <dd><p>List of all columns in numerical order.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Returns<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>columns</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a> of <a class="reference internal" href="pyarrow.Array.html#pyarrow.Array" title="pyarrow.Array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Array</span></code></a> (<code class="xref py py-obj docutils literal notranslate"><span class="pre">for</span></code> <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a>) or <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a> of <a class="reference internal" href="pyarrow.ChunkedArray.html#pyarrow.ChunkedArray" title="pyarrow.ChunkedArray"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ChunkedArray</span></code></a> (<code class="xref py py-obj docutils literal notranslate"><span class="pre">for</span></code> <a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a>)</span></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="kc">None</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">columns</span> |
| <span class="go">[<pyarrow.lib.ChunkedArray object at ...></span> |
| <span class="go">[</span> |
| <span class="go"> [</span> |
| <span class="go"> null,</span> |
| <span class="go"> 4,</span> |
| <span class="go"> 5,</span> |
| <span class="go"> null</span> |
| <span class="go"> ]</span> |
| <span class="go">], <pyarrow.lib.ChunkedArray object at ...></span> |
| <span class="go">[</span> |
| <span class="go"> [</span> |
| <span class="go"> "Flamingo",</span> |
| <span class="go"> "Horse",</span> |
| <span class="go"> null,</span> |
| <span class="go"> "Centipede"</span> |
| <span class="go"> ]</span> |
| <span class="go">]]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.copy_to"> |
| <span class="sig-name descname"><span class="pre">copy_to</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">destination</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.copy_to" title="Link to this definition">#</a></dt> |
| <dd><p>Copy the entire RecordBatch to destination device.</p> |
| <p>This copies each column of the record batch to create |
| a new record batch where all underlying buffers for the columns have |
| been copied to the destination MemoryManager.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>destination</strong><span class="classifier"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pyarrow.MemoryManager</span></code> or <code class="xref py py-obj docutils literal notranslate"><span class="pre">pyarrow.Device</span></code></span></dt><dd><p>The destination device to copy the array to.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| <dl class="py attribute"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.device_type"> |
| <span class="sig-name descname"><span class="pre">device_type</span></span><a class="headerlink" href="#pyarrow.RecordBatch.device_type" title="Link to this definition">#</a></dt> |
| <dd><p>The device type where the arrays in the RecordBatch reside.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Returns<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><code class="xref py py-obj docutils literal notranslate"><span class="pre">DeviceAllocationType</span></code></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.drop_columns"> |
| <span class="sig-name descname"><span class="pre">drop_columns</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">columns</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.drop_columns" title="Link to this definition">#</a></dt> |
| <dd><p>Drop one or more columns and return a new Table or RecordBatch.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>columns</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a> or <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a>[<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a>]</span></dt><dd><p>Field name(s) referencing existing column(s).</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a> or <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd><p>A tabular object without the column(s).</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-odd">Raises<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#KeyError" title="(in Python v3.13)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">KeyError</span></code></a></dt><dd><p>If any of the passed column names do not exist.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Drop one column:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">drop_columns</span><span class="p">(</span><span class="s2">"animals"</span><span class="p">)</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [[2,4,5,100]]</span> |
| </pre></div> |
| </div> |
| <p>Drop one or more columns:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">drop_columns</span><span class="p">([</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">...</span> |
| <span class="go">----</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.drop_null"> |
| <span class="sig-name descname"><span class="pre">drop_null</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.drop_null" title="Link to this definition">#</a></dt> |
| <dd><p>Remove rows that contain missing values from a Table or RecordBatch.</p> |
| <p>See <a class="reference internal" href="pyarrow.compute.drop_null.html#pyarrow.compute.drop_null" title="pyarrow.compute.drop_null"><code class="xref py py-func docutils literal notranslate"><span class="pre">pyarrow.compute.drop_null()</span></code></a> for full usage.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Returns<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a> or <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd><p>A tabular object with the same schema, with rows containing |
| no missing values.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'year'</span><span class="p">:</span> <span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2019</span><span class="p">,</span> <span class="mi">2021</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">drop_null</span><span class="p">()</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">year: double</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [[2022,2021]]</span> |
| <span class="go">n_legs: [[4,100]]</span> |
| <span class="go">animals: [["Horse","Centipede"]]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.equals"> |
| <span class="sig-name descname"><span class="pre">equals</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">other</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">check_metadata=False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.equals" title="Link to this definition">#</a></dt> |
| <dd><p>Check if contents of two record batches are equal.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>other</strong><span class="classifier"><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pyarrow.RecordBatch</span></code></a></span></dt><dd><p>RecordBatch to compare against.</p> |
| </dd> |
| <dt><strong>check_metadata</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>Whether schema metadata equality should be checked as well.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl> |
| <dt><strong>are_equal</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a></span></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch_0</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">record_batch</span><span class="p">([])</span> |
| <span class="gp">>>> </span><span class="n">batch_1</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">metadata</span><span class="o">=</span><span class="p">{</span><span class="s2">"n_legs"</span><span class="p">:</span> <span class="s2">"Number of legs per animal"</span><span class="p">})</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">equals</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span> |
| <span class="go">True</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">equals</span><span class="p">(</span><span class="n">batch_0</span><span class="p">)</span> |
| <span class="go">False</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">equals</span><span class="p">(</span><span class="n">batch_1</span><span class="p">)</span> |
| <span class="go">True</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">equals</span><span class="p">(</span><span class="n">batch_1</span><span class="p">,</span> <span class="n">check_metadata</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> |
| <span class="go">False</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.field"> |
| <span class="sig-name descname"><span class="pre">field</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">i</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.field" title="Link to this definition">#</a></dt> |
| <dd><p>Select a schema field by its column name or numeric index.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>i</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a> or <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a></span></dt><dd><p>The index or name of the field to retrieve.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Field.html#pyarrow.Field" title="pyarrow.Field"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Field</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> |
| <span class="go">pyarrow.Field<n_legs: int64></span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> |
| <span class="go">pyarrow.Field<animals: string></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.filter"> |
| <span class="sig-name descname"><span class="pre">filter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mask</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">null_selection_behavior</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'drop'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.filter" title="Link to this definition">#</a></dt> |
| <dd><p>Select rows from the table or record batch based on a boolean mask.</p> |
| <p>The Table can be filtered based on a mask, which will be passed to |
| <a class="reference internal" href="pyarrow.compute.filter.html#pyarrow.compute.filter" title="pyarrow.compute.filter"><code class="xref py py-func docutils literal notranslate"><span class="pre">pyarrow.compute.filter()</span></code></a> to perform the filtering, or it can |
| be filtered through a boolean <a class="reference internal" href="pyarrow.dataset.Expression.html#pyarrow.dataset.Expression" title="pyarrow.dataset.Expression"><code class="xref py py-class docutils literal notranslate"><span class="pre">Expression</span></code></a></p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>mask</strong><span class="classifier"><a class="reference internal" href="pyarrow.Array.html#pyarrow.Array" title="pyarrow.Array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Array</span></code></a> or <a class="reference internal" href="pyarrow.array.html#pyarrow.array" title="pyarrow.array"><code class="xref py py-func docutils literal notranslate"><span class="pre">array-like</span></code></a> or <a class="reference internal" href="pyarrow.dataset.Expression.html#pyarrow.dataset.Expression" title="pyarrow.dataset.Expression"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Expression</span></code></a></span></dt><dd><p>The boolean mask or the <a class="reference internal" href="pyarrow.dataset.Expression.html#pyarrow.dataset.Expression" title="pyarrow.dataset.Expression"><code class="xref py py-class docutils literal notranslate"><span class="pre">Expression</span></code></a> to filter the table with.</p> |
