blob: f68d264d8ead95f7ccb3cac96b3db88e48fa965b [file] [log] [blame]
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Reading and Writing the Apache Parquet Format &mdash; Apache Arrow v2.0.0</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/language_data.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<link rel="canonical" href="https://arrow.apache.org/docs/python/parquet.html" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Tabular Datasets" href="dataset.html" />
<link rel="prev" title="Reading JSON files" href="json.html" />
<!-- Matomo -->
<script>
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["setDoNotTrack", true]);
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '20']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../index.html" class="icon icon-home" alt="Documentation Home"> Apache Arrow
</a>
<div class="version">
2.0.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Specifications and Protocols</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../format/Versioning.html">Format Versioning and Stability</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/Columnar.html">Arrow Columnar Format</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/Flight.html">Arrow Flight RPC</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/Integration.html">Integration Testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/CDataInterface.html">The Arrow C data interface</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/CStreamInterface.html">The Arrow C stream interface</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/Other.html">Other Data Structures</a></li>
</ul>
<p class="caption"><span class="caption-text">Libraries</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../status.html">Implementation Status</a></li>
<li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/docs/c_glib/">C/GLib</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpp/index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow/blob/master/csharp/README.md">C#</a></li>
<li class="toctree-l1"><a class="reference external" href="https://godoc.org/github.com/apache/arrow/go/arrow">Go</a></li>
<li class="toctree-l1"><a class="reference internal" href="../java/index.html">Java</a></li>
<li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/docs/js/">JavaScript</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow/blob/master/matlab/README.md">MATLAB</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Python</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="install.html">Installing PyArrow</a></li>
<li class="toctree-l2"><a class="reference internal" href="memory.html">Memory and IO Interfaces</a></li>
<li class="toctree-l2"><a class="reference internal" href="data.html">Data Types and In-Memory Data Model</a></li>
<li class="toctree-l2"><a class="reference internal" href="compute.html">Compute Functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="ipc.html">Streaming, Serialization, and IPC</a></li>
<li class="toctree-l2"><a class="reference internal" href="filesystems.html">Filesystem Interface</a></li>
<li class="toctree-l2"><a class="reference internal" href="filesystems_deprecated.html">Filesystem Interface (legacy)</a></li>
<li class="toctree-l2"><a class="reference internal" href="plasma.html">The Plasma In-Memory Object Store</a></li>
<li class="toctree-l2"><a class="reference internal" href="numpy.html">NumPy Integration</a></li>
<li class="toctree-l2"><a class="reference internal" href="pandas.html">Pandas Integration</a></li>
<li class="toctree-l2"><a class="reference internal" href="timestamps.html">Timestamps</a></li>
<li class="toctree-l2"><a class="reference internal" href="csv.html">Reading CSV files</a></li>
<li class="toctree-l2"><a class="reference internal" href="feather.html">Feather File Format</a></li>
<li class="toctree-l2"><a class="reference internal" href="json.html">Reading JSON files</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Reading and Writing the Apache Parquet Format</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#obtaining-pyarrow-with-parquet-support">Obtaining pyarrow with Parquet Support</a></li>
<li class="toctree-l3"><a class="reference internal" href="#reading-and-writing-single-files">Reading and Writing Single Files</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#parquet-file-writing-options">Parquet file writing options</a></li>
<li class="toctree-l4"><a class="reference internal" href="#omitting-the-dataframe-index">Omitting the DataFrame index</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#finer-grained-reading-and-writing">Finer-grained Reading and Writing</a></li>
<li class="toctree-l3"><a class="reference internal" href="#inspecting-the-parquet-file-metadata">Inspecting the Parquet File Metadata</a></li>
