| |
| <!DOCTYPE html> |
| |
| <html> |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /> |
| <title>Data Types and In-Memory Data Model — Apache Arrow v5.0.0</title> |
| |
| <link href="../_static/css/theme.css" rel="stylesheet" /> |
| <link href="../_static/css/index.c5995385ac14fb8791e8eb36b4908be2.css" rel="stylesheet" /> |
| |
| |
| <link rel="stylesheet" |
| href="../_static/vendor/fontawesome/5.13.0/css/all.min.css"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2"> |
| |
| |
| |
| |
| |
| <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> |
| <link rel="stylesheet" href="../_static/basic.css" type="text/css" /> |
| <link rel="stylesheet" type="text/css" href="../_static/theme_overrides.css" /> |
| |
| <link rel="preload" as="script" href="../_static/js/index.1c5a1a01449ed65a7b51.js"> |
| |
| <script id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script> |
| <script src="../_static/jquery.js"></script> |
| <script src="../_static/underscore.js"></script> |
| <script src="../_static/doctools.js"></script> |
| <link rel="canonical" href="https://arrow.apache.org/docs/python/data.html" /> |
| <link rel="shortcut icon" href="../_static/favicon.ico"/> |
| <link rel="index" title="Index" href="../genindex.html" /> |
| <link rel="search" title="Search" href="../search.html" /> |
| <link rel="next" title="Compute Functions" href="compute.html" /> |
| <link rel="prev" title="Memory and IO Interfaces" href="memory.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="en" /> |
| |
| </head> |
| <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80"> |
| |
| <div class="container-fluid" id="banner"></div> |
| |
| |
| |
| |
| <div class="container-xl"> |
| <div class="row"> |
| |
| |
| <!-- Only show if we have sidebars configured, else just a small margin --> |
| <div class="col-12 col-md-3 bd-sidebar"> |
| <a class="navbar-brand" href="../index.html"> |
| <img src="../_static/arrow.png" class="logo" alt="logo"> |
| </a> |
| |
| <form class="bd-search d-flex align-items-center" action="../search.html" method="get"> |
| <i class="icon fas fa-search"></i> |
| <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" > |
| </form> |
| |
| <nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation"> |
| <div class="bd-toc-item active"> |
| |
| <p class="caption"> |
| <span class="caption-text"> |
| Specifications and Protocols |
| </span> |
| </p> |
| <ul class="nav bd-sidenav"> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../format/Versioning.html"> |
| Format Versioning and Stability |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../format/Columnar.html"> |
| Arrow Columnar Format |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../format/Flight.html"> |
| Arrow Flight RPC |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../format/Integration.html"> |
| Integration Testing |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../format/CDataInterface.html"> |
| The Arrow C data interface |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../format/CStreamInterface.html"> |
| The Arrow C stream interface |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../format/Other.html"> |
| Other Data Structures |
| </a> |
| </li> |
| </ul> |
| <p class="caption"> |
| <span class="caption-text"> |
| Libraries |
| </span> |
| </p> |
| <ul class="current nav bd-sidenav"> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../status.html"> |
| Implementation Status |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://arrow.apache.org/docs/c_glib/"> |
| C/GLib |
| </a> |
| </li> |
| <li class="toctree-l1 has-children"> |
| <a class="reference internal" href="../cpp/index.html"> |
| C++ |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/> |
| <label for="toctree-checkbox-1"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l2 has-children"> |
| <a class="reference internal" href="../cpp/getting_started.html"> |
| User Guide |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/> |
| <label for="toctree-checkbox-2"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/overview.html"> |
| High-Level Overview |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/conventions.html"> |
| Conventions |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/build_system.html"> |
| Using Arrow C++ in your own project |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/memory.html"> |
| Memory Management |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/arrays.html"> |
| Arrays |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/datatypes.html"> |
| Data Types |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/tables.html"> |
| Tabular Data |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/compute.html"> |
| Compute Functions |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/io.html"> |
| Input / output and filesystems |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/ipc.html"> |
| Reading and writing the Arrow IPC format |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/parquet.html"> |
| Reading and writing Parquet files |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/csv.html"> |
| Reading and Writing CSV files |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/json.html"> |
| Reading JSON files |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/dataset.html"> |
| Tabular Datasets |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/flight.html"> |
| Arrow Flight RPC |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2 has-children"> |
| <a class="reference internal" href="../cpp/examples/index.html"> |
| Examples |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/> |
| <label for="toctree-checkbox-3"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/examples/cmake_minimal_build.html"> |
| Minimal build using CMake |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/examples/dataset_documentation_example.html"> |
| Arrow Datasets example |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/examples/row_columnar_conversion.html"> |
| Row to columnar conversion |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/examples/tuple_range_conversion.html"> |
| std::tuple-like ranges to Arrow |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2 has-children"> |
| <a class="reference internal" href="../cpp/api.html"> |
| API Reference |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/> |
| <label for="toctree-checkbox-4"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/support.html"> |
| Programming Support |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/memory.html"> |
| Memory (management) |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/datatype.html"> |
| Data Types |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/array.html"> |
| Arrays |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/scalar.html"> |
| Scalars |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/builder.html"> |
| Array Builders |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/table.html"> |
| Two-dimensional Datasets |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/c_abi.html"> |
| C Interfaces |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/compute.html"> |
| Compute Functions |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/tensor.html"> |
| Tensors |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/utilities.html"> |
| Utilities |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/io.html"> |
| Input / output |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/ipc.html"> |
| Arrow IPC |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/formats.html"> |
| File Formats |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/cuda.html"> |
| CUDA support |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/flight.html"> |
| Arrow Flight RPC |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/filesystem.html"> |
| Filesystems |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../cpp/api/dataset.html"> |
| Dataset |
| </a> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://github.com/apache/arrow/blob/master/csharp/README.md"> |
| C# |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://godoc.org/github.com/apache/arrow/go/arrow"> |
| Go |
| </a> |
| </li> |
| <li class="toctree-l1 has-children"> |
| <a class="reference internal" href="../java/index.html"> |
| Java |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/> |
| <label for="toctree-checkbox-5"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../java/vector.html"> |
| ValueVector |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../java/vector_schema_root.html"> |
| VectorSchemaRoot |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../java/ipc.html"> |
| Reading/Writing IPC formats |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../java/algorithm.html"> |
| Java Algorithms |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference external" href="https://arrow.apache.org/docs/java/reference/"> |
| Reference (javadoc) |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://arrow.apache.org/docs/js/"> |
| JavaScript |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://github.com/apache/arrow/blob/master/julia/Arrow/README.md"> |
| Julia |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://github.com/apache/arrow/blob/master/matlab/README.md"> |
| MATLAB |
| </a> |
| </li> |
| <li class="toctree-l1 current active has-children"> |
| <a class="reference internal" href="index.html"> |
| Python |
| </a> |
| <input checked="" class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" type="checkbox"/> |
| <label for="toctree-checkbox-6"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul class="current"> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="install.html"> |
| Installing PyArrow |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="memory.html"> |
| Memory and IO Interfaces |
| </a> |
| </li> |
| <li class="toctree-l2 current active"> |
| <a class="current reference internal" href="#"> |
| Data Types and In-Memory Data Model |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="compute.html"> |
| Compute Functions |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="ipc.html"> |
| Streaming, Serialization, and IPC |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="filesystems.html"> |
| Filesystem Interface |
| </a> |
| </li> |
| <li class="toctree-l2 has-children"> |
| <a class="reference internal" href="filesystems_deprecated.html"> |
| Filesystem Interface (legacy) |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" type="checkbox"/> |
| <label for="toctree-checkbox-7"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.hdfs.connect.html"> |
| pyarrow.hdfs.connect |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.cat.html"> |
| pyarrow.HadoopFileSystem.cat |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.chmod.html"> |
| pyarrow.HadoopFileSystem.chmod |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.chown.html"> |
| pyarrow.HadoopFileSystem.chown |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.delete.html"> |
| pyarrow.HadoopFileSystem.delete |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.df.html"> |
| pyarrow.HadoopFileSystem.df |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.disk_usage.html"> |
| pyarrow.HadoopFileSystem.disk_usage |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.download.html"> |
| pyarrow.HadoopFileSystem.download |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.exists.html"> |
| pyarrow.HadoopFileSystem.exists |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.get_capacity.html"> |
| pyarrow.HadoopFileSystem.get_capacity |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.get_space_used.html"> |
| pyarrow.HadoopFileSystem.get_space_used |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.info.html"> |
| pyarrow.HadoopFileSystem.info |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.ls.html"> |
| pyarrow.HadoopFileSystem.ls |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.mkdir.html"> |
| pyarrow.HadoopFileSystem.mkdir |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.open.html"> |
| pyarrow.HadoopFileSystem.open |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.rename.html"> |
| pyarrow.HadoopFileSystem.rename |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.rm.html"> |
| pyarrow.HadoopFileSystem.rm |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HadoopFileSystem.upload.html"> |
| pyarrow.HadoopFileSystem.upload |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="generated/pyarrow.HdfsFile.html"> |
| pyarrow.HdfsFile |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="plasma.html"> |
| The Plasma In-Memory Object Store |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="numpy.html"> |
| NumPy Integration |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="pandas.html"> |
| Pandas Integration |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="timestamps.html"> |
| Timestamps |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="csv.html"> |
| Reading and Writing CSV files |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="feather.html"> |
| Feather File Format |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="json.html"> |
| Reading JSON files |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="parquet.html"> |
| Reading and Writing the Apache Parquet Format |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="dataset.html"> |
| Tabular Datasets |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="cuda.html"> |
| CUDA Integration |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="extending_types.html"> |
| Extending pyarrow |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="extending.html"> |
| Using pyarrow from C++ and Cython Code |
| </a> |
| </li> |
| <li class="toctree-l2 has-children"> |
| <a class="reference internal" href="api.html"> |
| API Reference |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" type="checkbox"/> |
| <label for="toctree-checkbox-8"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/datatypes.html"> |
| Data Types and Schemas |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" type="checkbox"/> |
| <label for="toctree-checkbox-9"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.null.html"> |
| pyarrow.null |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.bool_.html"> |
| pyarrow.bool_ |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.int8.html"> |
| pyarrow.int8 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.int16.html"> |
| pyarrow.int16 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.int32.html"> |