| </dd> |
| <dt><strong>null_selection_behavior</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a>, default “drop”</span></dt><dd><p>How nulls in the mask should be handled, does nothing if |
| an <a class="reference internal" href="pyarrow.dataset.Expression.html#pyarrow.dataset.Expression" title="pyarrow.dataset.Expression"><code class="xref py py-class docutils literal notranslate"><span class="pre">Expression</span></code></a> is used.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl> |
| <dt><strong>filtered</strong><span class="classifier"><a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a> or <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></span></dt><dd><p>A tabular object of the same schema, with only the rows selected |
| by applied filtering</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Using a Table (works similarly for RecordBatch):</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">table</span><span class="p">({</span><span class="s1">'year'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2020</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2019</span><span class="p">,</span> <span class="mi">2021</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| </pre></div> |
| </div> |
| <p>Define an expression and select rows:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow.compute</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pc</span> |
| <span class="gp">>>> </span><span class="n">expr</span> <span class="o">=</span> <span class="n">pc</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s2">"year"</span><span class="p">)</span> <span class="o"><=</span> <span class="mi">2020</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="n">expr</span><span class="p">)</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">year: int64</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [[2020,2019]]</span> |
| <span class="go">n_legs: [[2,5]]</span> |
| <span class="go">animals: [["Flamingo","Brittle stars"]]</span> |
| </pre></div> |
| </div> |
| <p>Define a mask and select rows:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mask</span><span class="o">=</span><span class="p">[</span><span class="kc">True</span><span class="p">,</span> <span class="kc">True</span><span class="p">,</span> <span class="kc">False</span><span class="p">,</span> <span class="kc">None</span><span class="p">]</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="n">mask</span><span class="p">)</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">year: int64</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [[2020,2022]]</span> |
| <span class="go">n_legs: [[2,4]]</span> |
| <span class="go">animals: [["Flamingo","Horse"]]</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">null_selection_behavior</span><span class="o">=</span><span class="s1">'emit_null'</span><span class="p">)</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">year: int64</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [[2020,2022,null]]</span> |
| <span class="go">n_legs: [[2,4,null]]</span> |
| <span class="go">animals: [["Flamingo","Horse",null]]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.from_arrays"> |
| <em class="property"><span class="k"><span class="pre">static</span></span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_arrays</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">list</span> <span class="pre">arrays</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">names=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">schema=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metadata=None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.from_arrays" title="Link to this definition">#</a></dt> |
| <dd><p>Construct a RecordBatch from multiple pyarrow.Arrays</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>arrays</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a> of <a class="reference internal" href="pyarrow.Array.html#pyarrow.Array" title="pyarrow.Array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pyarrow.Array</span></code></a></span></dt><dd><p>One for each field in RecordBatch</p> |
| </dd> |
| <dt><strong>names</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a> of <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a>, optional</span></dt><dd><p>Names for the batch fields. If not passed, schema must be passed</p> |
| </dd> |
| <dt><strong>schema</strong><span class="classifier"><a class="reference internal" href="pyarrow.Schema.html#pyarrow.Schema" title="pyarrow.Schema"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Schema</span></code></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>Schema for the created batch. If not passed, names must be passed</p> |
| </dd> |
| <dt><strong>metadata</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">dict</span></code></a> or Mapping, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>Optional metadata for the schema (if inferred).</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pyarrow.RecordBatch</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>Construct a RecordBatch from pyarrow Arrays using names:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> <span class="n">names</span><span class="o">=</span><span class="n">names</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,2,4,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> <span class="n">names</span><span class="o">=</span><span class="n">names</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 2 Flamingo</span> |
| <span class="go">1 2 Parrot</span> |
| <span class="go">2 4 Dog</span> |
| <span class="go">3 4 Horse</span> |
| <span class="go">4 5 Brittle stars</span> |
| <span class="go">5 100 Centipede</span> |
| </pre></div> |
| </div> |
| <p>Construct a RecordBatch from pyarrow Arrays using schema:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">my_schema</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">schema</span><span class="p">([</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'n_legs'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">()),</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'animals'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">string</span><span class="p">())],</span> |
| <span class="gp">... </span> <span class="n">metadata</span><span class="o">=</span><span class="p">{</span><span class="s2">"n_legs"</span><span class="p">:</span> <span class="s2">"Number of legs per animal"</span><span class="p">})</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> <span class="n">schema</span><span class="o">=</span><span class="n">my_schema</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 2 Flamingo</span> |
| <span class="go">1 2 Parrot</span> |
| <span class="go">2 4 Dog</span> |
| <span class="go">3 4 Horse</span> |
| <span class="go">4 5 Brittle stars</span> |
| <span class="go">5 100 Centipede</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> <span class="n">schema</span><span class="o">=</span><span class="n">my_schema</span><span class="p">)</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">-- schema metadata --</span> |
| <span class="go">n_legs: 'Number of legs per animal'</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.from_pandas"> |
| <em class="property"><span class="k"><span class="pre">classmethod</span></span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_pandas</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cls</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">df</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Schema</span> <span class="pre">schema=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">preserve_index=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nthreads=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">columns=None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.from_pandas" title="Link to this definition">#</a></dt> |
| <dd><p>Convert pandas.DataFrame to an Arrow RecordBatch</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>df</strong><span class="classifier"><a class="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v2.3.2)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pandas.DataFrame</span></code></a></span></dt><dd></dd> |
| <dt><strong>schema</strong><span class="classifier"><a class="reference internal" href="pyarrow.Schema.html#pyarrow.Schema" title="pyarrow.Schema"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pyarrow.Schema</span></code></a>, optional</span></dt><dd><p>The expected schema of the RecordBatch. This can be used to |
| indicate the type of columns if we cannot infer it automatically. |
| If passed, the output will have exactly this schema. Columns |
| specified in the schema that are not found in the DataFrame columns |
| or its index will raise an error. Additional columns or index |
| levels in the DataFrame which are not specified in the schema will |
| be ignored.</p> |
| </dd> |
| <dt><strong>preserve_index</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, optional</span></dt><dd><p>Whether to store the index as an additional column in the resulting |
| <code class="docutils literal notranslate"><span class="pre">RecordBatch</span></code>. The default of None will store the index as a |
| column, except for RangeIndex which is stored as metadata only. Use |
| <code class="docutils literal notranslate"><span class="pre">preserve_index=True</span></code> to force it to be stored as a column.</p> |
| </dd> |
| <dt><strong>nthreads</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>If greater than 1, convert columns to Arrow in parallel using |
| indicated number of threads. By default, this follows |
| <a class="reference internal" href="pyarrow.cpu_count.html#pyarrow.cpu_count" title="pyarrow.cpu_count"><code class="xref py py-func docutils literal notranslate"><span class="pre">pyarrow.cpu_count()</span></code></a> (may use up to system CPU count threads).</p> |
| </dd> |
| <dt><strong>columns</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a>, optional</span></dt><dd><p>List of column to be converted. If None, use all columns.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pyarrow.RecordBatch</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'year'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2020</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2021</span><span class="p">,</span> <span class="mi">2022</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'month'</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">9</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'day'</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="mi">13</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| </pre></div> |
| </div> |
| <p>Convert pandas DataFrame to RecordBatch:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">year: int64</span> |
| <span class="go">month: int64</span> |
| <span class="go">day: int64</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [2020,2022,2021,2022]</span> |
| <span class="go">month: [3,5,7,9]</span> |
| <span class="go">day: [1,5,9,13]</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| </pre></div> |
| </div> |
| <p>Convert pandas DataFrame to RecordBatch using schema:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">my_schema</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">schema</span><span class="p">([</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'n_legs'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">()),</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'animals'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">string</span><span class="p">())],</span> |