<li class="toctree-l3"><a class="reference internal" href="#data-type-handling">Data Type Handling</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#reading-types-as-dictionaryarray">Reading types as DictionaryArray</a></li>
<li class="toctree-l4"><a class="reference internal" href="#storing-timestamps">Storing timestamps</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#compression-encoding-and-file-compatibility">Compression, Encoding, and File Compatibility</a></li>
<li class="toctree-l3"><a class="reference internal" href="#partitioned-datasets-multiple-files">Partitioned Datasets (Multiple Files)</a></li>
<li class="toctree-l3"><a class="reference internal" href="#writing-to-partitioned-datasets">Writing to Partitioned Datasets</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#writing-metadata-and-common-medata-files">Writing <code class="docutils literal notranslate"><span class="pre">_metadata</span></code> and <code class="docutils literal notranslate"><span class="pre">_common_medata</span></code> files</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#reading-from-partitioned-datasets">Reading from Partitioned Datasets</a></li>
<li class="toctree-l3"><a class="reference internal" href="#using-with-spark">Using with Spark</a></li>
<li class="toctree-l3"><a class="reference internal" href="#multithreaded-reads">Multithreaded Reads</a></li>
<li class="toctree-l3"><a class="reference internal" href="#reading-a-parquet-file-from-azure-blob-storage">Reading a Parquet File from Azure Blob storage</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="dataset.html">Tabular Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html">CUDA Integration</a></li>
<li class="toctree-l2"><a class="reference internal" href="extending_types.html">Extending pyarrow</a></li>
<li class="toctree-l2"><a class="reference internal" href="extending.html">Using pyarrow from C++ and Cython Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="api.html">API Reference</a></li>
<li class="toctree-l2"><a class="reference internal" href="getting_involved.html">Getting Involved</a></li>
<li class="toctree-l2"><a class="reference internal" href="benchmarks.html">Benchmarks</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/docs/r/">R</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow/blob/master/ruby/README.md">Ruby</a></li>
<li class="toctree-l1"><a class="reference external" href="https://docs.rs/crate/arrow/">Rust</a></li>
</ul>
<p class="caption"><span class="caption-text">Development</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../developers/contributing.html">Contributing to Apache Arrow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/cpp/index.html">C++ Development</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/python.html">Python Development</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/archery.html">Daily Development using Archery</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/crossbow.html">Packaging and Testing with Crossbow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/docker.html">Running Docker Builds</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/benchmarks.html">Benchmarks</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/documentation.html">Building the Documentation</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">Apache Arrow</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="index.html">Python bindings</a> &raquo;</li>
<li>Reading and Writing the Apache Parquet Format</li>
<li class="wy-breadcrumbs-aside">
<a href="../_sources/python/parquet.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="reading-and-writing-the-apache-parquet-format">
<span id="parquet"></span><h1>Reading and Writing the Apache Parquet Format<a class="headerlink" href="#reading-and-writing-the-apache-parquet-format" title="Permalink to this headline"></a></h1>
<p>The <a class="reference external" href="http://parquet.apache.org/">Apache Parquet</a> project provides a
standardized open-source columnar storage format for use in data analysis
systems. It was created originally for use in <a class="reference external" href="http://hadoop.apache.org/">Apache Hadoop</a> with systems like <a class="reference external" href="http://drill.apache.org">Apache Drill</a>, <a class="reference external" href="http://hive.apache.org">Apache Hive</a>, <a class="reference external" href="http://impala.apache.org">Apache
Impala (incubating)</a>, and <a class="reference external" href="http://spark.apache.org">Apache Spark</a> adopting it as a shared standard for high
performance data IO.</p>
<p>Apache Arrow is an ideal in-memory transport layer for data that is being read
or written with Parquet files. We have been concurrently developing the <a class="reference external" href="http://github.com/apache/parquet-cpp">C++
implementation of Apache Parquet</a>,
which includes a native, multithreaded C++ adapter to and from in-memory Arrow