| pyarrow.int32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.int64.html"> |
| pyarrow.int64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.uint8.html"> |
| pyarrow.uint8 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.uint16.html"> |
| pyarrow.uint16 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.uint32.html"> |
| pyarrow.uint32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.uint64.html"> |
| pyarrow.uint64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.float16.html"> |
| pyarrow.float16 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.float32.html"> |
| pyarrow.float32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.float64.html"> |
| pyarrow.float64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.time32.html"> |
| pyarrow.time32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.time64.html"> |
| pyarrow.time64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.timestamp.html"> |
| pyarrow.timestamp |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.date32.html"> |
| pyarrow.date32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.date64.html"> |
| pyarrow.date64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.binary.html"> |
| pyarrow.binary |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.string.html"> |
| pyarrow.string |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.utf8.html"> |
| pyarrow.utf8 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.large_binary.html"> |
| pyarrow.large_binary |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.large_string.html"> |
| pyarrow.large_string |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.large_utf8.html"> |
| pyarrow.large_utf8 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.decimal128.html"> |
| pyarrow.decimal128 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.list_.html"> |
| pyarrow.list_ |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.large_list.html"> |
| pyarrow.large_list |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.map_.html"> |
| pyarrow.map_ |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.struct.html"> |
| pyarrow.struct |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dictionary.html"> |
| pyarrow.dictionary |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.field.html"> |
| pyarrow.field |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.schema.html"> |
| pyarrow.schema |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.from_numpy_dtype.html"> |
| pyarrow.from_numpy_dtype |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.DataType.html"> |
| pyarrow.DataType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.DictionaryType.html"> |
| pyarrow.DictionaryType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ListType.html"> |
| pyarrow.ListType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.MapType.html"> |
| pyarrow.MapType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.StructType.html"> |
| pyarrow.StructType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UnionType.html"> |
| pyarrow.UnionType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.TimestampType.html"> |
| pyarrow.TimestampType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Time32Type.html"> |
| pyarrow.Time32Type |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Time64Type.html"> |
| pyarrow.Time64Type |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.FixedSizeBinaryType.html"> |
| pyarrow.FixedSizeBinaryType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Decimal128Type.html"> |
| pyarrow.Decimal128Type |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Field.html"> |
| pyarrow.Field |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Schema.html"> |
| pyarrow.Schema |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ExtensionType.html"> |
| pyarrow.ExtensionType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.PyExtensionType.html"> |
| pyarrow.PyExtensionType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.register_extension_type.html"> |
| pyarrow.register_extension_type |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.unregister_extension_type.html"> |
| pyarrow.unregister_extension_type |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_boolean.html"> |
| pyarrow.types.is_boolean |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_integer.html"> |
| pyarrow.types.is_integer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_signed_integer.html"> |
| pyarrow.types.is_signed_integer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_unsigned_integer.html"> |
| pyarrow.types.is_unsigned_integer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_int8.html"> |
| pyarrow.types.is_int8 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_int16.html"> |
| pyarrow.types.is_int16 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_int32.html"> |
| pyarrow.types.is_int32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_int64.html"> |
| pyarrow.types.is_int64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_uint8.html"> |
| pyarrow.types.is_uint8 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_uint16.html"> |
| pyarrow.types.is_uint16 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_uint32.html"> |
| pyarrow.types.is_uint32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_uint64.html"> |
| pyarrow.types.is_uint64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_floating.html"> |
| pyarrow.types.is_floating |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_float16.html"> |
| pyarrow.types.is_float16 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_float32.html"> |
| pyarrow.types.is_float32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_float64.html"> |
| pyarrow.types.is_float64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_decimal.html"> |
| pyarrow.types.is_decimal |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_list.html"> |
| pyarrow.types.is_list |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_large_list.html"> |
| pyarrow.types.is_large_list |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_struct.html"> |
| pyarrow.types.is_struct |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_union.html"> |
| pyarrow.types.is_union |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_nested.html"> |
| pyarrow.types.is_nested |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_temporal.html"> |
| pyarrow.types.is_temporal |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_timestamp.html"> |
| pyarrow.types.is_timestamp |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_date.html"> |
| pyarrow.types.is_date |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_date32.html"> |
| pyarrow.types.is_date32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_date64.html"> |
| pyarrow.types.is_date64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_time.html"> |
| pyarrow.types.is_time |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_time32.html"> |
| pyarrow.types.is_time32 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_time64.html"> |
| pyarrow.types.is_time64 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_null.html"> |
| pyarrow.types.is_null |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_binary.html"> |
| pyarrow.types.is_binary |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_unicode.html"> |
| pyarrow.types.is_unicode |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_string.html"> |
| pyarrow.types.is_string |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_large_binary.html"> |
| pyarrow.types.is_large_binary |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_large_unicode.html"> |
| pyarrow.types.is_large_unicode |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_large_string.html"> |
| pyarrow.types.is_large_string |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_fixed_size_binary.html"> |
| pyarrow.types.is_fixed_size_binary |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_map.html"> |
| pyarrow.types.is_map |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.types.is_dictionary.html"> |
| pyarrow.types.is_dictionary |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/arrays.html"> |
| Arrays and Scalars |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" type="checkbox"/> |
| <label for="toctree-checkbox-10"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.array.html"> |
| pyarrow.array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.nulls.html"> |
| pyarrow.nulls |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Array.html"> |
| pyarrow.Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.BooleanArray.html"> |
| pyarrow.BooleanArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.FloatingPointArray.html"> |
| pyarrow.FloatingPointArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.IntegerArray.html"> |
| pyarrow.IntegerArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Int8Array.html"> |
| pyarrow.Int8Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Int16Array.html"> |
| pyarrow.Int16Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Int32Array.html"> |
| pyarrow.Int32Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Int64Array.html"> |
| pyarrow.Int64Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.NullArray.html"> |
| pyarrow.NullArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.NumericArray.html"> |
| pyarrow.NumericArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UInt8Array.html"> |
| pyarrow.UInt8Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UInt16Array.html"> |
| pyarrow.UInt16Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UInt32Array.html"> |
| pyarrow.UInt32Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UInt64Array.html"> |
| pyarrow.UInt64Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.BinaryArray.html"> |
| pyarrow.BinaryArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.StringArray.html"> |
| pyarrow.StringArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.FixedSizeBinaryArray.html"> |
| pyarrow.FixedSizeBinaryArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.LargeBinaryArray.html"> |
| pyarrow.LargeBinaryArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.LargeStringArray.html"> |
| pyarrow.LargeStringArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Time32Array.html"> |
| pyarrow.Time32Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Time64Array.html"> |
| pyarrow.Time64Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Date32Array.html"> |
| pyarrow.Date32Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Date64Array.html"> |
| pyarrow.Date64Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.TimestampArray.html"> |
| pyarrow.TimestampArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Decimal128Array.html"> |
| pyarrow.Decimal128Array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.DictionaryArray.html"> |
| pyarrow.DictionaryArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ListArray.html"> |
| pyarrow.ListArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.FixedSizeListArray.html"> |
| pyarrow.FixedSizeListArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.LargeListArray.html"> |
| pyarrow.LargeListArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.StructArray.html"> |
| pyarrow.StructArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UnionArray.html"> |
| pyarrow.UnionArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ExtensionArray.html"> |
| pyarrow.ExtensionArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.scalar.html"> |
| pyarrow.scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.NA.html"> |
| pyarrow.NA |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Scalar.html"> |
| pyarrow.Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.BooleanScalar.html"> |
| pyarrow.BooleanScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Int8Scalar.html"> |
| pyarrow.Int8Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Int16Scalar.html"> |
| pyarrow.Int16Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Int32Scalar.html"> |
| pyarrow.Int32Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Int64Scalar.html"> |
| pyarrow.Int64Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UInt8Scalar.html"> |
| pyarrow.UInt8Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UInt16Scalar.html"> |
| pyarrow.UInt16Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UInt32Scalar.html"> |
| pyarrow.UInt32Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UInt64Scalar.html"> |
| pyarrow.UInt64Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.FloatScalar.html"> |
| pyarrow.FloatScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.DoubleScalar.html"> |
| pyarrow.DoubleScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.BinaryScalar.html"> |
| pyarrow.BinaryScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.StringScalar.html"> |
| pyarrow.StringScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.FixedSizeBinaryScalar.html"> |
| pyarrow.FixedSizeBinaryScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.LargeBinaryScalar.html"> |
| pyarrow.LargeBinaryScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.LargeStringScalar.html"> |
| pyarrow.LargeStringScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Time32Scalar.html"> |
| pyarrow.Time32Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Time64Scalar.html"> |
| pyarrow.Time64Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Date32Scalar.html"> |
| pyarrow.Date32Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Date64Scalar.html"> |
| pyarrow.Date64Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.TimestampScalar.html"> |
| pyarrow.TimestampScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Decimal128Scalar.html"> |
| pyarrow.Decimal128Scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.DictionaryScalar.html"> |
| pyarrow.DictionaryScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ListScalar.html"> |
| pyarrow.ListScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.LargeListScalar.html"> |
| pyarrow.LargeListScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.StructScalar.html"> |
| pyarrow.StructScalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.UnionScalar.html"> |
| pyarrow.UnionScalar |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/memory.html"> |
| Buffers and Memory |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" type="checkbox"/> |
| <label for="toctree-checkbox-11"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.allocate_buffer.html"> |