| <span class="gp">... </span> <span class="n">metadata</span><span class="o">=</span><span class="p">{</span><span class="s2">"n_legs"</span><span class="p">:</span> <span class="s2">"Number of legs per animal"</span><span class="p">})</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">schema</span><span class="o">=</span><span class="n">my_schema</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| </pre></div> |
| </div> |
| <p>Convert pandas DataFrame to RecordBatch specifying columns:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">])</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.from_pydict"> |
| <em class="property"><span class="k"><span class="pre">classmethod</span></span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_pydict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cls</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mapping</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">schema</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metadata</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.from_pydict" title="Link to this definition">#</a></dt> |
| <dd><p>Construct a Table or RecordBatch from Arrow arrays or columns.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>mapping</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">dict</span></code></a> or Mapping</span></dt><dd><p>A mapping of strings to Arrays or Python lists.</p> |
| </dd> |
| <dt><strong>schema</strong><span class="classifier"><a class="reference internal" href="pyarrow.Schema.html#pyarrow.Schema" title="pyarrow.Schema"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Schema</span></code></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>If not passed, will be inferred from the Mapping values.</p> |
| </dd> |
| <dt><strong>metadata</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">dict</span></code></a> or Mapping, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>Optional metadata for the schema (if inferred).</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a> or <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">pydict</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="n">n_legs</span><span class="p">,</span> <span class="s1">'animals'</span><span class="p">:</span> <span class="n">animals</span><span class="p">}</span> |
| </pre></div> |
| </div> |
| <p>Construct a Table from a dictionary of arrays:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">(</span><span class="n">pydict</span><span class="p">)</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [[2,4,5,100]]</span> |
| <span class="go">animals: [["Flamingo","Horse","Brittle stars","Centipede"]]</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">(</span><span class="n">pydict</span><span class="p">)</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| </pre></div> |
| </div> |
| <p>Construct a Table from a dictionary of arrays with metadata:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">my_metadata</span><span class="o">=</span><span class="p">{</span><span class="s2">"n_legs"</span><span class="p">:</span> <span class="s2">"Number of legs per animal"</span><span class="p">}</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">(</span><span class="n">pydict</span><span class="p">,</span> <span class="n">metadata</span><span class="o">=</span><span class="n">my_metadata</span><span class="p">)</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">-- schema metadata --</span> |
| <span class="go">n_legs: 'Number of legs per animal'</span> |
| </pre></div> |
| </div> |
| <p>Construct a Table from a dictionary of arrays with pyarrow schema:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">my_schema</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">schema</span><span class="p">([</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'n_legs'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">()),</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'animals'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">string</span><span class="p">())],</span> |
| <span class="gp">... </span> <span class="n">metadata</span><span class="o">=</span><span class="p">{</span><span class="s2">"n_legs"</span><span class="p">:</span> <span class="s2">"Number of legs per animal"</span><span class="p">})</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">(</span><span class="n">pydict</span><span class="p">,</span> <span class="n">schema</span><span class="o">=</span><span class="n">my_schema</span><span class="p">)</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">-- schema metadata --</span> |
| <span class="go">n_legs: 'Number of legs per animal'</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.from_pylist"> |
| <em class="property"><span class="k"><span class="pre">classmethod</span></span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_pylist</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cls</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mapping</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">schema</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metadata</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.from_pylist" title="Link to this definition">#</a></dt> |
| <dd><p>Construct a Table or RecordBatch from list of rows / dictionaries.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>mapping</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a> of dicts of rows</span></dt><dd><p>A mapping of strings to row values.</p> |
| </dd> |
| <dt><strong>schema</strong><span class="classifier"><a class="reference internal" href="pyarrow.Schema.html#pyarrow.Schema" title="pyarrow.Schema"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Schema</span></code></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>If not passed, will be inferred from the first row of the |
| mapping values.</p> |
| </dd> |
| <dt><strong>metadata</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">dict</span></code></a> or Mapping, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>Optional metadata for the schema (if inferred).</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a> or <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">pylist</span> <span class="o">=</span> <span class="p">[{</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span> <span class="s1">'animals'</span><span class="p">:</span> <span class="s1">'Flamingo'</span><span class="p">},</span> |
| <span class="gp">... </span> <span class="p">{</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="mi">4</span><span class="p">,</span> <span class="s1">'animals'</span><span class="p">:</span> <span class="s1">'Dog'</span><span class="p">}]</span> |
| </pre></div> |
| </div> |
| <p>Construct a Table from a list of rows:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pylist</span><span class="p">(</span><span class="n">pylist</span><span class="p">)</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [[2,4]]</span> |
| <span class="go">animals: [["Flamingo","Dog"]]</span> |
| </pre></div> |
| </div> |
| <p>Construct a Table from a list of rows with metadata:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">my_metadata</span><span class="o">=</span><span class="p">{</span><span class="s2">"n_legs"</span><span class="p">:</span> <span class="s2">"Number of legs per animal"</span><span class="p">}</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pylist</span><span class="p">(</span><span class="n">pylist</span><span class="p">,</span> <span class="n">metadata</span><span class="o">=</span><span class="n">my_metadata</span><span class="p">)</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">-- schema metadata --</span> |
| <span class="go">n_legs: 'Number of legs per animal'</span> |
| </pre></div> |
| </div> |
| <p>Construct a Table from a list of rows with pyarrow schema:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">my_schema</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">schema</span><span class="p">([</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'n_legs'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">()),</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'animals'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">string</span><span class="p">())],</span> |
| <span class="gp">... </span> <span class="n">metadata</span><span class="o">=</span><span class="p">{</span><span class="s2">"n_legs"</span><span class="p">:</span> <span class="s2">"Number of legs per animal"</span><span class="p">})</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pylist</span><span class="p">(</span><span class="n">pylist</span><span class="p">,</span> <span class="n">schema</span><span class="o">=</span><span class="n">my_schema</span><span class="p">)</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">-- schema metadata --</span> |
| <span class="go">n_legs: 'Number of legs per animal'</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.from_struct_array"> |
| <em class="property"><span class="k"><span class="pre">static</span></span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_struct_array</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">StructArray</span> <span class="pre">struct_array</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.from_struct_array" title="Link to this definition">#</a></dt> |
| <dd><p>Construct a RecordBatch from a StructArray.</p> |
| <p>Each field in the StructArray will become a column in the resulting |
| <code class="docutils literal notranslate"><span class="pre">RecordBatch</span></code>.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>struct_array</strong><span class="classifier"><a class="reference internal" href="pyarrow.StructArray.html#pyarrow.StructArray" title="pyarrow.StructArray"><code class="xref py py-obj docutils literal notranslate"><span class="pre">StructArray</span></code></a></span></dt><dd><p>Array to construct the record batch from.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pyarrow.RecordBatch</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">struct</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([{</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span> <span class="s1">'animals'</span><span class="p">:</span> <span class="s1">'Parrot'</span><span class="p">},</span> |
| <span class="gp">... </span> <span class="p">{</span><span class="s1">'year'</span><span class="p">:</span> <span class="mi">2022</span><span class="p">,</span> <span class="s1">'n_legs'</span><span class="p">:</span> <span class="mi">4</span><span class="p">}])</span> |
| <span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_struct_array</span><span class="p">(</span><span class="n">struct</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> animals n_legs year</span> |
| <span class="go">0 Parrot 2 NaN</span> |
| <span class="go">1 None 4 2022.0</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.get_total_buffer_size"> |
| <span class="sig-name descname"><span class="pre">get_total_buffer_size</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.get_total_buffer_size" title="Link to this definition">#</a></dt> |
| <dd><p>The sum of bytes in each buffer referenced by the record batch</p> |
| <p>An array may only reference a portion of a buffer. |