data. PyArrow includes Python bindings to this code, which thus enables reading
and writing Parquet files with pandas as well.</p>
<div class="section" id="obtaining-pyarrow-with-parquet-support">
<h2>Obtaining pyarrow with Parquet Support<a class="headerlink" href="#obtaining-pyarrow-with-parquet-support" title="Permalink to this headline"></a></h2>
<p>If you installed <code class="docutils literal notranslate"><span class="pre">pyarrow</span></code> with pip or conda, it should be built with Parquet
support bundled:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [1]: </span><span class="kn">import</span> <span class="nn">pyarrow.parquet</span> <span class="kn">as</span> <span class="nn">pq</span>
</pre></div>
</div>
<p>If you are building <code class="docutils literal notranslate"><span class="pre">pyarrow</span></code> from source, you must use
<code class="docutils literal notranslate"><span class="pre">-DARROW_PARQUET=ON</span></code> when compiling the C++ libraries and enable the Parquet
extensions when building <code class="docutils literal notranslate"><span class="pre">pyarrow</span></code>. See the <a class="reference internal" href="../developers/python.html#python-development"><span class="std std-ref">Python Development</span></a> page for more details.</p>
</div>
<div class="section" id="reading-and-writing-single-files">
<h2>Reading and Writing Single Files<a class="headerlink" href="#reading-and-writing-single-files" title="Permalink to this headline"></a></h2>
<p>The functions <a class="reference internal" href="generated/pyarrow.parquet.read_table.html#pyarrow.parquet.read_table" title="pyarrow.parquet.read_table"><code class="xref py py-func docutils literal notranslate"><span class="pre">read_table()</span></code></a> and <a class="reference internal" href="generated/pyarrow.parquet.write_table.html#pyarrow.parquet.write_table" title="pyarrow.parquet.write_table"><code class="xref py py-func docutils literal notranslate"><span class="pre">write_table()</span></code></a>
read and write the <a class="reference internal" href="data.html#data-table"><span class="std std-ref">pyarrow.Table</span></a> object, respectively.</p>
<p>Let’s look at a simple table:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [2]: </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="gp">In [3]: </span><span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="gp">In [4]: </span><span class="kn">import</span> <span class="nn">pyarrow</span> <span class="kn">as</span> <span class="nn">pa</span>
<span class="gp">In [5]: </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;one&#39;</span><span class="p">:</span> <span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">],</span>
<span class="gp"> ...: </span> <span class="s1">&#39;two&#39;</span><span class="p">:</span> <span class="p">[</span><span class="s1">&#39;foo&#39;</span><span class="p">,</span> <span class="s1">&#39;bar&#39;</span><span class="p">,</span> <span class="s1">&#39;baz&#39;</span><span class="p">],</span>
<span class="gp"> ...: </span> <span class="s1">&#39;three&#39;</span><span class="p">:</span> <span class="p">[</span><span class="bp">True</span><span class="p">,</span> <span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">]},</span>
<span class="gp"> ...: </span> <span class="n">index</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="s1">&#39;abc&#39;</span><span class="p">))</span>
<span class="gp"> ...: </span>
<span class="gp">In [6]: </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">)</span>
</pre></div>
</div>
<p>We write this to Parquet format with <code class="docutils literal notranslate"><span class="pre">write_table</span></code>:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [7]: </span><span class="kn">import</span> <span class="nn">pyarrow.parquet</span> <span class="kn">as</span> <span class="nn">pq</span>
<span class="gp">In [8]: </span><span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="s1">&#39;example.parquet&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>This creates a single Parquet file. In practice, a Parquet dataset may consist
of many files in many directories. We can read a single file back with
<code class="docutils literal notranslate"><span class="pre">read_table</span></code>:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [9]: </span><span class="n">table2</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">read_table</span><span class="p">(</span><span class="s1">&#39;example.parquet&#39;</span><span class="p">)</span>
<span class="gp">In [10]: </span><span class="n">table2</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[10]: </span><span class="go"></span>
<span class="go"> one two three</span>
<span class="go">a -1.0 foo True</span>
<span class="go">b NaN bar False</span>
<span class="go">c 2.5 baz True</span>