| pyarrow.allocate_buffer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.py_buffer.html"> |
| pyarrow.py_buffer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.foreign_buffer.html"> |
| pyarrow.foreign_buffer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Buffer.html"> |
| pyarrow.Buffer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ResizableBuffer.html"> |
| pyarrow.ResizableBuffer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Codec.html"> |
| pyarrow.Codec |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compress.html"> |
| pyarrow.compress |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.decompress.html"> |
| pyarrow.decompress |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.MemoryPool.html"> |
| pyarrow.MemoryPool |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.default_memory_pool.html"> |
| pyarrow.default_memory_pool |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.jemalloc_memory_pool.html"> |
| pyarrow.jemalloc_memory_pool |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.mimalloc_memory_pool.html"> |
| pyarrow.mimalloc_memory_pool |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.system_memory_pool.html"> |
| pyarrow.system_memory_pool |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.jemalloc_set_decay_ms.html"> |
| pyarrow.jemalloc_set_decay_ms |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.set_memory_pool.html"> |
| pyarrow.set_memory_pool |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.log_memory_allocations.html"> |
| pyarrow.log_memory_allocations |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.total_allocated_bytes.html"> |
| pyarrow.total_allocated_bytes |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/compute.html"> |
| Compute Functions |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" type="checkbox"/> |
| <label for="toctree-checkbox-12"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.count.html"> |
| pyarrow.compute.count |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.index.html"> |
| pyarrow.compute.index |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.mean.html"> |
| pyarrow.compute.mean |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.min_max.html"> |
| pyarrow.compute.min_max |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.mode.html"> |
| pyarrow.compute.mode |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.stddev.html"> |
| pyarrow.compute.stddev |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.sum.html"> |
| pyarrow.compute.sum |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.variance.html"> |
| pyarrow.compute.variance |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.abs.html"> |
| pyarrow.compute.abs |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.abs_checked.html"> |
| pyarrow.compute.abs_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.add.html"> |
| pyarrow.compute.add |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.add_checked.html"> |
| pyarrow.compute.add_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.divide.html"> |
| pyarrow.compute.divide |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.divide_checked.html"> |
| pyarrow.compute.divide_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.multiply.html"> |
| pyarrow.compute.multiply |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.multiply_checked.html"> |
| pyarrow.compute.multiply_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.power.html"> |
| pyarrow.compute.power |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.power_checked.html"> |
| pyarrow.compute.power_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.shift_left.html"> |
| pyarrow.compute.shift_left |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.shift_left_checked.html"> |
| pyarrow.compute.shift_left_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.shift_right.html"> |
| pyarrow.compute.shift_right |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.shift_right_checked.html"> |
| pyarrow.compute.shift_right_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.sign.html"> |
| pyarrow.compute.sign |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.subtract.html"> |
| pyarrow.compute.subtract |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.subtract_checked.html"> |
| pyarrow.compute.subtract_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.bit_wise_and.html"> |
| pyarrow.compute.bit_wise_and |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.bit_wise_not.html"> |
| pyarrow.compute.bit_wise_not |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.bit_wise_or.html"> |
| pyarrow.compute.bit_wise_or |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.bit_wise_xor.html"> |
| pyarrow.compute.bit_wise_xor |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ceil.html"> |
| pyarrow.compute.ceil |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.floor.html"> |
| pyarrow.compute.floor |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.trunc.html"> |
| pyarrow.compute.trunc |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ln.html"> |
| pyarrow.compute.ln |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ln_checked.html"> |
| pyarrow.compute.ln_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.log10.html"> |
| pyarrow.compute.log10 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.log10_checked.html"> |
| pyarrow.compute.log10_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.log1p.html"> |
| pyarrow.compute.log1p |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.log1p_checked.html"> |
| pyarrow.compute.log1p_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.log2.html"> |
| pyarrow.compute.log2 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.log2_checked.html"> |
| pyarrow.compute.log2_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.acos.html"> |
| pyarrow.compute.acos |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.acos_checked.html"> |
| pyarrow.compute.acos_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.asin.html"> |
| pyarrow.compute.asin |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.asin_checked.html"> |
| pyarrow.compute.asin_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.atan.html"> |
| pyarrow.compute.atan |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.atan2.html"> |
| pyarrow.compute.atan2 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.cos.html"> |
| pyarrow.compute.cos |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.cos_checked.html"> |
| pyarrow.compute.cos_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.sin.html"> |
| pyarrow.compute.sin |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.sin_checked.html"> |
| pyarrow.compute.sin_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.tan.html"> |
| pyarrow.compute.tan |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.tan_checked.html"> |
| pyarrow.compute.tan_checked |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.equal.html"> |
| pyarrow.compute.equal |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.greater.html"> |
| pyarrow.compute.greater |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.greater_equal.html"> |
| pyarrow.compute.greater_equal |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.less.html"> |
| pyarrow.compute.less |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.less_equal.html"> |
| pyarrow.compute.less_equal |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.not_equal.html"> |
| pyarrow.compute.not_equal |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.max_element_wise.html"> |
| pyarrow.compute.max_element_wise |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.min_element_wise.html"> |
| pyarrow.compute.min_element_wise |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.and_.html"> |
| pyarrow.compute.and_ |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.and_kleene.html"> |
| pyarrow.compute.and_kleene |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.all.html"> |
| pyarrow.compute.all |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.any.html"> |
| pyarrow.compute.any |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.invert.html"> |
| pyarrow.compute.invert |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.or_.html"> |
| pyarrow.compute.or_ |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.or_kleene.html"> |
| pyarrow.compute.or_kleene |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.xor.html"> |
| pyarrow.compute.xor |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_is_alnum.html"> |
| pyarrow.compute.ascii_is_alnum |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_is_alpha.html"> |
| pyarrow.compute.ascii_is_alpha |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_is_decimal.html"> |
| pyarrow.compute.ascii_is_decimal |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_is_lower.html"> |
| pyarrow.compute.ascii_is_lower |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_is_printable.html"> |
| pyarrow.compute.ascii_is_printable |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_is_space.html"> |
| pyarrow.compute.ascii_is_space |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_is_upper.html"> |
| pyarrow.compute.ascii_is_upper |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_alnum.html"> |
| pyarrow.compute.utf8_is_alnum |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_alpha.html"> |
| pyarrow.compute.utf8_is_alpha |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_decimal.html"> |
| pyarrow.compute.utf8_is_decimal |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_digit.html"> |
| pyarrow.compute.utf8_is_digit |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_lower.html"> |
| pyarrow.compute.utf8_is_lower |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_numeric.html"> |
| pyarrow.compute.utf8_is_numeric |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_printable.html"> |
| pyarrow.compute.utf8_is_printable |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_space.html"> |
| pyarrow.compute.utf8_is_space |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_upper.html"> |
| pyarrow.compute.utf8_is_upper |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_is_title.html"> |
| pyarrow.compute.ascii_is_title |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_is_title.html"> |
| pyarrow.compute.utf8_is_title |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.string_is_ascii.html"> |
| pyarrow.compute.string_is_ascii |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.split_pattern.html"> |
| pyarrow.compute.split_pattern |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.split_pattern_regex.html"> |
| pyarrow.compute.split_pattern_regex |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_split_whitespace.html"> |
| pyarrow.compute.ascii_split_whitespace |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_split_whitespace.html"> |
| pyarrow.compute.utf8_split_whitespace |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.extract_regex.html"> |
| pyarrow.compute.extract_regex |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.binary_join.html"> |
| pyarrow.compute.binary_join |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.binary_join_element_wise.html"> |
| pyarrow.compute.binary_join_element_wise |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_center.html"> |
| pyarrow.compute.ascii_center |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_lpad.html"> |
| pyarrow.compute.ascii_lpad |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_ltrim.html"> |
| pyarrow.compute.ascii_ltrim |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_ltrim_whitespace.html"> |
| pyarrow.compute.ascii_ltrim_whitespace |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_lower.html"> |
| pyarrow.compute.ascii_lower |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_reverse.html"> |
| pyarrow.compute.ascii_reverse |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_rpad.html"> |
| pyarrow.compute.ascii_rpad |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_rtrim.html"> |
| pyarrow.compute.ascii_rtrim |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_rtrim_whitespace.html"> |
| pyarrow.compute.ascii_rtrim_whitespace |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_trim.html"> |
| pyarrow.compute.ascii_trim |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ascii_upper.html"> |
| pyarrow.compute.ascii_upper |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.binary_length.html"> |
| pyarrow.compute.binary_length |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.binary_replace_slice.html"> |
| pyarrow.compute.binary_replace_slice |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.replace_substring.html"> |
| pyarrow.compute.replace_substring |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.replace_substring_regex.html"> |
| pyarrow.compute.replace_substring_regex |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_center.html"> |
| pyarrow.compute.utf8_center |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_length.html"> |
| pyarrow.compute.utf8_length |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_lower.html"> |
| pyarrow.compute.utf8_lower |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_lpad.html"> |
| pyarrow.compute.utf8_lpad |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_ltrim.html"> |
| pyarrow.compute.utf8_ltrim |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_ltrim_whitespace.html"> |
| pyarrow.compute.utf8_ltrim_whitespace |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_replace_slice.html"> |
| pyarrow.compute.utf8_replace_slice |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_reverse.html"> |
| pyarrow.compute.utf8_reverse |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_rpad.html"> |
| pyarrow.compute.utf8_rpad |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_rtrim.html"> |
| pyarrow.compute.utf8_rtrim |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_rtrim_whitespace.html"> |
| pyarrow.compute.utf8_rtrim_whitespace |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_trim.html"> |
| pyarrow.compute.utf8_trim |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.utf8_upper.html"> |
| pyarrow.compute.utf8_upper |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.count_substring.html"> |
| pyarrow.compute.count_substring |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.count_substring_regex.html"> |
| pyarrow.compute.count_substring_regex |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.ends_with.html"> |