| This method will overestimate in this case and return the |
| byte size of the entire buffer.</p> |
| <p>If a buffer is referenced multiple times then it will |
| only be counted once.</p> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">get_total_buffer_size</span><span class="p">()</span> |
| <span class="go">120</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py attribute"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.is_cpu"> |
| <span class="sig-name descname"><span class="pre">is_cpu</span></span><a class="headerlink" href="#pyarrow.RecordBatch.is_cpu" title="Link to this definition">#</a></dt> |
| <dd><p>Whether the RecordBatch’s arrays are CPU-accessible.</p> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.itercolumns"> |
| <span class="sig-name descname"><span class="pre">itercolumns</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.itercolumns" title="Link to this definition">#</a></dt> |
| <dd><p>Iterator over all columns in their numerical order.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Yields<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Array.html#pyarrow.Array" title="pyarrow.Array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Array</span></code></a> (<code class="xref py py-obj docutils literal notranslate"><span class="pre">for</span></code> <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a>) or <a class="reference internal" href="pyarrow.ChunkedArray.html#pyarrow.ChunkedArray" title="pyarrow.ChunkedArray"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ChunkedArray</span></code></a> (<code class="xref py py-obj docutils literal notranslate"><span class="pre">for</span></code> <a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a>)</dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="kc">None</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">table</span><span class="o">.</span><span class="n">itercolumns</span><span class="p">():</span> |
| <span class="gp">... </span> <span class="nb">print</span><span class="p">(</span><span class="n">i</span><span class="o">.</span><span class="n">null_count</span><span class="p">)</span> |
| <span class="gp">...</span> |
| <span class="go">2</span> |
| <span class="go">1</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py attribute"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.nbytes"> |
| <span class="sig-name descname"><span class="pre">nbytes</span></span><a class="headerlink" href="#pyarrow.RecordBatch.nbytes" title="Link to this definition">#</a></dt> |
| <dd><p>Total number of bytes consumed by the elements of the record batch.</p> |
| <p>In other words, the sum of bytes from all buffer ranges referenced.</p> |
| <p>Unlike <cite>get_total_buffer_size</cite> this method will account for array |
| offsets.</p> |
| <p>If buffers are shared between arrays then the shared |
| portion will only be counted multiple times.</p> |
| <p>The dictionary of dictionary arrays will always be counted in their |
| entirety even if the array only references a portion of the dictionary.</p> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">nbytes</span> |
| <span class="go">116</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py attribute"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.num_columns"> |
| <span class="sig-name descname"><span class="pre">num_columns</span></span><a class="headerlink" href="#pyarrow.RecordBatch.num_columns" title="Link to this definition">#</a></dt> |
| <dd><p>Number of columns</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Returns<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">num_columns</span> |
| <span class="go">2</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py attribute"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.num_rows"> |
| <span class="sig-name descname"><span class="pre">num_rows</span></span><a class="headerlink" href="#pyarrow.RecordBatch.num_rows" title="Link to this definition">#</a></dt> |
| <dd><p>Number of rows</p> |
| <p>Due to the definition of a RecordBatch, all columns have the same |
| number of rows.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Returns<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">num_rows</span> |
| <span class="go">6</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.remove_column"> |
| <span class="sig-name descname"><span class="pre">remove_column</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">int</span> <span class="pre">i</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.remove_column" title="Link to this definition">#</a></dt> |
| <dd><p>Create new RecordBatch with the indicated column removed.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>i</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a></span></dt><dd><p>Index of column to remove.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a></dt><dd><p>New record batch without the column.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">remove_column</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.rename_columns"> |
| <span class="sig-name descname"><span class="pre">rename_columns</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">names</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.rename_columns" title="Link to this definition">#</a></dt> |
| <dd><p>Create new record batch with columns renamed to provided names.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>names</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a>[<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a>] or <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">dict</span></code></a>[<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a>, <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a>]</span></dt><dd><p>List of new column names or mapping of old column names to new column names.</p> |
| <p>If a mapping of old to new column names is passed, then all columns which are |
| found to match a provided old column name will be renamed to the new column name. |
| If any column names are not found in the mapping, a KeyError will be raised.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| <dt class="field-odd">Raises<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#KeyError" title="(in Python v3.13)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">KeyError</span></code></a></dt><dd><p>If any of the column names passed in the names mapping do not exist.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">new_names</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"n"</span><span class="p">,</span> <span class="s2">"name"</span><span class="p">]</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">rename_columns</span><span class="p">(</span><span class="n">new_names</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n: int64</span> |
| <span class="go">name: string</span> |
| <span class="go">----</span> |
| <span class="go">n: [2,4,5,100]</span> |
| <span class="go">name: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| <span class="gp">>>> </span><span class="n">new_names</span> <span class="o">=</span> <span class="p">{</span><span class="s2">"n_legs"</span><span class="p">:</span> <span class="s2">"n"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">:</span> <span class="s2">"name"</span><span class="p">}</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">rename_columns</span><span class="p">(</span><span class="n">new_names</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n: int64</span> |
| <span class="go">name: string</span> |
| <span class="go">----</span> |
| <span class="go">n: [2,4,5,100]</span> |
| <span class="go">name: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.replace_schema_metadata"> |
| <span class="sig-name descname"><span class="pre">replace_schema_metadata</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metadata</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.replace_schema_metadata" title="Link to this definition">#</a></dt> |
| <dd><p>Create shallow copy of record batch by replacing schema |
| key-value metadata with the indicated new metadata (which may be None, |
| which deletes any existing metadata</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>metadata</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">dict</span></code></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd></dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl> |
| <dt><strong>shallow_copy</strong><span class="classifier"><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></span></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| </pre></div> |
| </div> |
| <p>Constructing a RecordBatch with schema and metadata:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">my_schema</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">schema</span><span class="p">([</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'n_legs'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">())],</span> |
| <span class="gp">... </span> <span class="n">metadata</span><span class="o">=</span><span class="p">{</span><span class="s2">"n_legs"</span><span class="p">:</span> <span class="s2">"Number of legs per animal"</span><span class="p">})</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">],</span> <span class="n">schema</span><span class="o">=</span><span class="n">my_schema</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">-- schema metadata --</span> |
| <span class="go">n_legs: 'Number of legs per animal'</span> |
| </pre></div> |
| </div> |
| <p>Shallow copy of a RecordBatch with deleted schema metadata:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">replace_schema_metadata</span><span class="p">()</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py attribute"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.schema"> |
| <span class="sig-name descname"><span class="pre">schema</span></span><a class="headerlink" href="#pyarrow.RecordBatch.schema" title="Link to this definition">#</a></dt> |
| <dd><p>Schema of the RecordBatch and its columns</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Returns<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Schema.html#pyarrow.Schema" title="pyarrow.Schema"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pyarrow.Schema</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">schema</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.select"> |
| <span class="sig-name descname"><span class="pre">select</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">columns</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.select" title="Link to this definition">#</a></dt> |
| <dd><p>Select columns of the RecordBatch.</p> |
| <p>Returns a new RecordBatch with the specified columns, and metadata |
| preserved.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt><strong>columns</strong><span class="classifier">list-like</span></dt><dd><p>The column names or integer indices to select.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">record_batch</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| </pre></div> |
| </div> |
| <p>Select columns my indices:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">select</span><span class="p">([</span><span class="mi">1</span><span class="p">])</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]</span> |
| </pre></div> |
| </div> |
| <p>Select columns by names:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">select</span><span class="p">([</span><span class="s2">"n_legs"</span><span class="p">])</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,2,4,4,5,100]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.serialize"> |