</pre></div>
</div>
<p>You can pass a subset of columns to read, which can be much faster than reading
the whole file (due to the columnar layout):</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [11]: </span><span class="n">pq</span><span class="o">.</span><span class="n">read_table</span><span class="p">(</span><span class="s1">&#39;example.parquet&#39;</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;one&#39;</span><span class="p">,</span> <span class="s1">&#39;three&#39;</span><span class="p">])</span>
<span class="gh">Out[11]: </span><span class="go"></span>
<span class="go">pyarrow.Table</span>
<span class="go">one: double</span>
<span class="go">three: bool</span>
</pre></div>
</div>
<p>When reading a subset of columns from a file that used a Pandas dataframe as the
source, we use <code class="docutils literal notranslate"><span class="pre">read_pandas</span></code> to maintain any additional index column data:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [12]: </span><span class="n">pq</span><span class="o">.</span><span class="n">read_pandas</span><span class="p">(</span><span class="s1">&#39;example.parquet&#39;</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;two&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[12]: </span><span class="go"></span>
<span class="go"> two</span>
<span class="go">a foo</span>
<span class="go">b bar</span>
<span class="go">c baz</span>
</pre></div>
</div>
<p>We need not use a string to specify the origin of the file. It can be any of:</p>
<ul class="simple">
<li><p>A file path as a string</p></li>
<li><p>A <a class="reference internal" href="memory.html#io-native-file"><span class="std std-ref">NativeFile</span></a> from PyArrow</p></li>
<li><p>A Python file object</p></li>
</ul>
<p>In general, a Python file object will have the worst read performance, while a
string file path or an instance of <a class="reference internal" href="generated/pyarrow.NativeFile.html#pyarrow.NativeFile" title="pyarrow.NativeFile"><code class="xref py py-class docutils literal notranslate"><span class="pre">NativeFile</span></code></a> (especially memory
maps) will perform the best.</p>
<div class="section" id="parquet-file-writing-options">
<h3>Parquet file writing options<a class="headerlink" href="#parquet-file-writing-options" title="Permalink to this headline"></a></h3>
<p><a class="reference internal" href="generated/pyarrow.parquet.write_table.html#pyarrow.parquet.write_table" title="pyarrow.parquet.write_table"><code class="xref py py-func docutils literal notranslate"><span class="pre">write_table()</span></code></a> has a number of options to
control various settings when writing a Parquet file.</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">version</span></code>, the Parquet format version to use, whether <code class="docutils literal notranslate"><span class="pre">'1.0'</span></code>
for compatibility with older readers, or <code class="docutils literal notranslate"><span class="pre">'2.0'</span></code> to unlock more
recent features.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">data_page_size</span></code>, to control the approximate size of encoded data
pages within a column chunk. This currently defaults to 1MB</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">flavor</span></code>, to set compatibility options particular to a Parquet
consumer like <code class="docutils literal notranslate"><span class="pre">'spark'</span></code> for Apache Spark.</p></li>
</ul>
<p>See the <a class="reference internal" href="generated/pyarrow.parquet.write_table.html#pyarrow.parquet.write_table" title="pyarrow.parquet.write_table"><code class="xref py py-func docutils literal notranslate"><span class="pre">write_table()</span></code></a> docstring for more details.</p>
<p>There are some additional data type handling-specific options
described below.</p>
</div>
<div class="section" id="omitting-the-dataframe-index">
<h3>Omitting the DataFrame index<a class="headerlink" href="#omitting-the-dataframe-index" title="Permalink to this headline"></a></h3>
<p>When using <code class="docutils literal notranslate"><span class="pre">pa.Table.from_pandas</span></code> to convert to an Arrow table, by default
one or more special columns are added to keep track of the index (row
labels). Storing the index takes extra space, so if your index is not valuable,
you may choose to omit it by passing <code class="docutils literal notranslate"><span class="pre">preserve_index=False</span></code></p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [13]: </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;one&#39;</span><span class="p">:</span> <span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">],</span>