| pyarrow.compute.ends_with |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.find_substring.html"> |
| pyarrow.compute.find_substring |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.find_substring_regex.html"> |
| pyarrow.compute.find_substring_regex |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.index_in.html"> |
| pyarrow.compute.index_in |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.is_in.html"> |
| pyarrow.compute.is_in |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.match_like.html"> |
| pyarrow.compute.match_like |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.match_substring.html"> |
| pyarrow.compute.match_substring |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.match_substring_regex.html"> |
| pyarrow.compute.match_substring_regex |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.starts_with.html"> |
| pyarrow.compute.starts_with |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.cast.html"> |
| pyarrow.compute.cast |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.strptime.html"> |
| pyarrow.compute.strptime |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.replace_with_mask.html"> |
| pyarrow.compute.replace_with_mask |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.filter.html"> |
| pyarrow.compute.filter |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.take.html"> |
| pyarrow.compute.take |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.dictionary_encode.html"> |
| pyarrow.compute.dictionary_encode |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.unique.html"> |
| pyarrow.compute.unique |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.value_counts.html"> |
| pyarrow.compute.value_counts |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.partition_nth_indices.html"> |
| pyarrow.compute.partition_nth_indices |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.sort_indices.html"> |
| pyarrow.compute.sort_indices |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.binary_length.html"> |
| pyarrow.compute.binary_length |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.case_when.html"> |
| pyarrow.compute.case_when |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.coalesce.html"> |
| pyarrow.compute.coalesce |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.fill_null.html"> |
| pyarrow.compute.fill_null |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.if_else.html"> |
| pyarrow.compute.if_else |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.is_finite.html"> |
| pyarrow.compute.is_finite |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.is_inf.html"> |
| pyarrow.compute.is_inf |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.is_nan.html"> |
| pyarrow.compute.is_nan |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.is_null.html"> |
| pyarrow.compute.is_null |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.is_valid.html"> |
| pyarrow.compute.is_valid |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.list_value_length.html"> |
| pyarrow.compute.list_value_length |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.list_flatten.html"> |
| pyarrow.compute.list_flatten |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.compute.list_parent_indices.html"> |
| pyarrow.compute.list_parent_indices |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/files.html"> |
| Streams and File Access |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" type="checkbox"/> |
| <label for="toctree-checkbox-13"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.input_stream.html"> |
| pyarrow.input_stream |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.output_stream.html"> |
| pyarrow.output_stream |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.memory_map.html"> |
| pyarrow.memory_map |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.create_memory_map.html"> |
| pyarrow.create_memory_map |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.NativeFile.html"> |
| pyarrow.NativeFile |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.OSFile.html"> |
| pyarrow.OSFile |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.PythonFile.html"> |
| pyarrow.PythonFile |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.BufferReader.html"> |
| pyarrow.BufferReader |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.BufferOutputStream.html"> |
| pyarrow.BufferOutputStream |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.FixedSizeBufferWriter.html"> |
| pyarrow.FixedSizeBufferWriter |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.MemoryMappedFile.html"> |
| pyarrow.MemoryMappedFile |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.CompressedInputStream.html"> |
| pyarrow.CompressedInputStream |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.CompressedOutputStream.html"> |
| pyarrow.CompressedOutputStream |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.hdfs.connect.html"> |
| pyarrow.hdfs.connect |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.LocalFileSystem.html"> |
| pyarrow.LocalFileSystem |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/tables.html"> |
| Tables and Tensors |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" type="checkbox"/> |
| <label for="toctree-checkbox-14"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.chunked_array.html"> |
| pyarrow.chunked_array |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.concat_arrays.html"> |
| pyarrow.concat_arrays |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.concat_tables.html"> |
| pyarrow.concat_tables |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.record_batch.html"> |
| pyarrow.record_batch |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.table.html"> |
| pyarrow.table |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ChunkedArray.html"> |
| pyarrow.ChunkedArray |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.RecordBatch.html"> |
| pyarrow.RecordBatch |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Table.html"> |
| pyarrow.Table |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.Tensor.html"> |
| pyarrow.Tensor |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/ipc.html"> |
| Serialization and IPC |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" type="checkbox"/> |
| <label for="toctree-checkbox-15"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.new_file.html"> |
| pyarrow.ipc.new_file |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.open_file.html"> |
| pyarrow.ipc.open_file |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.new_stream.html"> |
| pyarrow.ipc.new_stream |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.open_stream.html"> |
| pyarrow.ipc.open_stream |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.read_message.html"> |
| pyarrow.ipc.read_message |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.read_record_batch.html"> |
| pyarrow.ipc.read_record_batch |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.get_record_batch_size.html"> |
| pyarrow.ipc.get_record_batch_size |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.read_tensor.html"> |
| pyarrow.ipc.read_tensor |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.write_tensor.html"> |
| pyarrow.ipc.write_tensor |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.get_tensor_size.html"> |
| pyarrow.ipc.get_tensor_size |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.IpcWriteOptions.html"> |
| pyarrow.ipc.IpcWriteOptions |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.Message.html"> |
| pyarrow.ipc.Message |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.MessageReader.html"> |
| pyarrow.ipc.MessageReader |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.RecordBatchFileReader.html"> |
| pyarrow.ipc.RecordBatchFileReader |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.RecordBatchFileWriter.html"> |
| pyarrow.ipc.RecordBatchFileWriter |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.RecordBatchStreamReader.html"> |
| pyarrow.ipc.RecordBatchStreamReader |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.ipc.RecordBatchStreamWriter.html"> |
| pyarrow.ipc.RecordBatchStreamWriter |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.serialize.html"> |
| pyarrow.serialize |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.serialize_to.html"> |
| pyarrow.serialize_to |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.deserialize.html"> |
| pyarrow.deserialize |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.deserialize_components.html"> |
| pyarrow.deserialize_components |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.deserialize_from.html"> |
| pyarrow.deserialize_from |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.read_serialized.html"> |
| pyarrow.read_serialized |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.SerializedPyObject.html"> |
| pyarrow.SerializedPyObject |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.SerializationContext.html"> |
| pyarrow.SerializationContext |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/flight.html"> |
| Arrow Flight |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" type="checkbox"/> |
| <label for="toctree-checkbox-16"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.Action.html"> |
| pyarrow.flight.Action |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.ActionType.html"> |
| pyarrow.flight.ActionType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.DescriptorType.html"> |
| pyarrow.flight.DescriptorType |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.FlightDescriptor.html"> |
| pyarrow.flight.FlightDescriptor |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.FlightEndpoint.html"> |
| pyarrow.flight.FlightEndpoint |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.FlightInfo.html"> |
| pyarrow.flight.FlightInfo |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.Location.html"> |
| pyarrow.flight.Location |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.Ticket.html"> |
| pyarrow.flight.Ticket |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.Result.html"> |
| pyarrow.flight.Result |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.FlightCallOptions.html"> |
| pyarrow.flight.FlightCallOptions |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.FlightClient.html"> |
| pyarrow.flight.FlightClient |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.ClientMiddlewareFactory.html"> |
| pyarrow.flight.ClientMiddlewareFactory |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.ClientMiddleware.html"> |
| pyarrow.flight.ClientMiddleware |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.FlightServerBase.html"> |
| pyarrow.flight.FlightServerBase |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.GeneratorStream.html"> |
| pyarrow.flight.GeneratorStream |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.RecordBatchStream.html"> |
| pyarrow.flight.RecordBatchStream |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.ServerMiddlewareFactory.html"> |
| pyarrow.flight.ServerMiddlewareFactory |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.ServerMiddleware.html"> |
| pyarrow.flight.ServerMiddleware |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.ClientAuthHandler.html"> |
| pyarrow.flight.ClientAuthHandler |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.ServerAuthHandler.html"> |
| pyarrow.flight.ServerAuthHandler |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.FlightMethod.html"> |
| pyarrow.flight.FlightMethod |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.flight.CallInfo.html"> |
| pyarrow.flight.CallInfo |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/formats.html"> |
| Tabular File Formats |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" type="checkbox"/> |
| <label for="toctree-checkbox-17"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.ConvertOptions.html"> |
| pyarrow.csv.ConvertOptions |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.CSVStreamingReader.html"> |
| pyarrow.csv.CSVStreamingReader |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.CSVWriter.html"> |
| pyarrow.csv.CSVWriter |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.ISO8601.html"> |
| pyarrow.csv.ISO8601 |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.ParseOptions.html"> |
| pyarrow.csv.ParseOptions |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.ReadOptions.html"> |
| pyarrow.csv.ReadOptions |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.WriteOptions.html"> |
| pyarrow.csv.WriteOptions |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.open_csv.html"> |
| pyarrow.csv.open_csv |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.read_csv.html"> |
| pyarrow.csv.read_csv |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.csv.write_csv.html"> |
| pyarrow.csv.write_csv |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.feather.read_feather.html"> |
| pyarrow.feather.read_feather |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.feather.read_table.html"> |
| pyarrow.feather.read_table |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.feather.write_feather.html"> |
| pyarrow.feather.write_feather |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.json.ReadOptions.html"> |
| pyarrow.json.ReadOptions |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.json.ParseOptions.html"> |
| pyarrow.json.ParseOptions |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.json.read_json.html"> |
| pyarrow.json.read_json |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.ParquetDataset.html"> |
| pyarrow.parquet.ParquetDataset |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.ParquetFile.html"> |
| pyarrow.parquet.ParquetFile |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.ParquetWriter.html"> |
| pyarrow.parquet.ParquetWriter |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.read_table.html"> |
| pyarrow.parquet.read_table |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.read_metadata.html"> |
| pyarrow.parquet.read_metadata |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.read_pandas.html"> |
| pyarrow.parquet.read_pandas |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.read_schema.html"> |
| pyarrow.parquet.read_schema |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.write_metadata.html"> |
| pyarrow.parquet.write_metadata |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.write_table.html"> |
| pyarrow.parquet.write_table |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.parquet.write_to_dataset.html"> |