| <span class="sig-name descname"><span class="pre">serialize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">memory_pool</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.serialize" title="Link to this definition">#</a></dt> |
| <dd><p>Write RecordBatch to Buffer as encapsulated IPC message, which does not |
| include a Schema.</p> |
| <p>To reconstruct a RecordBatch from the encapsulated IPC message Buffer |
| returned by this function, a Schema must be passed separately. See |
| Examples.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>memory_pool</strong><span class="classifier"><a class="reference internal" href="pyarrow.MemoryPool.html#pyarrow.MemoryPool" title="pyarrow.MemoryPool"><code class="xref py py-obj docutils literal notranslate"><span class="pre">MemoryPool</span></code></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>Uses default memory pool if not specified</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl> |
| <dt><strong>serialized</strong><span class="classifier"><a class="reference internal" href="pyarrow.Buffer.html#pyarrow.Buffer" title="pyarrow.Buffer"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Buffer</span></code></a></span></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">buf</span> <span class="o">=</span> <span class="n">batch</span><span class="o">.</span><span class="n">serialize</span><span class="p">()</span> |
| <span class="gp">>>> </span><span class="n">buf</span> |
| <span class="go"><pyarrow.Buffer address=0x... size=... is_cpu=True is_mutable=True></span> |
| </pre></div> |
| </div> |
| <p>Reconstruct RecordBatch from IPC message Buffer and original Schema</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pa</span><span class="o">.</span><span class="n">ipc</span><span class="o">.</span><span class="n">read_record_batch</span><span class="p">(</span><span class="n">buf</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">schema</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,2,4,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.set_column"> |
| <span class="sig-name descname"><span class="pre">set_column</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">int</span> <span class="pre">i</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">field_</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">column</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.set_column" title="Link to this definition">#</a></dt> |
| <dd><p>Replace column in RecordBatch at position.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>i</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a></span></dt><dd><p>Index to place the column at.</p> |
| </dd> |
| <dt><strong>field_</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a> or <a class="reference internal" href="pyarrow.Field.html#pyarrow.Field" title="pyarrow.Field"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Field</span></code></a></span></dt><dd><p>If a string is passed then the type is deduced from the column |
| data.</p> |
| </dd> |
| <dt><strong>column</strong><span class="classifier"><a class="reference internal" href="pyarrow.Array.html#pyarrow.Array" title="pyarrow.Array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Array</span></code></a> or <code class="xref py py-obj docutils literal notranslate"><span class="pre">value</span></code> coercible to <a class="reference external" href="https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray" title="(in NumPy v2.3)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">array</span></code></a></span></dt><dd><p>Column data.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd><p>New record batch with the passed column set.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Replace a column:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">year</span> <span class="o">=</span> <span class="p">[</span><span class="mi">2021</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2019</span><span class="p">,</span> <span class="mi">2021</span><span class="p">]</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">set_column</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="s1">'year'</span><span class="p">,</span> <span class="n">year</span><span class="p">)</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">year: int64</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| <span class="go">year: [2021,2022,2019,2021]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py attribute"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.shape"> |
| <span class="sig-name descname"><span class="pre">shape</span></span><a class="headerlink" href="#pyarrow.RecordBatch.shape" title="Link to this definition">#</a></dt> |
| <dd><p>Dimensions of the table or record batch: (#rows, #columns).</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Returns<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl class="simple"> |
| <dt>(<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a>, <a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a>)</dt><dd><p>Number of rows and number of columns.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">table</span><span class="p">({</span><span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="kc">None</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">shape</span> |
| <span class="go">(4, 2)</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.slice"> |
| <span class="sig-name descname"><span class="pre">slice</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">offset</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">length</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.slice" title="Link to this definition">#</a></dt> |
| <dd><p>Compute zero-copy slice of this RecordBatch</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>offset</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a>, default 0</span></dt><dd><p>Offset from start of record batch to slice</p> |
| </dd> |
| <dt><strong>length</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>Length of slice (default is until end of batch starting from |
| offset)</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl> |
| <dt><strong>sliced</strong><span class="classifier"><a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></span></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 2 Flamingo</span> |
| <span class="go">1 2 Parrot</span> |
| <span class="go">2 4 Dog</span> |
| <span class="go">3 4 Horse</span> |
| <span class="go">4 5 Brittle stars</span> |
| <span class="go">5 100 Centipede</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">slice</span><span class="p">(</span><span class="n">offset</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 4 Horse</span> |
| <span class="go">1 5 Brittle stars</span> |
| <span class="go">2 100 Centipede</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">slice</span><span class="p">(</span><span class="n">length</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 2 Flamingo</span> |
| <span class="go">1 2 Parrot</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">slice</span><span class="p">(</span><span class="n">offset</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">length</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 4 Horse</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.sort_by"> |
| <span class="sig-name descname"><span class="pre">sort_by</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sorting</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.sort_by" title="Link to this definition">#</a></dt> |
| <dd><p>Sort the Table or RecordBatch by one or multiple columns.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>sorting</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a> or <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a>[<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#tuple" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">tuple</span></code></a>(<code class="xref py py-obj docutils literal notranslate"><span class="pre">name</span></code>, <code class="xref py py-obj docutils literal notranslate"><span class="pre">order</span></code>)]</span></dt><dd><p>Name of the column to use to sort (ascending), or |
| a list of multiple sorting conditions where |
| each entry is a tuple with column name |
| and sorting order (“ascending” or “descending”)</p> |
| </dd> |
| <dt><strong>**kwargs</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">dict</span></code></a>, optional</span></dt><dd><p>Additional sorting options. |
| As allowed by <code class="xref py py-class docutils literal notranslate"><span class="pre">SortOptions</span></code></p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a> or <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd><p>A new tabular object sorted according to the sort keys.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'year'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2020</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2021</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2019</span><span class="p">,</span> <span class="mi">2021</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animal'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> |
| <span class="gp">... </span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">sort_by</span><span class="p">(</span><span class="s1">'animal'</span><span class="p">)</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">year: int64</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animal: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [[2019,2021,2021,2020,2022,2022]]</span> |
| <span class="go">n_legs: [[5,100,4,2,4,2]]</span> |
| <span class="go">animal: [["Brittle stars","Centipede","Dog","Flamingo","Horse","Parrot"]]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.take"> |
| <span class="sig-name descname"><span class="pre">take</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">indices</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.take" title="Link to this definition">#</a></dt> |
| <dd><p>Select rows from a Table or RecordBatch.</p> |
| <p>See <a class="reference internal" href="pyarrow.compute.take.html#pyarrow.compute.take" title="pyarrow.compute.take"><code class="xref py py-func docutils literal notranslate"><span class="pre">pyarrow.compute.take()</span></code></a> for full usage.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>indices</strong><span class="classifier"><a class="reference internal" href="pyarrow.Array.html#pyarrow.Array" title="pyarrow.Array"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Array</span></code></a> or <a class="reference internal" href="pyarrow.array.html#pyarrow.array" title="pyarrow.array"><code class="xref py py-func docutils literal notranslate"><span class="pre">array-like</span></code></a></span></dt><dd><p>The indices in the tabular object whose rows will be returned.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference internal" href="pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Table</span></code></a> or <a class="reference internal" href="#pyarrow.RecordBatch" title="pyarrow.RecordBatch"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RecordBatch</span></code></a></dt><dd><p>A tabular object with the same schema, containing the taken rows.</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| <span class="gp">>>> </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">'year'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2020</span><span class="p">,</span> <span class="mi">2022</span><span class="p">,</span> <span class="mi">2019</span><span class="p">,</span> <span class="mi">2021</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'n_legs'</span><span class="p">:</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="s1">'animals'</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]})</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">take</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">year: int64</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">year: [[2022,2021]]</span> |