<span class="gp"> ....: </span> <span class="s1">&#39;two&#39;</span><span class="p">:</span> <span class="p">[</span><span class="s1">&#39;foo&#39;</span><span class="p">,</span> <span class="s1">&#39;bar&#39;</span><span class="p">,</span> <span class="s1">&#39;baz&#39;</span><span class="p">],</span>
<span class="gp"> ....: </span> <span class="s1">&#39;three&#39;</span><span class="p">:</span> <span class="p">[</span><span class="bp">True</span><span class="p">,</span> <span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">]},</span>
<span class="gp"> ....: </span> <span class="n">index</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="s1">&#39;abc&#39;</span><span class="p">))</span>
<span class="gp"> ....: </span>
<span class="gp">In [14]: </span><span class="n">df</span>
<span class="gh">Out[14]: </span><span class="go"></span>
<span class="go"> one two three</span>
<span class="go">a -1.0 foo True</span>
<span class="go">b NaN bar False</span>
<span class="go">c 2.5 baz True</span>
<span class="gp">In [15]: </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">preserve_index</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
<p>Then we have:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [16]: </span><span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="s1">&#39;example_noindex.parquet&#39;</span><span class="p">)</span>
<span class="gp">In [17]: </span><span class="n">t</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">read_table</span><span class="p">(</span><span class="s1">&#39;example_noindex.parquet&#39;</span><span class="p">)</span>
<span class="gp">In [18]: </span><span class="n">t</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[18]: </span><span class="go"></span>
<span class="go"> one two three</span>
<span class="go">0 -1.0 foo True</span>
<span class="go">1 NaN bar False</span>
<span class="go">2 2.5 baz True</span>
</pre></div>
</div>
<p>Here you see the index did not survive the round trip.</p>
</div>
</div>
<div class="section" id="finer-grained-reading-and-writing">
<h2>Finer-grained Reading and Writing<a class="headerlink" href="#finer-grained-reading-and-writing" title="Permalink to this headline"></a></h2>
<p><code class="docutils literal notranslate"><span class="pre">read_table</span></code> uses the <a class="reference internal" href="generated/pyarrow.parquet.ParquetFile.html#pyarrow.parquet.ParquetFile" title="pyarrow.parquet.ParquetFile"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParquetFile</span></code></a> class, which has other features:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [19]: </span><span class="n">parquet_file</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">ParquetFile</span><span class="p">(</span><span class="s1">&#39;example.parquet&#39;</span><span class="p">)</span>
<span class="gp">In [20]: </span><span class="n">parquet_file</span><span class="o">.</span><span class="n">metadata</span>
<span class="gh">Out[20]: </span><span class="go"></span>
<span class="go">&lt;pyarrow._parquet.FileMetaData object at 0x7fe9ade1fb48&gt;</span>
<span class="go"> created_by: parquet-cpp version 1.5.1-SNAPSHOT</span>
<span class="go"> num_columns: 4</span>
<span class="go"> num_rows: 3</span>
<span class="go"> num_row_groups: 1</span>
<span class="go"> format_version: 1.0</span>
<span class="go"> serialized_size: 2636</span>
<span class="gp">In [21]: </span><span class="n">parquet_file</span><span class="o">.</span><span class="n">schema</span>
<span class="gh">Out[21]: </span><span class="go"></span>
<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 0x7fe9add51d88&gt;</span>
<span class="go">required group field_id=0 schema {</span>
<span class="go"> optional double field_id=1 one;</span>
<span class="go"> optional binary field_id=2 two (String);</span>
<span class="go"> optional boolean field_id=3 three;</span>
<span class="go"> optional binary field_id=4 __index_level_0__ (String);</span>
<span class="go">}</span>
</pre></div>
</div>
<p>As you can learn more in the <a class="reference external" href="https://github.com/apache/parquet-format">Apache Parquet format</a>, a Parquet file consists of
multiple row groups. <code class="docutils literal notranslate"><span class="pre">read_table</span></code> will read all of the row groups and
concatenate them into a single table. You can read individual row groups with
<code class="docutils literal notranslate"><span class="pre">read_row_group</span></code>:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [22]: </span><span class="n">parquet_file</span><span class="o">.</span><span class="n">num_row_groups</span>
<span class="gh">Out[22]: </span><span class="go">1</span>
<span class="gp">In [23]: </span><span class="n">parquet_file</span><span class="o">.</span><span class="n">read_row_group</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="gh">Out[23]: </span><span class="go"></span>
<span class="go">pyarrow.Table</span>
<span class="go">one: double</span>