| pyarrow.parquet.write_to_dataset |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.orc.ORCFile.html"> |
| pyarrow.orc.ORCFile |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/filesystems.html"> |
| Filesystems |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" type="checkbox"/> |
| <label for="toctree-checkbox-18"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.FileInfo.html"> |
| pyarrow.fs.FileInfo |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.FileSelector.html"> |
| pyarrow.fs.FileSelector |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.FileSystem.html"> |
| pyarrow.fs.FileSystem |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.LocalFileSystem.html"> |
| pyarrow.fs.LocalFileSystem |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.S3FileSystem.html"> |
| pyarrow.fs.S3FileSystem |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.HadoopFileSystem.html"> |
| pyarrow.fs.HadoopFileSystem |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.SubTreeFileSystem.html"> |
| pyarrow.fs.SubTreeFileSystem |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.PyFileSystem.html"> |
| pyarrow.fs.PyFileSystem |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.FileSystemHandler.html"> |
| pyarrow.fs.FileSystemHandler |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.fs.FSSpecHandler.html"> |
| pyarrow.fs.FSSpecHandler |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/dataset.html"> |
| Dataset |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-19" name="toctree-checkbox-19" type="checkbox"/> |
| <label for="toctree-checkbox-19"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.dataset.html"> |
| pyarrow.dataset.dataset |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.parquet_dataset.html"> |
| pyarrow.dataset.parquet_dataset |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.partitioning.html"> |
| pyarrow.dataset.partitioning |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.field.html"> |
| pyarrow.dataset.field |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.scalar.html"> |
| pyarrow.dataset.scalar |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.write_dataset.html"> |
| pyarrow.dataset.write_dataset |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.FileFormat.html"> |
| pyarrow.dataset.FileFormat |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.ParquetFileFormat.html"> |
| pyarrow.dataset.ParquetFileFormat |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.Partitioning.html"> |
| pyarrow.dataset.Partitioning |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.PartitioningFactory.html"> |
| pyarrow.dataset.PartitioningFactory |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.DirectoryPartitioning.html"> |
| pyarrow.dataset.DirectoryPartitioning |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.HivePartitioning.html"> |
| pyarrow.dataset.HivePartitioning |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.Dataset.html"> |
| pyarrow.dataset.Dataset |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.FileSystemDataset.html"> |
| pyarrow.dataset.FileSystemDataset |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.FileSystemFactoryOptions.html"> |
| pyarrow.dataset.FileSystemFactoryOptions |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.FileSystemDatasetFactory.html"> |
| pyarrow.dataset.FileSystemDatasetFactory |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.UnionDataset.html"> |
| pyarrow.dataset.UnionDataset |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.Scanner.html"> |
| pyarrow.dataset.Scanner |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.dataset.Expression.html"> |
| pyarrow.dataset.Expression |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/plasma.html"> |
| Plasma In-Memory Object Store |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-20" name="toctree-checkbox-20" type="checkbox"/> |
| <label for="toctree-checkbox-20"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.plasma.ObjectID.html"> |
| pyarrow.plasma.ObjectID |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.plasma.PlasmaClient.html"> |
| pyarrow.plasma.PlasmaClient |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.plasma.PlasmaBuffer.html"> |
| pyarrow.plasma.PlasmaBuffer |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/cuda.html"> |
| CUDA Integration |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-21" name="toctree-checkbox-21" type="checkbox"/> |
| <label for="toctree-checkbox-21"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.Context.html"> |
| pyarrow.cuda.Context |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.CudaBuffer.html"> |
| pyarrow.cuda.CudaBuffer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.new_host_buffer.html"> |
| pyarrow.cuda.new_host_buffer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.HostBuffer.html"> |
| pyarrow.cuda.HostBuffer |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.BufferReader.html"> |
| pyarrow.cuda.BufferReader |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.BufferWriter.html"> |
| pyarrow.cuda.BufferWriter |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.serialize_record_batch.html"> |
| pyarrow.cuda.serialize_record_batch |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.read_record_batch.html"> |
| pyarrow.cuda.read_record_batch |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.read_message.html"> |
| pyarrow.cuda.read_message |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cuda.IpcMemHandle.html"> |
| pyarrow.cuda.IpcMemHandle |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="api/misc.html"> |
| Miscellaneous |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-22" name="toctree-checkbox-22" type="checkbox"/> |
| <label for="toctree-checkbox-22"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.cpu_count.html"> |
| pyarrow.cpu_count |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.set_cpu_count.html"> |
| pyarrow.set_cpu_count |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.get_include.html"> |
| pyarrow.get_include |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.get_libraries.html"> |
| pyarrow.get_libraries |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="generated/pyarrow.get_library_dirs.html"> |
| pyarrow.get_library_dirs |
| </a> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="getting_involved.html"> |
| Getting Involved |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="benchmarks.html"> |
| Benchmarks |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://arrow.apache.org/docs/r/"> |
| R |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://github.com/apache/arrow/blob/master/ruby/README.md"> |
| Ruby |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://docs.rs/crate/arrow/"> |
| Rust |
| </a> |
| </li> |
| </ul> |
| <p class="caption"> |
| <span class="caption-text"> |
| Development |
| </span> |
| </p> |
| <ul class="nav bd-sidenav"> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../developers/contributing.html"> |
| Contributing to Apache Arrow |
| </a> |
| </li> |
| <li class="toctree-l1 has-children"> |
| <a class="reference internal" href="../developers/cpp/index.html"> |
| C++ Development |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-23" name="toctree-checkbox-23" type="checkbox"/> |
| <label for="toctree-checkbox-23"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../developers/cpp/building.html"> |
| Building Arrow C++ |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../developers/cpp/development.html"> |
| Development Guidelines |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../developers/cpp/windows.html"> |
| Developing on Windows |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../developers/cpp/conventions.html"> |
| Conventions |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../developers/cpp/fuzzing.html"> |
| Fuzzing Arrow C++ |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../developers/python.html"> |
| Python Development |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../developers/archery.html"> |
| Daily Development using Archery |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../developers/crossbow.html"> |
| Packaging and Testing with Crossbow |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../developers/docker.html"> |
| Running Docker Builds |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../developers/benchmarks.html"> |
| Benchmarks |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../developers/documentation.html"> |
| Building the Documentation |
| </a> |
| </li> |
| </ul> |
| |
| |
| </div> |
| </nav> |
| </div> |
| |
| |
| |
| |
| <div class="d-none d-xl-block col-xl-2 bd-toc"> |
| |
| |
| <div class="toc-item"> |
| |
| <div class="tocsection onthispage pt-5 pb-3"> |
| <i class="fas fa-list"></i> On this page |
| </div> |
| |
| <nav id="bd-toc-nav"> |
| <ul class="visible nav section-nav flex-column"> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#type-metadata"> |
| Type Metadata |
| </a> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#schemas"> |
| Schemas |
| </a> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#arrays"> |
| Arrays |
| </a> |
| <ul class="visible nav section-nav flex-column"> |
| <li class="toc-h3 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#none-values-and-nan-handling"> |
| None values and NAN handling |
| </a> |
| </li> |
| <li class="toc-h3 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#list-arrays"> |
| List arrays |
| </a> |
| </li> |
| <li class="toc-h3 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#struct-arrays"> |
| Struct arrays |
| </a> |
| </li> |
| <li class="toc-h3 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#union-arrays"> |
| Union arrays |
| </a> |
| </li> |
| <li class="toc-h3 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#dictionary-arrays"> |
| Dictionary Arrays |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#record-batches"> |
| Record Batches |
| </a> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#tables"> |
| Tables |
| </a> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#custom-schema-and-field-metadata"> |
| Custom Schema and Field Metadata |
| </a> |
| </li> |
| </ul> |
| |
| </nav> |
| </div> |
| |
| <div class="toc-item"> |
| |
| </div> |
| |
| |
| </div> |
| |
| |
| |
| |
| |
| |
| <main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main"> |
| |
| <div> |
| |
| <div class="section" id="data-types-and-in-memory-data-model"> |
| <span id="data"></span><h1>Data Types and In-Memory Data Model<a class="headerlink" href="#data-types-and-in-memory-data-model" title="Permalink to this headline">¶</a></h1> |
| <p>Apache Arrow defines columnar array data structures by composing type metadata |
| with memory buffers, like the ones explained in the documentation on |
| <a class="reference internal" href="memory.html#io"><span class="std std-ref">Memory and IO</span></a>. These data structures are exposed in Python through |
| a series of interrelated classes:</p> |
| <ul class="simple"> |
| <li><p><strong>Type Metadata</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.DataType</span></code>, which describe a logical |
| array type</p></li> |
| <li><p><strong>Schemas</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.Schema</span></code>, which describe a named |
| collection of types. These can be thought of as the column types in a |
| table-like object.</p></li> |
| <li><p><strong>Arrays</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.Array</span></code>, which are atomic, contiguous |
| columnar data structures composed from Arrow Buffer objects</p></li> |
| <li><p><strong>Record Batches</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.RecordBatch</span></code>, which are a |
| collection of Array objects with a particular Schema</p></li> |
| <li><p><strong>Tables</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.Table</span></code>, a logical table data structure in |
| which each column consists of one or more <code class="docutils literal notranslate"><span class="pre">pyarrow.Array</span></code> objects of the |
| same type.</p></li> |
| </ul> |
| <p>We will examine these in the sections below in a series of examples.</p> |
| <div class="section" id="type-metadata"> |
| <span id="data-types"></span><h2>Type Metadata<a class="headerlink" href="#type-metadata" title="Permalink to this headline">¶</a></h2> |
| <p>Apache Arrow defines language agnostic column-oriented data structures for |
| array data. These include:</p> |
| <ul class="simple"> |
| <li><p><strong>Fixed-length primitive types</strong>: numbers, booleans, date and times, fixed |
| size binary, decimals, and other values that fit into a given number</p></li> |
| <li><p><strong>Variable-length primitive types</strong>: binary, string</p></li> |
| <li><p><strong>Nested types</strong>: list, struct, and union</p></li> |
| <li><p><strong>Dictionary type</strong>: An encoded categorical type (more on this later)</p></li> |
| </ul> |
| <p>Each logical data type in Arrow has a corresponding factory function for |
| creating an instance of that type object in Python:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [1]: </span><span class="kn">import</span> <span class="nn">pyarrow</span> <span class="kn">as</span> <span class="nn">pa</span> |
| |
| <span class="gp">In [2]: </span><span class="n">t1</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">int32</span><span class="p">()</span> |
| |
| <span class="gp">In [3]: </span><span class="n">t2</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">string</span><span class="p">()</span> |
| |
| <span class="gp">In [4]: </span><span class="n">t3</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">binary</span><span class="p">()</span> |
| |
| <span class="gp">In [5]: </span><span class="n">t4</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">binary</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span> |
| |
| <span class="gp">In [6]: </span><span class="n">t5</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">timestamp</span><span class="p">(</span><span class="s1">'ms'</span><span class="p">)</span> |
| |
| <span class="gp">In [7]: </span><span class="n">t1</span> |
| <span class="gh">Out[7]: </span><span class="go">DataType(int32)</span> |
| |
| <span class="gp">In [8]: </span><span class="k">print</span><span class="p">(</span><span class="n">t1</span><span class="p">)</span> |
| <span class="go">int32</span> |
| |