| <span class="go">n_legs: [[4,100]]</span> |
| <span class="go">animals: [["Horse","Centipede"]]</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.to_pandas"> |
| <span class="sig-name descname"><span class="pre">to_pandas</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">memory_pool=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">categories=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">strings_to_categorical=False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">zero_copy_only=False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">integer_object_nulls=False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">date_as_object=True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">timestamp_as_object=False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">use_threads=True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">deduplicate_objects=True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">ignore_metadata=False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">safe=True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">split_blocks=False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">self_destruct=False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">str</span> <span class="pre">maps_as_pydicts=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">types_mapper=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">coerce_temporal_nanoseconds=False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.to_pandas" title="Link to this definition">#</a></dt> |
| <dd><p>Convert to a pandas-compatible NumPy array or DataFrame, as appropriate</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>memory_pool</strong><span class="classifier"><a class="reference internal" href="pyarrow.MemoryPool.html#pyarrow.MemoryPool" title="pyarrow.MemoryPool"><code class="xref py py-obj docutils literal notranslate"><span class="pre">MemoryPool</span></code></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>Arrow MemoryPool to use for allocations. Uses the default memory |
| pool if not passed.</p> |
| </dd> |
| <dt><strong>categories</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a>, default <code class="xref py py-obj docutils literal notranslate"><span class="pre">empty</span></code></span></dt><dd><p>List of fields that should be returned as pandas.Categorical. Only |
| applies to table-like data structures.</p> |
| </dd> |
| <dt><strong>strings_to_categorical</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>Encode string (UTF8) and binary types to pandas.Categorical.</p> |
| </dd> |
| <dt><strong>zero_copy_only</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>Raise an ArrowException if this function call would require copying |
| the underlying data.</p> |
| </dd> |
| <dt><strong>integer_object_nulls</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>Cast integers with nulls to objects</p> |
| </dd> |
| <dt><strong>date_as_object</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#True" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">True</span></code></a></span></dt><dd><p>Cast dates to objects. If False, convert to datetime64 dtype with |
| the equivalent time unit (if supported). Note: in pandas version |
| < 2.0, only datetime64[ns] conversion is supported.</p> |
| </dd> |
| <dt><strong>timestamp_as_object</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>Cast non-nanosecond timestamps (np.datetime64) to objects. This is |
| useful in pandas version 1.x if you have timestamps that don’t fit |
| in the normal date range of nanosecond timestamps (1678 CE-2262 CE). |
| Non-nanosecond timestamps are supported in pandas version 2.0. |
| If False, all timestamps are converted to datetime64 dtype.</p> |
| </dd> |
| <dt><strong>use_threads</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#True" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">True</span></code></a></span></dt><dd><p>Whether to parallelize the conversion using multiple threads.</p> |
| </dd> |
| <dt><strong>deduplicate_objects</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#True" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">True</span></code></a></span></dt><dd><p>Do not create multiple copies Python objects when created, to save |
| on memory use. Conversion will be slower.</p> |
| </dd> |
| <dt><strong>ignore_metadata</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>If True, do not use the ‘pandas’ metadata to reconstruct the |
| DataFrame index, if present</p> |
| </dd> |
| <dt><strong>safe</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#True" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">True</span></code></a></span></dt><dd><p>For certain data types, a cast is needed in order to store the |
| data in a pandas DataFrame or Series (e.g. timestamps are always |
| stored as nanoseconds in pandas). This option controls whether it |
| is a safe cast or not.</p> |
| </dd> |
| <dt><strong>split_blocks</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>If True, generate one internal “block” for each column when |
| creating a pandas.DataFrame from a RecordBatch or Table. While this |
| can temporarily reduce memory note that various pandas operations |
| can trigger “consolidation” which may balloon memory use.</p> |
| </dd> |
| <dt><strong>self_destruct</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>EXPERIMENTAL: If True, attempt to deallocate the originating Arrow |
| memory while converting the Arrow object to pandas. If you use the |
| object after calling to_pandas with this option it will crash your |
| program.</p> |
| <p>Note that you may not see always memory usage improvements. For |
| example, if multiple columns share an underlying allocation, |
| memory can’t be freed until all columns are converted.</p> |
| </dd> |
| <dt><strong>maps_as_pydicts</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a>, optional, default <cite>None</cite></span></dt><dd><p>Valid values are <cite>None</cite>, ‘lossy’, or ‘strict’. |
| The default behavior (<cite>None</cite>), is to convert Arrow Map arrays to |
| Python association lists (list-of-tuples) in the same order as the |
| Arrow Map, as in [(key1, value1), (key2, value2), …].</p> |
| <p>If ‘lossy’ or ‘strict’, convert Arrow Map arrays to native Python dicts. |
| This can change the ordering of (key, value) pairs, and will |
| deduplicate multiple keys, resulting in a possible loss of data.</p> |
| <p>If ‘lossy’, this key deduplication results in a warning printed |
| when detected. If ‘strict’, this instead results in an exception |
| being raised when detected.</p> |
| </dd> |
| <dt><strong>types_mapper</strong><span class="classifier">function, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>A function mapping a pyarrow DataType to a pandas ExtensionDtype. |
| This can be used to override the default pandas type for conversion |
| of built-in pyarrow types or in absence of pandas_metadata in the |
| Table schema. The function receives a pyarrow DataType and is |
| expected to return a pandas ExtensionDtype or <code class="docutils literal notranslate"><span class="pre">None</span></code> if the |
| default conversion should be used for that type. If you have |
| a dictionary mapping, you can pass <code class="docutils literal notranslate"><span class="pre">dict.get</span></code> as function.</p> |
| </dd> |
| <dt><strong>coerce_temporal_nanoseconds</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>Only applicable to pandas version >= 2.0. |
| A legacy option to coerce date32, date64, duration, and timestamp |
| time units to nanoseconds when converting to pandas. This is the |
| default behavior in pandas version 1.x. Set this option to True if |
| you’d like to use this coercion when using pandas version >= 2.0 |
| for backwards compatibility (not recommended otherwise).</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series" title="(in pandas v2.3.2)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pandas.Series</span></code></a> or <a class="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v2.3.2)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pandas.DataFrame</span></code></a> depending on <a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">type</span></code></a> of object</dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> |
| </pre></div> |
| </div> |
| <p>Convert a Table to pandas DataFrame:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">table</span><span class="p">([</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">]),</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">... </span> <span class="p">],</span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s1">'n_legs'</span><span class="p">,</span> <span class="s1">'animals'</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 2 Flamingo</span> |
| <span class="go">1 4 Horse</span> |
| <span class="go">2 5 Brittle stars</span> |
| <span class="go">3 100 Centipede</span> |
| <span class="gp">>>> </span><span class="nb">isinstance</span><span class="p">(</span><span class="n">table</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">(),</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">)</span> |
| <span class="go">True</span> |
| </pre></div> |
| </div> |
| <p>Convert a RecordBatch to pandas DataFrame:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">record_batch</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">batch</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">n_legs: int64</span> |
| <span class="go">animals: string</span> |
| <span class="go">----</span> |
| <span class="go">n_legs: [2,4,5,100]</span> |
| <span class="go">animals: ["Flamingo","Horse","Brittle stars","Centipede"]</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go"> n_legs animals</span> |
| <span class="go">0 2 Flamingo</span> |
| <span class="go">1 4 Horse</span> |
| <span class="go">2 5 Brittle stars</span> |
| <span class="go">3 100 Centipede</span> |
| <span class="gp">>>> </span><span class="nb">isinstance</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">(),</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">)</span> |
| <span class="go">True</span> |
| </pre></div> |
| </div> |
| <p>Convert a Chunked Array to pandas Series:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">chunked_array</span><span class="p">([[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">]])</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="go">0 2</span> |
| <span class="go">1 2</span> |
| <span class="go">2 4</span> |
| <span class="go">3 4</span> |
| <span class="go">4 5</span> |
| <span class="go">5 100</span> |
| <span class="go">dtype: int64</span> |