| <span class="gp">In [9]: </span><span class="k">print</span><span class="p">(</span><span class="n">t4</span><span class="p">)</span> |
| <span class="go">fixed_size_binary[10]</span> |
| |
| <span class="gp">In [10]: </span><span class="k">print</span><span class="p">(</span><span class="n">t5</span><span class="p">)</span> |
| <span class="go">timestamp[ms]</span> |
| </pre></div> |
| </div> |
| <p>We use the name <strong>logical type</strong> because the <strong>physical</strong> storage may be the |
| same for one or more types. For example, <code class="docutils literal notranslate"><span class="pre">int64</span></code>, <code class="docutils literal notranslate"><span class="pre">float64</span></code>, and |
| <code class="docutils literal notranslate"><span class="pre">timestamp[ms]</span></code> all occupy 64 bits per value.</p> |
| <p>These objects are <cite>metadata</cite>; they are used for describing the data in arrays, |
| schemas, and record batches. In Python, they can be used in functions where the |
| input data (e.g. Python objects) may be coerced to more than one Arrow type.</p> |
| <p>The <a class="reference internal" href="generated/pyarrow.Field.html#pyarrow.Field" title="pyarrow.Field"><code class="xref py py-class docutils literal notranslate"><span class="pre">Field</span></code></a> type is a type plus a name and optional |
| user-defined metadata:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [11]: </span><span class="n">f0</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'int32_field'</span><span class="p">,</span> <span class="n">t1</span><span class="p">)</span> |
| |
| <span class="gp">In [12]: </span><span class="n">f0</span> |
| <span class="gh">Out[12]: </span><span class="go">pyarrow.Field<int32_field: int32></span> |
| |
| <span class="gp">In [13]: </span><span class="n">f0</span><span class="o">.</span><span class="n">name</span> |
| <span class="gh">Out[13]: </span><span class="go">'int32_field'</span> |
| |
| <span class="gp">In [14]: </span><span class="n">f0</span><span class="o">.</span><span class="n">type</span> |
| <span class="gh">Out[14]: </span><span class="go">DataType(int32)</span> |
| </pre></div> |
| </div> |
| <p>Arrow supports <strong>nested value types</strong> like list, struct, and union. When |
| creating these, you must pass types or fields to indicate the data types of the |
| types’ children. For example, we can define a list of int32 values with:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [15]: </span><span class="n">t6</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">list_</span><span class="p">(</span><span class="n">t1</span><span class="p">)</span> |
| |
| <span class="gp">In [16]: </span><span class="n">t6</span> |
| <span class="gh">Out[16]: </span><span class="go">ListType(list<item: int32>)</span> |
| </pre></div> |
| </div> |
| <p>A <cite>struct</cite> is a collection of named fields:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [17]: </span><span class="n">fields</span> <span class="o">=</span> <span class="p">[</span> |
| <span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'s0'</span><span class="p">,</span> <span class="n">t1</span><span class="p">),</span> |
| <span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'s1'</span><span class="p">,</span> <span class="n">t2</span><span class="p">),</span> |
| <span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'s2'</span><span class="p">,</span> <span class="n">t4</span><span class="p">),</span> |
| <span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'s3'</span><span class="p">,</span> <span class="n">t6</span><span class="p">),</span> |
| <span class="gp"> ....: </span><span class="p">]</span> |
| <span class="gp"> ....: </span> |
| |
| <span class="gp">In [18]: </span><span class="n">t7</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">struct</span><span class="p">(</span><span class="n">fields</span><span class="p">)</span> |
| |
| <span class="gp">In [19]: </span><span class="k">print</span><span class="p">(</span><span class="n">t7</span><span class="p">)</span> |
| <span class="go">struct<s0: int32, s1: string, s2: fixed_size_binary[10], s3: list<item: int32>></span> |
| </pre></div> |
| </div> |
| <p>For convenience, you can pass <code class="docutils literal notranslate"><span class="pre">(name,</span> <span class="pre">type)</span></code> tuples directly instead of |
| <a class="reference internal" href="generated/pyarrow.Field.html#pyarrow.Field" title="pyarrow.Field"><code class="xref py py-class docutils literal notranslate"><span class="pre">Field</span></code></a> instances:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [20]: </span><span class="n">t8</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">struct</span><span class="p">([(</span><span class="s1">'s0'</span><span class="p">,</span> <span class="n">t1</span><span class="p">),</span> <span class="p">(</span><span class="s1">'s1'</span><span class="p">,</span> <span class="n">t2</span><span class="p">),</span> <span class="p">(</span><span class="s1">'s2'</span><span class="p">,</span> <span class="n">t4</span><span class="p">),</span> <span class="p">(</span><span class="s1">'s3'</span><span class="p">,</span> <span class="n">t6</span><span class="p">)])</span> |
| |
| <span class="gp">In [21]: </span><span class="k">print</span><span class="p">(</span><span class="n">t8</span><span class="p">)</span> |
| <span class="go">struct<s0: int32, s1: string, s2: fixed_size_binary[10], s3: list<item: int32>></span> |
| |
| <span class="gp">In [22]: </span><span class="n">t8</span> <span class="o">==</span> <span class="n">t7</span> |
| <span class="gh">Out[22]: </span><span class="go">True</span> |
| </pre></div> |
| </div> |
| <p>See <a class="reference internal" href="api/datatypes.html#api-types"><span class="std std-ref">Data Types API</span></a> for a full listing of data type |
| functions.</p> |
| </div> |
| <div class="section" id="schemas"> |
| <span id="data-schema"></span><h2>Schemas<a class="headerlink" href="#schemas" title="Permalink to this headline">¶</a></h2> |
| <p>The <a class="reference internal" href="generated/pyarrow.Schema.html#pyarrow.Schema" title="pyarrow.Schema"><code class="xref py py-class docutils literal notranslate"><span class="pre">Schema</span></code></a> type is similar to the <code class="docutils literal notranslate"><span class="pre">struct</span></code> array type; it |
| defines the column names and types in a record batch or table data |
| structure. The <a class="reference internal" href="generated/pyarrow.schema.html#pyarrow.schema" title="pyarrow.schema"><code class="xref py py-func docutils literal notranslate"><span class="pre">pyarrow.schema()</span></code></a> factory function makes new Schema objects in |
| Python:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [23]: </span><span class="n">my_schema</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">schema</span><span class="p">([(</span><span class="s1">'field0'</span><span class="p">,</span> <span class="n">t1</span><span class="p">),</span> |
| <span class="gp"> ....: </span> <span class="p">(</span><span class="s1">'field1'</span><span class="p">,</span> <span class="n">t2</span><span class="p">),</span> |
| <span class="gp"> ....: </span> <span class="p">(</span><span class="s1">'field2'</span><span class="p">,</span> <span class="n">t4</span><span class="p">),</span> |
| <span class="gp"> ....: </span> <span class="p">(</span><span class="s1">'field3'</span><span class="p">,</span> <span class="n">t6</span><span class="p">)])</span> |
| <span class="gp"> ....: </span> |
| |
| <span class="gp">In [24]: </span><span class="n">my_schema</span> |
| <span class="gh">Out[24]: </span><span class="go"></span> |
| <span class="go">field0: int32</span> |
| <span class="go">field1: string</span> |
| <span class="go">field2: fixed_size_binary[10]</span> |
| <span class="go">field3: list<item: int32></span> |
| <span class="go"> child 0, item: int32</span> |
| </pre></div> |
| </div> |
| <p>In some applications, you may not create schemas directly, only using the ones |
| that are embedded in <a class="reference internal" href="ipc.html#ipc"><span class="std std-ref">IPC messages</span></a>.</p> |
| </div> |
| <div class="section" id="arrays"> |
| <span id="data-array"></span><h2>Arrays<a class="headerlink" href="#arrays" title="Permalink to this headline">¶</a></h2> |
| <p>For each data type, there is an accompanying array data structure for holding |
| memory buffers that define a single contiguous chunk of columnar array |
| data. When you are using PyArrow, this data may come from IPC tools, though it |
| can also be created from various types of Python sequences (lists, NumPy |
| arrays, pandas data).</p> |
| <p>A simple way to create arrays is with <code class="docutils literal notranslate"><span class="pre">pyarrow.array</span></code>, which is similar to |
| the <code class="docutils literal notranslate"><span class="pre">numpy.array</span></code> function. By default PyArrow will infer the data type |
| for you:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [25]: </span><span class="n">arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span> |
| |
| <span class="gp">In [26]: </span><span class="n">arr</span> |
| <span class="gh">Out[26]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.Int64Array object at 0x7f229cf6c580></span> |
| <span class="go">[</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2,</span> |
| <span class="go"> null,</span> |
| <span class="go"> 3</span> |
| <span class="go">]</span> |
| </pre></div> |
| </div> |
| <p>But you may also pass a specific data type to override type inference:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [27]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">uint16</span><span class="p">())</span> |
| <span class="gh">Out[27]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.UInt16Array object at 0x7f229cf1f100></span> |
| <span class="go">[</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2</span> |
| <span class="go">]</span> |
| </pre></div> |
| </div> |
| <p>The array’s <code class="docutils literal notranslate"><span class="pre">type</span></code> attribute is the corresponding piece of type metadata:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [28]: </span><span class="n">arr</span><span class="o">.</span><span class="n">type</span> |
| <span class="gh">Out[28]: </span><span class="go">DataType(int64)</span> |
| </pre></div> |
| </div> |
| <p>Each in-memory array has a known length and null count (which will be 0 if |
| there are no null values):</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [29]: </span><span class="nb">len</span><span class="p">(</span><span class="n">arr</span><span class="p">)</span> |
| <span class="gh">Out[29]: </span><span class="go">4</span> |
| |
| <span class="gp">In [30]: </span><span class="n">arr</span><span class="o">.</span><span class="n">null_count</span> |
| <span class="gh">Out[30]: </span><span class="go">1</span> |
| </pre></div> |
| </div> |
| <p>Scalar values can be selected with normal indexing. <code class="docutils literal notranslate"><span class="pre">pyarrow.array</span></code> converts |
| <code class="docutils literal notranslate"><span class="pre">None</span></code> values to Arrow nulls; we return the special <code class="docutils literal notranslate"><span class="pre">pyarrow.NA</span></code> value for |
| nulls:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [31]: </span><span class="n">arr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> |
| <span class="gh">Out[31]: </span><span class="go"><pyarrow.Int64Scalar: 1></span> |
| |
| <span class="gp">In [32]: </span><span class="n">arr</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> |
| <span class="gh">Out[32]: </span><span class="go"><pyarrow.Int64Scalar: None></span> |
| </pre></div> |
| </div> |
| <p>Arrow data is immutable, so values can be selected but not assigned.</p> |
| <p>Arrays can be sliced without copying:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [33]: </span><span class="n">arr</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">]</span> |
| <span class="gh">Out[33]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.Int64Array object at 0x7f229cf1f580></span> |
| <span class="go">[</span> |
| <span class="go"> 2,</span> |
| <span class="go"> null</span> |
| <span class="go">]</span> |
| </pre></div> |
| </div> |
| <div class="section" id="none-values-and-nan-handling"> |
| <h3>None values and NAN handling<a class="headerlink" href="#none-values-and-nan-handling" title="Permalink to this headline">¶</a></h3> |
| <p>As mentioned in the above section, the Python object <code class="docutils literal notranslate"><span class="pre">None</span></code> is always |
| converted to an Arrow null element on the conversion to <code class="docutils literal notranslate"><span class="pre">pyarrow.Array</span></code>. For |
| the float NaN value which is either represented by the Python object |
| <code class="docutils literal notranslate"><span class="pre">float('nan')</span></code> or <code class="docutils literal notranslate"><span class="pre">numpy.nan</span></code> we normally convert it to a <em>valid</em> float |
| value during the conversion. If an integer input is supplied to |
| <code class="docutils literal notranslate"><span class="pre">pyarrow.array</span></code> that contains <code class="docutils literal notranslate"><span class="pre">np.nan</span></code>, <code class="docutils literal notranslate"><span class="pre">ValueError</span></code> is raised.</p> |
| <p>To handle better compatibility with Pandas, we support interpreting NaN values as |
| null elements. This is enabled automatically on all <code class="docutils literal notranslate"><span class="pre">from_pandas</span></code> function and |
| can be enable on the other conversion functions by passing <code class="docutils literal notranslate"><span class="pre">from_pandas=True</span></code> |
| as a function parameter.</p> |
| </div> |
| <div class="section" id="list-arrays"> |
| <h3>List arrays<a class="headerlink" href="#list-arrays" title="Permalink to this headline">¶</a></h3> |
| <p><code class="docutils literal notranslate"><span class="pre">pyarrow.array</span></code> is able to infer the type of simple nested data structures |
| like lists:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [34]: </span><span class="n">nested_arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([[],</span> <span class="bp">None</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="bp">None</span><span class="p">,</span> <span class="mi">1</span><span class="p">]])</span> |