| <span class="gp">>>> </span><span class="nb">isinstance</span><span class="p">(</span><span class="n">n_legs</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">(),</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">)</span> |
| <span class="go">True</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.to_pydict"> |
| <span class="sig-name descname"><span class="pre">to_pydict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="keyword-only-separator o"><abbr title="Keyword-only parameters separator (PEP 3102)"><span class="pre">*</span></abbr></span></em>, <em class="sig-param"><span class="n"><span class="pre">maps_as_pydicts</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.to_pydict" title="Link to this definition">#</a></dt> |
| <dd><p>Convert the Table or RecordBatch to a dict or OrderedDict.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>maps_as_pydicts</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a>, optional, default <cite>None</cite></span></dt><dd><p>Valid values are <cite>None</cite>, ‘lossy’, or ‘strict’. |
| The default behavior (<cite>None</cite>), is to convert Arrow Map arrays to |
| Python association lists (list-of-tuples) in the same order as the |
| Arrow Map, as in [(key1, value1), (key2, value2), …].</p> |
| <p>If ‘lossy’ or ‘strict’, convert Arrow Map arrays to native Python dicts.</p> |
| <p>If ‘lossy’, whenever duplicate keys are detected, a warning will be printed. |
| The last seen value of a duplicate key will be in the Python dictionary. |
| If ‘strict’, this instead results in an exception being raised when detected.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">dict</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">n_legs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">animals</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Parrot"</span><span class="p">,</span> <span class="s2">"Dog"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">([</span><span class="n">n_legs</span><span class="p">,</span> <span class="n">animals</span><span class="p">],</span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">to_pydict</span><span class="p">()</span> |
| <span class="go">{'n_legs': [2, 2, 4, 4, 5, 100], 'animals': ['Flamingo', 'Parrot', ..., 'Centipede']}</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.to_pylist"> |
| <span class="sig-name descname"><span class="pre">to_pylist</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="keyword-only-separator o"><abbr title="Keyword-only parameters separator (PEP 3102)"><span class="pre">*</span></abbr></span></em>, <em class="sig-param"><span class="n"><span class="pre">maps_as_pydicts</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.to_pylist" title="Link to this definition">#</a></dt> |
| <dd><p>Convert the Table or RecordBatch to a list of rows / dictionaries.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>maps_as_pydicts</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a>, optional, default <cite>None</cite></span></dt><dd><p>Valid values are <cite>None</cite>, ‘lossy’, or ‘strict’. |
| The default behavior (<cite>None</cite>), is to convert Arrow Map arrays to |
| Python association lists (list-of-tuples) in the same order as the |
| Arrow Map, as in [(key1, value1), (key2, value2), …].</p> |
| <p>If ‘lossy’ or ‘strict’, convert Arrow Map arrays to native Python dicts.</p> |
| <p>If ‘lossy’, whenever duplicate keys are detected, a warning will be printed. |
| The last seen value of a duplicate key will be in the Python dictionary. |
| If ‘strict’, this instead results in an exception being raised when detected.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">list</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <p>Table (works similarly for RecordBatch)</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">data</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">],</span> |
| <span class="gp">... </span> <span class="p">[</span><span class="s2">"Flamingo"</span><span class="p">,</span> <span class="s2">"Horse"</span><span class="p">,</span> <span class="s2">"Brittle stars"</span><span class="p">,</span> <span class="s2">"Centipede"</span><span class="p">]]</span> |
| <span class="gp">>>> </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">table</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="p">[</span><span class="s2">"n_legs"</span><span class="p">,</span> <span class="s2">"animals"</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">table</span><span class="o">.</span><span class="n">to_pylist</span><span class="p">()</span> |
| <span class="go">[{'n_legs': 2, 'animals': 'Flamingo'}, {'n_legs': 4, 'animals': 'Horse'}, ...</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.to_string"> |
| <span class="sig-name descname"><span class="pre">to_string</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="keyword-only-separator o"><abbr title="Keyword-only parameters separator (PEP 3102)"><span class="pre">*</span></abbr></span></em>, <em class="sig-param"><span class="n"><span class="pre">show_metadata</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">preview_cols</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.to_string" title="Link to this definition">#</a></dt> |
| <dd><p>Return human-readable string representation of Table or RecordBatch.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>show_metadata</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>Display Field-level and Schema-level KeyValueMetadata.</p> |
| </dd> |
| <dt><strong>preview_cols</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">int</span></code></a>, default 0</span></dt><dd><p>Display values of the columns for the first N columns.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Returns<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">str</span></code></a></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.to_struct_array"> |
| <span class="sig-name descname"><span class="pre">to_struct_array</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.to_struct_array" title="Link to this definition">#</a></dt> |
| <dd><p>Convert to a struct array.</p> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.to_tensor"> |
| <span class="sig-name descname"><span class="pre">to_tensor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">null_to_nan=False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bool</span> <span class="pre">row_major=True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">MemoryPool</span> <span class="pre">memory_pool=None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.to_tensor" title="Link to this definition">#</a></dt> |
| <dd><p>Convert to a <a class="reference internal" href="pyarrow.Tensor.html#pyarrow.Tensor" title="pyarrow.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code></a>.</p> |
| <p>RecordBatches that can be converted have fields of type signed or unsigned |
| integer or float, including all bit-widths.</p> |
| <p><code class="docutils literal notranslate"><span class="pre">null_to_nan</span></code> is <code class="docutils literal notranslate"><span class="pre">False</span></code> by default and this method will raise an error in case |
| any nulls are present. RecordBatches with nulls can be converted with <code class="docutils literal notranslate"><span class="pre">null_to_nan</span></code> |
| set to <code class="docutils literal notranslate"><span class="pre">True</span></code>. In this case null values are converted to <code class="docutils literal notranslate"><span class="pre">NaN</span></code> and integer type |
| arrays are promoted to the appropriate float type.</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>null_to_nan</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>Whether to write null values in the result as <code class="docutils literal notranslate"><span class="pre">NaN</span></code>.</p> |
| </dd> |
| <dt><strong>row_major</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#True" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">True</span></code></a></span></dt><dd><p>Whether resulting Tensor is row-major or column-major</p> |
| </dd> |
| <dt><strong>memory_pool</strong><span class="classifier"><a class="reference internal" href="pyarrow.MemoryPool.html#pyarrow.MemoryPool" title="pyarrow.MemoryPool"><code class="xref py py-obj docutils literal notranslate"><span class="pre">MemoryPool</span></code></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a></span></dt><dd><p>For memory allocations, if required, otherwise use default pool</p> |
| </dd> |
| </dl> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">pyarrow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pa</span> |
| <span class="gp">>>> </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">record_batch</span><span class="p">(</span> |
| <span class="gp">... </span> <span class="p">[</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="kc">None</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">int32</span><span class="p">()),</span> |
| <span class="gp">... </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="kc">None</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">float32</span><span class="p">()),</span> |
| <span class="gp">... </span> <span class="p">],</span> <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"a"</span><span class="p">,</span> <span class="s2">"b"</span><span class="p">]</span> |
| <span class="gp">... </span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">batch</span> |
| <span class="go">pyarrow.RecordBatch</span> |
| <span class="go">a: int32</span> |
| <span class="go">b: float</span> |
| <span class="go">----</span> |
| <span class="go">a: [1,2,3,4,null]</span> |
| <span class="go">b: [10,20,30,40,null]</span> |
| </pre></div> |
| </div> |
| <p>Convert a RecordBatch to row-major Tensor with null values |
| written as <a href="#id1"><span class="problematic" id="id2">``</span></a>NaN``s</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">to_tensor</span><span class="p">(</span><span class="n">null_to_nan</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> |
| <span class="go"><pyarrow.Tensor></span> |
| <span class="go">type: double</span> |
| <span class="go">shape: (5, 2)</span> |
| <span class="go">strides: (16, 8)</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">to_tensor</span><span class="p">(</span><span class="n">null_to_nan</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span> |
| <span class="go">array([[ 1., 10.],</span> |
| <span class="go"> [ 2., 20.],</span> |
| <span class="go"> [ 3., 30.],</span> |
| <span class="go"> [ 4., 40.],</span> |
| <span class="go"> [nan, nan]])</span> |
| </pre></div> |
| </div> |
| <p>Convert a RecordBatch to column-major Tensor</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">to_tensor</span><span class="p">(</span><span class="n">null_to_nan</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">row_major</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> |
| <span class="go"><pyarrow.Tensor></span> |
| <span class="go">type: double</span> |
| <span class="go">shape: (5, 2)</span> |
| <span class="go">strides: (8, 40)</span> |
| <span class="gp">>>> </span><span class="n">batch</span><span class="o">.</span><span class="n">to_tensor</span><span class="p">(</span><span class="n">null_to_nan</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">row_major</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span> |
| <span class="go">array([[ 1., 10.],</span> |
| <span class="go"> [ 2., 20.],</span> |
| <span class="go"> [ 3., 30.],</span> |
| <span class="go"> [ 4., 40.],</span> |