| |
| <span class="gp">In [35]: </span><span class="k">print</span><span class="p">(</span><span class="n">nested_arr</span><span class="o">.</span><span class="n">type</span><span class="p">)</span> |
| <span class="go">list<item: int64></span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="struct-arrays"> |
| <h3>Struct arrays<a class="headerlink" href="#struct-arrays" title="Permalink to this headline">¶</a></h3> |
| <p>For other kinds of nested arrays, such as struct arrays, you currently need |
| to pass the type explicitly. Struct arrays can be initialized from a |
| sequence of Python dicts or tuples:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [36]: </span><span class="n">ty</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">struct</span><span class="p">([(</span><span class="s1">'x'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">int8</span><span class="p">()),</span> |
| <span class="gp"> ....: </span> <span class="p">(</span><span class="s1">'y'</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">bool_</span><span class="p">())])</span> |
| <span class="gp"> ....: </span> |
| |
| <span class="gp">In [37]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([{</span><span class="s1">'x'</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span> <span class="s1">'y'</span><span class="p">:</span> <span class="bp">True</span><span class="p">},</span> <span class="p">{</span><span class="s1">'x'</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span> <span class="s1">'y'</span><span class="p">:</span> <span class="bp">False</span><span class="p">}],</span> <span class="nb">type</span><span class="o">=</span><span class="n">ty</span><span class="p">)</span> |
| <span class="gh">Out[37]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.StructArray object at 0x7f229cf1fb20></span> |
| <span class="go">-- is_valid: all not null</span> |
| <span class="go">-- child 0 type: int8</span> |
| <span class="go"> [</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2</span> |
| <span class="go"> ]</span> |
| <span class="go">-- child 1 type: bool</span> |
| <span class="go"> [</span> |
| <span class="go"> true,</span> |
| <span class="go"> false</span> |
| <span class="go"> ]</span> |
| |
| <span class="gp">In [38]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([(</span><span class="mi">3</span><span class="p">,</span> <span class="bp">True</span><span class="p">),</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="bp">False</span><span class="p">)],</span> <span class="nb">type</span><span class="o">=</span><span class="n">ty</span><span class="p">)</span> |
| <span class="gh">Out[38]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.StructArray object at 0x7f229cf1fc40></span> |
| <span class="go">-- is_valid: all not null</span> |
| <span class="go">-- child 0 type: int8</span> |
| <span class="go"> [</span> |
| <span class="go"> 3,</span> |
| <span class="go"> 4</span> |
| <span class="go"> ]</span> |
| <span class="go">-- child 1 type: bool</span> |
| <span class="go"> [</span> |
| <span class="go"> true,</span> |
| <span class="go"> false</span> |
| <span class="go"> ]</span> |
| </pre></div> |
| </div> |
| <p>When initializing a struct array, nulls are allowed both at the struct |
| level and at the individual field level. If initializing from a sequence |
| of Python dicts, a missing dict key is handled as a null value:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [39]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([{</span><span class="s1">'x'</span><span class="p">:</span> <span class="mi">1</span><span class="p">},</span> <span class="bp">None</span><span class="p">,</span> <span class="p">{</span><span class="s1">'y'</span><span class="p">:</span> <span class="bp">None</span><span class="p">}],</span> <span class="nb">type</span><span class="o">=</span><span class="n">ty</span><span class="p">)</span> |
| <span class="gh">Out[39]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.StructArray object at 0x7f229cf1f9a0></span> |
| <span class="go">-- is_valid:</span> |
| <span class="go"> [</span> |
| <span class="go"> true,</span> |
| <span class="go"> false,</span> |
| <span class="go"> true</span> |
| <span class="go"> ]</span> |
| <span class="go">-- child 0 type: int8</span> |
| <span class="go"> [</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 0,</span> |
| <span class="go"> null</span> |
| <span class="go"> ]</span> |
| <span class="go">-- child 1 type: bool</span> |
| <span class="go"> [</span> |
| <span class="go"> null,</span> |
| <span class="go"> false,</span> |
| <span class="go"> null</span> |
| <span class="go"> ]</span> |
| </pre></div> |
| </div> |
| <p>You can also construct a struct array from existing arrays for each of the |
| struct’s components. In this case, data storage will be shared with the |
| individual arrays, and no copy is involved:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [40]: </span><span class="n">xs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">int16</span><span class="p">())</span> |
| |
| <span class="gp">In [41]: </span><span class="n">ys</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">,</span> <span class="bp">True</span><span class="p">])</span> |
| |
| <span class="gp">In [42]: </span><span class="n">arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">StructArray</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">((</span><span class="n">xs</span><span class="p">,</span> <span class="n">ys</span><span class="p">),</span> <span class="n">names</span><span class="o">=</span><span class="p">(</span><span class="s1">'x'</span><span class="p">,</span> <span class="s1">'y'</span><span class="p">))</span> |
| |
| <span class="gp">In [43]: </span><span class="n">arr</span><span class="o">.</span><span class="n">type</span> |
| <span class="gh">Out[43]: </span><span class="go">StructType(struct<x: int16, y: bool>)</span> |
| |
| <span class="gp">In [44]: </span><span class="n">arr</span> |
| <span class="gh">Out[44]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.StructArray object at 0x7f229cf1fe80></span> |
| <span class="go">-- is_valid: all not null</span> |
| <span class="go">-- child 0 type: int16</span> |
| <span class="go"> [</span> |
| <span class="go"> 5,</span> |
| <span class="go"> 6,</span> |
| <span class="go"> 7</span> |
| <span class="go"> ]</span> |
| <span class="go">-- child 1 type: bool</span> |
| <span class="go"> [</span> |
| <span class="go"> false,</span> |
| <span class="go"> true,</span> |
| <span class="go"> true</span> |
| <span class="go"> ]</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="union-arrays"> |
| <h3>Union arrays<a class="headerlink" href="#union-arrays" title="Permalink to this headline">¶</a></h3> |
| <p>The union type represents a nested array type where each value can be one |
| (and only one) of a set of possible types. There are two possible |
| storage types for union arrays: sparse and dense.</p> |
| <p>In a sparse union array, each of the child arrays has the same length |
| as the resulting union array. They are adjuncted with a <code class="docutils literal notranslate"><span class="pre">int8</span></code> “types” |
| array that tells, for each value, from which child array it must be |
| selected:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [45]: </span><span class="n">xs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">])</span> |
| |
| <span class="gp">In [46]: </span><span class="n">ys</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">False</span><span class="p">,</span> <span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">])</span> |
| |
| <span class="gp">In [47]: </span><span class="n">types</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">int8</span><span class="p">())</span> |
| |
| <span class="gp">In [48]: </span><span class="n">union_arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">UnionArray</span><span class="o">.</span><span class="n">from_sparse</span><span class="p">(</span><span class="n">types</span><span class="p">,</span> <span class="p">[</span><span class="n">xs</span><span class="p">,</span> <span class="n">ys</span><span class="p">])</span> |
| |
| <span class="gp">In [49]: </span><span class="n">union_arr</span><span class="o">.</span><span class="n">type</span> |
| <span class="gh">Out[49]: </span><span class="go">SparseUnionType(sparse_union<0: int64=0, 1: bool=1>)</span> |
| |
| <span class="gp">In [50]: </span><span class="n">union_arr</span> |
| <span class="gh">Out[50]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.UnionArray object at 0x7f229cf1ff40></span> |
| <span class="go">-- is_valid: all not null</span> |
| <span class="go">-- type_ids: [</span> |
| <span class="go"> 0,</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 1</span> |
| <span class="go"> ]</span> |
| <span class="go">-- child 0 type: int64</span> |
| <span class="go"> [</span> |
| <span class="go"> 5,</span> |
| <span class="go"> 6,</span> |
| <span class="go"> 7</span> |
| <span class="go"> ]</span> |
| <span class="go">-- child 1 type: bool</span> |
| <span class="go"> [</span> |
| <span class="go"> false,</span> |
| <span class="go"> false,</span> |
| <span class="go"> true</span> |
| <span class="go"> ]</span> |
| </pre></div> |
| </div> |
| <p>In a dense union array, you also pass, in addition to the <code class="docutils literal notranslate"><span class="pre">int8</span></code> “types” |
| array, a <code class="docutils literal notranslate"><span class="pre">int32</span></code> “offsets” array that tells, for each value, at |
| each offset in the selected child array it can be found:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [51]: </span><span class="n">xs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">])</span> |
| |
| <span class="gp">In [52]: </span><span class="n">ys</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">])</span> |
| |
| <span class="gp">In [53]: </span><span class="n">types</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">int8</span><span class="p">())</span> |
| |
| <span class="gp">In [54]: </span><span class="n">offsets</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">int32</span><span class="p">())</span> |
| |
| <span class="gp">In [55]: </span><span class="n">union_arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">UnionArray</span><span class="o">.</span><span class="n">from_dense</span><span class="p">(</span><span class="n">types</span><span class="p">,</span> <span class="n">offsets</span><span class="p">,</span> <span class="p">[</span><span class="n">xs</span><span class="p">,</span> <span class="n">ys</span><span class="p">])</span> |
| |
| <span class="gp">In [56]: </span><span class="n">union_arr</span><span class="o">.</span><span class="n">type</span> |
| <span class="gh">Out[56]: </span><span class="go">DenseUnionType(dense_union<0: int64=0, 1: bool=1>)</span> |
| |
| <span class="gp">In [57]: </span><span class="n">union_arr</span> |
| <span class="gh">Out[57]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.UnionArray object at 0x7f229cf3a7c0></span> |
| <span class="go">-- is_valid: all not null</span> |
| <span class="go">-- type_ids: [</span> |
| <span class="go"> 0,</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 0,</span> |
| <span class="go"> 0</span> |
| <span class="go"> ]</span> |
| <span class="go">-- value_offsets: [</span> |
| <span class="go"> 0,</span> |
| <span class="go"> 0,</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2</span> |
| <span class="go"> ]</span> |
| <span class="go">-- child 0 type: int64</span> |
| <span class="go"> [</span> |
| <span class="go"> 5,</span> |
| <span class="go"> 6,</span> |
| <span class="go"> 7</span> |
| <span class="go"> ]</span> |
| <span class="go">-- child 1 type: bool</span> |
| <span class="go"> [</span> |
| <span class="go"> false,</span> |
| <span class="go"> true</span> |
| <span class="go"> ]</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="dictionary-arrays"> |
| <h3>Dictionary Arrays<a class="headerlink" href="#dictionary-arrays" title="Permalink to this headline">¶</a></h3> |
| <p>The <strong>Dictionary</strong> type in PyArrow is a special array type that is similar to a |
| factor in R or a <code class="docutils literal notranslate"><span class="pre">pandas.Categorical</span></code>. It enables one or more record batches |
| in a file or stream to transmit integer <em>indices</em> referencing a shared |
| <strong>dictionary</strong> containing the distinct values in the logical array. This is |
| particularly often used with strings to save memory and improve performance.</p> |
| <p>The way that dictionaries are handled in the Apache Arrow format and the way |
| they appear in C++ and Python is slightly different. We define a special |
| <a class="reference internal" href="generated/pyarrow.DictionaryArray.html#pyarrow.DictionaryArray" title="pyarrow.DictionaryArray"><code class="xref py py-class docutils literal notranslate"><span class="pre">DictionaryArray</span></code></a> type with a corresponding dictionary type. Let’s |
| consider an example:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [58]: </span><span class="n">indices</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span> |
| |
| <span class="gp">In [59]: </span><span class="n">dictionary</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s1">'foo'</span><span class="p">,</span> <span class="s1">'bar'</span><span class="p">,</span> <span class="s1">'baz'</span><span class="p">])</span> |
| |
| <span class="gp">In [60]: </span><span class="n">dict_array</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">DictionaryArray</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">(</span><span class="n">indices</span><span class="p">,</span> <span class="n">dictionary</span><span class="p">)</span> |
| |
| <span class="gp">In [61]: </span><span class="n">dict_array</span> |
| <span class="gh">Out[61]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.DictionaryArray object at 0x7f229cf447b0></span> |
| |
| <span class="go">-- dictionary:</span> |
| <span class="go"> [</span> |
| <span class="go"> "foo",</span> |
| <span class="go"> "bar",</span> |
| <span class="go"> "baz"</span> |
| <span class="go"> ]</span> |
| <span class="go">-- indices:</span> |
| <span class="go"> [</span> |