| <span class="go"> [nan, nan]])</span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="py method"> |
| <dt class="sig sig-object py" id="pyarrow.RecordBatch.validate"> |
| <span class="sig-name descname"><span class="pre">validate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="keyword-only-separator o"><abbr title="Keyword-only parameters separator (PEP 3102)"><span class="pre">*</span></abbr></span></em>, <em class="sig-param"><span class="n"><span class="pre">full</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyarrow.RecordBatch.validate" title="Link to this definition">#</a></dt> |
| <dd><p>Perform validation checks. An exception is raised if validation fails.</p> |
| <p>By default only cheap validation checks are run. Pass <cite>full=True</cite> |
| for thorough validation checks (potentially O(n)).</p> |
| <dl class="field-list"> |
| <dt class="field-odd">Parameters<span class="colon">:</span></dt> |
| <dd class="field-odd"><dl> |
| <dt><strong>full</strong><span class="classifier"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values" title="(in Python v3.13)"><span class="xref std std-ref">bool</span></a>, default <a class="reference external" href="https://docs.python.org/3/library/constants.html#False" title="(in Python v3.13)"><code class="docutils literal notranslate"><span class="pre">False</span></code></a></span></dt><dd><p>If True, run expensive checks, otherwise cheap checks only.</p> |
| </dd> |
| </dl> |
| </dd> |
| <dt class="field-even">Raises<span class="colon">:</span></dt> |
| <dd class="field-even"><dl class="simple"> |
| <dt><code class="xref py py-obj docutils literal notranslate"><span class="pre">ArrowInvalid</span></code></dt><dd></dd> |
| </dl> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| </dd></dl> |
| |
| </section> |
| |
| |
| </article> |
| |
| |
| |
| |
| |
| <footer class="prev-next-footer d-print-none"> |
| |
| <div class="prev-next-area"> |
| <a class="left-prev" |
| href="pyarrow.ChunkedArray.html" |
| title="previous page"> |
| <i class="fa-solid fa-angle-left"></i> |
| <div class="prev-next-info"> |
| <p class="prev-next-subtitle">previous</p> |
| <p class="prev-next-title">pyarrow.ChunkedArray</p> |
| </div> |
| </a> |
| <a class="right-next" |
| href="pyarrow.Table.html" |
| title="next page"> |
| <div class="prev-next-info"> |
| <p class="prev-next-subtitle">next</p> |
| <p class="prev-next-title">pyarrow.Table</p> |
| </div> |
| <i class="fa-solid fa-angle-right"></i> |
| </a> |
| </div> |
| </footer> |
| |
| </div> |
| |
| |
| |
| <dialog id="pst-secondary-sidebar-modal"></dialog> |
| <div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner"> |
| |
| |
| <div class="sidebar-secondary-item"> |
| <div |
| id="pst-page-navigation-heading-2" |
| class="page-toc tocsection onthispage"> |
| <i class="fa-solid fa-list"></i> On this page |
| </div> |
| <nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2"> |
| <ul class="visible nav section-nav flex-column"> |
| <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch"><code class="docutils literal notranslate"><span class="pre">RecordBatch</span></code></a><ul class="visible nav section-nav flex-column"> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.__init__"><code class="docutils literal notranslate"><span class="pre">RecordBatch.__init__()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.__dataframe__"><code class="docutils literal notranslate"><span class="pre">RecordBatch.__dataframe__()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.add_column"><code class="docutils literal notranslate"><span class="pre">RecordBatch.add_column()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.append_column"><code class="docutils literal notranslate"><span class="pre">RecordBatch.append_column()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.cast"><code class="docutils literal notranslate"><span class="pre">RecordBatch.cast()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.column"><code class="docutils literal notranslate"><span class="pre">RecordBatch.column()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.column_names"><code class="docutils literal notranslate"><span class="pre">RecordBatch.column_names</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.columns"><code class="docutils literal notranslate"><span class="pre">RecordBatch.columns</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.copy_to"><code class="docutils literal notranslate"><span class="pre">RecordBatch.copy_to()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.device_type"><code class="docutils literal notranslate"><span class="pre">RecordBatch.device_type</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.drop_columns"><code class="docutils literal notranslate"><span class="pre">RecordBatch.drop_columns()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.drop_null"><code class="docutils literal notranslate"><span class="pre">RecordBatch.drop_null()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.equals"><code class="docutils literal notranslate"><span class="pre">RecordBatch.equals()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.field"><code class="docutils literal notranslate"><span class="pre">RecordBatch.field()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.filter"><code class="docutils literal notranslate"><span class="pre">RecordBatch.filter()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.from_arrays"><code class="docutils literal notranslate"><span class="pre">RecordBatch.from_arrays()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.from_pandas"><code class="docutils literal notranslate"><span class="pre">RecordBatch.from_pandas()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.from_pydict"><code class="docutils literal notranslate"><span class="pre">RecordBatch.from_pydict()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.from_pylist"><code class="docutils literal notranslate"><span class="pre">RecordBatch.from_pylist()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.from_struct_array"><code class="docutils literal notranslate"><span class="pre">RecordBatch.from_struct_array()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.get_total_buffer_size"><code class="docutils literal notranslate"><span class="pre">RecordBatch.get_total_buffer_size()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.is_cpu"><code class="docutils literal notranslate"><span class="pre">RecordBatch.is_cpu</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.itercolumns"><code class="docutils literal notranslate"><span class="pre">RecordBatch.itercolumns()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.nbytes"><code class="docutils literal notranslate"><span class="pre">RecordBatch.nbytes</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.num_columns"><code class="docutils literal notranslate"><span class="pre">RecordBatch.num_columns</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.num_rows"><code class="docutils literal notranslate"><span class="pre">RecordBatch.num_rows</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.remove_column"><code class="docutils literal notranslate"><span class="pre">RecordBatch.remove_column()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.rename_columns"><code class="docutils literal notranslate"><span class="pre">RecordBatch.rename_columns()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.replace_schema_metadata"><code class="docutils literal notranslate"><span class="pre">RecordBatch.replace_schema_metadata()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.schema"><code class="docutils literal notranslate"><span class="pre">RecordBatch.schema</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.select"><code class="docutils literal notranslate"><span class="pre">RecordBatch.select()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.serialize"><code class="docutils literal notranslate"><span class="pre">RecordBatch.serialize()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.set_column"><code class="docutils literal notranslate"><span class="pre">RecordBatch.set_column()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.shape"><code class="docutils literal notranslate"><span class="pre">RecordBatch.shape</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.slice"><code class="docutils literal notranslate"><span class="pre">RecordBatch.slice()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.sort_by"><code class="docutils literal notranslate"><span class="pre">RecordBatch.sort_by()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.take"><code class="docutils literal notranslate"><span class="pre">RecordBatch.take()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.to_pandas"><code class="docutils literal notranslate"><span class="pre">RecordBatch.to_pandas()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.to_pydict"><code class="docutils literal notranslate"><span class="pre">RecordBatch.to_pydict()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.to_pylist"><code class="docutils literal notranslate"><span class="pre">RecordBatch.to_pylist()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.to_string"><code class="docutils literal notranslate"><span class="pre">RecordBatch.to_string()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.to_struct_array"><code class="docutils literal notranslate"><span class="pre">RecordBatch.to_struct_array()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.to_tensor"><code class="docutils literal notranslate"><span class="pre">RecordBatch.to_tensor()</span></code></a></li> |
| <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pyarrow.RecordBatch.validate"><code class="docutils literal notranslate"><span class="pre">RecordBatch.validate()</span></code></a></li> |
| </ul> |
| </li> |
| </ul> |
| </nav></div> |
| |
| <div class="sidebar-secondary-item"> |
| |
| |
| <div class="tocsection editthispage"> |
| <a href="https://github.com/apache/arrow/edit/main/docs/source/python/generated/pyarrow.RecordBatch.rst"> |
| <i class="fa-solid fa-pencil"></i> |
| |
| |
| |
| Edit on GitHub |
| |
| |
| </a> |
| </div> |
| </div> |
| |
| </div></div> |
| |
| |
| </div> |
| <footer class="bd-footer-content"> |
| |
| </footer> |
| |
| </main> |
| </div> |
| </div> |
| |
| <!-- Scripts loaded after <body> so the DOM is not blocked --> |
| <script defer src="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script> |
| <script defer src="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script> |
| |
| <footer class="bd-footer"> |
| <div class="bd-footer__inner bd-page-width"> |
| |
| <div class="footer-items__start"> |
| |
| <div class="footer-item"> |
| |
| <p class="copyright"> |
| |
| © Copyright 2016-2025 Apache Software Foundation. |
| Apache Arrow, Arrow, Apache, the Apache feather logo, and the Apache Arrow project logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries. |
| <br/> |
| |
| </p> |
| </div> |
| |
| <div class="footer-item"> |
| |
| <p class="sphinx-version"> |
| Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 8.2.3. |
| <br/> |
| </p> |
| </div> |
| |
| </div> |
| |
| |
| |
| <div class="footer-items__end"> |
| |
| <div class="footer-item"> |
| <p class="theme-version"> |
| <!-- # L10n: Setting the PST URL as an argument as this does not need to be localized --> |
| Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.1. |
| </p></div> |
| |
| </div> |
| |
| </div> |
| |
| </footer> |
| </body> |
| </html> |