| <span class="go"> 0,</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 0,</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2,</span> |
| <span class="go"> 0,</span> |
| <span class="go"> null,</span> |
| <span class="go"> 2</span> |
| <span class="go"> ]</span> |
| </pre></div> |
| </div> |
| <p>Here we have:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [62]: </span><span class="k">print</span><span class="p">(</span><span class="n">dict_array</span><span class="o">.</span><span class="n">type</span><span class="p">)</span> |
| <span class="go">dictionary<values=string, indices=int64, ordered=0></span> |
| |
| <span class="gp">In [63]: </span><span class="n">dict_array</span><span class="o">.</span><span class="n">indices</span> |
| <span class="gh">Out[63]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.Int64Array object at 0x7f229cf3ae80></span> |
| <span class="go">[</span> |
| <span class="go"> 0,</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 0,</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2,</span> |
| <span class="go"> 0,</span> |
| <span class="go"> null,</span> |
| <span class="go"> 2</span> |
| <span class="go">]</span> |
| |
| <span class="gp">In [64]: </span><span class="n">dict_array</span><span class="o">.</span><span class="n">dictionary</span> |
| <span class="gh">Out[64]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.StringArray object at 0x7f229cf3ae20></span> |
| <span class="go">[</span> |
| <span class="go"> "foo",</span> |
| <span class="go"> "bar",</span> |
| <span class="go"> "baz"</span> |
| <span class="go">]</span> |
| </pre></div> |
| </div> |
| <p>When using <a class="reference internal" href="generated/pyarrow.DictionaryArray.html#pyarrow.DictionaryArray" title="pyarrow.DictionaryArray"><code class="xref py py-class docutils literal notranslate"><span class="pre">DictionaryArray</span></code></a> with pandas, the analogue is |
| <code class="docutils literal notranslate"><span class="pre">pandas.Categorical</span></code> (more on this later):</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [65]: </span><span class="n">dict_array</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="gh">Out[65]: </span><span class="go"></span> |
| <span class="go">0 foo</span> |
| <span class="go">1 bar</span> |
| <span class="go">2 foo</span> |
| <span class="go">3 bar</span> |
| <span class="go">4 baz</span> |
| <span class="go">5 foo</span> |
| <span class="go">6 NaN</span> |
| <span class="go">7 baz</span> |
| <span class="go">dtype: category</span> |
| <span class="go">Categories (3, object): ['foo', 'bar', 'baz']</span> |
| </pre></div> |
| </div> |
| </div> |
| </div> |
| <div class="section" id="record-batches"> |
| <span id="data-record-batch"></span><h2>Record Batches<a class="headerlink" href="#record-batches" title="Permalink to this headline">¶</a></h2> |
| <p>A <strong>Record Batch</strong> in Apache Arrow is a collection of equal-length array |
| instances. Let’s consider a collection of arrays:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [66]: </span><span class="n">data</span> <span class="o">=</span> <span class="p">[</span> |
| <span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]),</span> |
| <span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s1">'foo'</span><span class="p">,</span> <span class="s1">'bar'</span><span class="p">,</span> <span class="s1">'baz'</span><span class="p">,</span> <span class="bp">None</span><span class="p">]),</span> |
| <span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">True</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">])</span> |
| <span class="gp"> ....: </span><span class="p">]</span> |
| <span class="gp"> ....: </span> |
| </pre></div> |
| </div> |
| <p>A record batch can be created from this list of arrays using |
| <code class="docutils literal notranslate"><span class="pre">RecordBatch.from_arrays</span></code>:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [67]: </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="p">[</span><span class="s1">'f0'</span><span class="p">,</span> <span class="s1">'f1'</span><span class="p">,</span> <span class="s1">'f2'</span><span class="p">])</span> |
| |
| <span class="gp">In [68]: </span><span class="n">batch</span><span class="o">.</span><span class="n">num_columns</span> |
| <span class="gh">Out[68]: </span><span class="go">3</span> |
| |
| <span class="gp">In [69]: </span><span class="n">batch</span><span class="o">.</span><span class="n">num_rows</span> |
| <span class="gh">Out[69]: </span><span class="go">4</span> |
| |
| <span class="gp">In [70]: </span><span class="n">batch</span><span class="o">.</span><span class="n">schema</span> |
| <span class="gh">Out[70]: </span><span class="go"></span> |
| <span class="go">f0: int64</span> |
| <span class="go">f1: string</span> |
| <span class="go">f2: bool</span> |
| |
| <span class="gp">In [71]: </span><span class="n">batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> |
| <span class="gh">Out[71]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.StringArray object at 0x7f229cf4d700></span> |
| <span class="go">[</span> |
| <span class="go"> "foo",</span> |
| <span class="go"> "bar",</span> |
| <span class="go"> "baz",</span> |
| <span class="go"> null</span> |
| <span class="go">]</span> |
| </pre></div> |
| </div> |
| <p>A record batch can be sliced without copying memory like an array:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [72]: </span><span class="n">batch2</span> <span class="o">=</span> <span class="n">batch</span><span class="o">.</span><span class="n">slice</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> |
| |
| <span class="gp">In [73]: </span><span class="n">batch2</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> |
| <span class="gh">Out[73]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.StringArray object at 0x7f229cf4d640></span> |
| <span class="go">[</span> |
| <span class="go"> "bar",</span> |
| <span class="go"> "baz",</span> |
| <span class="go"> null</span> |
| <span class="go">]</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="tables"> |
| <span id="data-table"></span><h2>Tables<a class="headerlink" href="#tables" title="Permalink to this headline">¶</a></h2> |
| <p>The PyArrow <a class="reference internal" href="generated/pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-class docutils literal notranslate"><span class="pre">Table</span></code></a> type is not part of the Apache Arrow |
| specification, but is rather a tool to help with wrangling multiple record |
| batches and array pieces as a single logical dataset. As a relevant example, we |
| may receive multiple small record batches in a socket stream, then need to |
| concatenate them into contiguous memory for use in NumPy or pandas. The Table |
| object makes this efficient without requiring additional memory copying.</p> |
| <p>Considering the record batch we created above, we can create a Table containing |
| one or more copies of the batch using <code class="docutils literal notranslate"><span class="pre">Table.from_batches</span></code>:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [74]: </span><span class="n">batches</span> <span class="o">=</span> <span class="p">[</span><span class="n">batch</span><span class="p">]</span> <span class="o">*</span> <span class="mi">5</span> |
| |
| <span class="gp">In [75]: </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_batches</span><span class="p">(</span><span class="n">batches</span><span class="p">)</span> |
| |
| <span class="gp">In [76]: </span><span class="n">table</span> |
| <span class="gh">Out[76]: </span><span class="go"></span> |
| <span class="go">pyarrow.Table</span> |
| <span class="go">f0: int64</span> |
| <span class="go">f1: string</span> |
| <span class="go">f2: bool</span> |
| |
| <span class="gp">In [77]: </span><span class="n">table</span><span class="o">.</span><span class="n">num_rows</span> |
| <span class="gh">Out[77]: </span><span class="go">20</span> |
| </pre></div> |
| </div> |
| <p>The table’s columns are instances of <a class="reference internal" href="generated/pyarrow.ChunkedArray.html#pyarrow.ChunkedArray" title="pyarrow.ChunkedArray"><code class="xref py py-class docutils literal notranslate"><span class="pre">ChunkedArray</span></code></a>, which is a |
| container for one or more arrays of the same type.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [78]: </span><span class="n">c</span> <span class="o">=</span> <span class="n">table</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> |
| |
| <span class="gp">In [79]: </span><span class="n">c</span> |
| <span class="gh">Out[79]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.ChunkedArray object at 0x7f229cf05a40></span> |
| <span class="go">[</span> |
| <span class="go"> [</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2,</span> |
| <span class="go"> 3,</span> |
| <span class="go"> 4</span> |
| <span class="go"> ],</span> |
| <span class="go"> [</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2,</span> |
| <span class="go"> 3,</span> |
| <span class="go"> 4</span> |
| <span class="go"> ],</span> |
| <span class="go"> [</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2,</span> |
| <span class="go"> 3,</span> |
| <span class="go"> 4</span> |
| <span class="go"> ],</span> |
| <span class="go"> [</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2,</span> |
| <span class="go"> 3,</span> |
| <span class="go"> 4</span> |
| <span class="go"> ],</span> |
| <span class="go"> [</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2,</span> |
| <span class="go"> 3,</span> |
| <span class="go"> 4</span> |
| <span class="go"> ]</span> |
| <span class="go">]</span> |
| |
| <span class="gp">In [80]: </span><span class="n">c</span><span class="o">.</span><span class="n">num_chunks</span> |
| <span class="gh">Out[80]: </span><span class="go">5</span> |
| |
| <span class="gp">In [81]: </span><span class="n">c</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> |
| <span class="gh">Out[81]: </span><span class="go"></span> |
| <span class="go"><pyarrow.lib.Int64Array object at 0x7f229cf4d880></span> |
| <span class="go">[</span> |
| <span class="go"> 1,</span> |
| <span class="go"> 2,</span> |
| <span class="go"> 3,</span> |
| <span class="go"> 4</span> |
| <span class="go">]</span> |
| </pre></div> |
| </div> |
| <p>As you’ll see in the <a class="reference internal" href="pandas.html#pandas-interop"><span class="std std-ref">pandas section</span></a>, we can convert |
| these objects to contiguous NumPy arrays for use in pandas:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [82]: </span><span class="n">c</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> |
| <span class="gh">Out[82]: </span><span class="go"></span> |
| <span class="go">0 1</span> |
| <span class="go">1 2</span> |
| <span class="go">2 3</span> |
| <span class="go">3 4</span> |
| <span class="go">4 1</span> |
| <span class="go">5 2</span> |
| <span class="go">6 3</span> |
| <span class="go">7 4</span> |
| <span class="go">8 1</span> |
| <span class="go">9 2</span> |
| <span class="go">10 3</span> |
| <span class="go">11 4</span> |
| <span class="go">12 1</span> |
| <span class="go">13 2</span> |
| <span class="go">14 3</span> |
| <span class="go">15 4</span> |
| <span class="go">16 1</span> |
| <span class="go">17 2</span> |
| <span class="go">18 3</span> |
| <span class="go">19 4</span> |
| <span class="go">Name: f0, dtype: int64</span> |
| </pre></div> |
| </div> |
| <p>Multiple tables can also be concatenated together to form a single table using |
| <code class="docutils literal notranslate"><span class="pre">pyarrow.concat_tables</span></code>, if the schemas are equal:</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [83]: </span><span class="n">tables</span> <span class="o">=</span> <span class="p">[</span><span class="n">table</span><span class="p">]</span> <span class="o">*</span> <span class="mi">2</span> |
| |
| <span class="gp">In [84]: </span><span class="n">table_all</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">concat_tables</span><span class="p">(</span><span class="n">tables</span><span class="p">)</span> |
| |
| <span class="gp">In [85]: </span><span class="n">table_all</span><span class="o">.</span><span class="n">num_rows</span> |
| <span class="gh">Out[85]: </span><span class="go">40</span> |
| |
| <span class="gp">In [86]: </span><span class="n">c</span> <span class="o">=</span> <span class="n">table_all</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> |
| |
| <span class="gp">In [87]: </span><span class="n">c</span><span class="o">.</span><span class="n">num_chunks</span> |
| <span class="gh">Out[87]: </span><span class="go">10</span> |
| </pre></div> |
| </div> |
| <p>This is similar to <code class="docutils literal notranslate"><span class="pre">Table.from_batches</span></code>, but uses tables as input instead of |
| record batches. Record batches can be made into tables, but not the other way |
| around, so if your data is already in table form, then use |
| <code class="docutils literal notranslate"><span class="pre">pyarrow.concat_tables</span></code>.</p> |
| </div> |
| <div class="section" id="custom-schema-and-field-metadata"> |
| <h2>Custom Schema and Field Metadata<a class="headerlink" href="#custom-schema-and-field-metadata" title="Permalink to this headline">¶</a></h2> |
| <p>TODO</p> |
| </div> |
| </div> |
| |
| |
| </div> |
| |
| |
| <div class='prev-next-bottom'> |
| |
| <a class='left-prev' id="prev-link" href="memory.html" title="previous page">Memory and IO Interfaces</a> |
| <a class='right-next' id="next-link" href="compute.html" title="next page">Compute Functions</a> |
| |
| </div> |
| |
| </main> |
| |
| |
| </div> |
| </div> |
| |
| <script src="../_static/js/index.1c5a1a01449ed65a7b51.js"></script> |
| |
| |
| <!-- Matomo --> |
| <script> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| /* We explicitly disable cookie tracking to avoid privacy issues */ |
| _paq.push(['disableCookies']); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '20']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| <footer class="footer mt-5 mt-md-0"> |
| <div class="container"> |
| |
| <div class="footer-item"> |
| <p class="copyright"> |
| © Copyright 2016-2021 Apache Software Foundation.<br/> |
| </p> |
| </div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.5.4.<br/> |
| </p> |
| </div> |
| |
| </div> |
| </footer> |
| <script type="text/javascript" src="/docs/_static/versionwarning.js"></script> </body> |
| </html> |