<span class="go">two: string</span>
<span class="go">three: bool</span>
<span class="go">__index_level_0__: string</span>
</pre></div>
</div>
<p>We can similarly write a Parquet file with multiple row groups by using
<code class="docutils literal notranslate"><span class="pre">ParquetWriter</span></code>:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [24]: </span><span class="n">writer</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">ParquetWriter</span><span class="p">(</span><span class="s1">&#39;example2.parquet&#39;</span><span class="p">,</span> <span class="n">table</span><span class="o">.</span><span class="n">schema</span><span class="p">)</span>
<span class="gp">In [25]: </span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">):</span>
<span class="gp"> ....: </span> <span class="n">writer</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">)</span>
<span class="gp"> ....: </span>
<span class="gp">In [26]: </span><span class="n">writer</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="gp">In [27]: </span><span class="n">pf2</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">ParquetFile</span><span class="p">(</span><span class="s1">&#39;example2.parquet&#39;</span><span class="p">)</span>
<span class="gp">In [28]: </span><span class="n">pf2</span><span class="o">.</span><span class="n">num_row_groups</span>
<span class="gh">Out[28]: </span><span class="go">3</span>
</pre></div>
</div>
<p>Alternatively python <code class="docutils literal notranslate"><span class="pre">with</span></code> syntax can also be use:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [29]: </span><span class="k">with</span> <span class="n">pq</span><span class="o">.</span><span class="n">ParquetWriter</span><span class="p">(</span><span class="s1">&#39;example3.parquet&#39;</span><span class="p">,</span> <span class="n">table</span><span class="o">.</span><span class="n">schema</span><span class="p">)</span> <span class="k">as</span> <span class="n">writer</span><span class="p">:</span>
<span class="gp"> ....: </span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">):</span>
<span class="gp"> ....: </span> <span class="n">writer</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">)</span>
<span class="gp"> ....: </span>
</pre></div>
</div>
</div>
<div class="section" id="inspecting-the-parquet-file-metadata">
<h2>Inspecting the Parquet File Metadata<a class="headerlink" href="#inspecting-the-parquet-file-metadata" title="Permalink to this headline"></a></h2>
<p>The <code class="docutils literal notranslate"><span class="pre">FileMetaData</span></code> of a Parquet file can be accessed through
<a class="reference internal" href="generated/pyarrow.parquet.ParquetFile.html#pyarrow.parquet.ParquetFile" title="pyarrow.parquet.ParquetFile"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParquetFile</span></code></a> as shown above:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [30]: </span><span class="n">parquet_file</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">ParquetFile</span><span class="p">(</span><span class="s1">&#39;example.parquet&#39;</span><span class="p">)</span>
<span class="gp">In [31]: </span><span class="n">metadata</span> <span class="o">=</span> <span class="n">parquet_file</span><span class="o">.</span><span class="n">metadata</span>
</pre></div>
</div>
<p>or can also be read directly using <a class="reference internal" href="generated/pyarrow.parquet.read_metadata.html#pyarrow.parquet.read_metadata" title="pyarrow.parquet.read_metadata"><code class="xref py py-func docutils literal notranslate"><span class="pre">read_metadata()</span></code></a>:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [32]: </span><span class="n">metadata</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">read_metadata</span><span class="p">(</span><span class="s1">&#39;example.parquet&#39;</span><span class="p">)</span>
<span class="gp">In [33]: </span><span class="n">metadata</span>
<span class="gh">Out[33]: </span><span class="go"></span>
<span class="go">&lt;pyarrow._parquet.FileMetaData object at 0x7fe9adea04c0&gt;</span>
<span class="go"> created_by: parquet-cpp version 1.5.1-SNAPSHOT</span>
<span class="go"> num_columns: 4</span>
<span class="go"> num_rows: 3</span>
<span class="go"> num_row_groups: 1</span>
<span class="go"> format_version: 1.0</span>
<span class="go"> serialized_size: 2636</span>
</pre></div>
</div>
<p>The returned <code class="docutils literal notranslate"><span class="pre">FileMetaData</span></code> object allows to inspect the
<a class="reference external" href="https://github.com/apache/parquet-format#metadata">Parquet file metadata</a>,
such as the row groups and column chunk metadata and statistics:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [34]: </span><span class="n">metadata</span><span class="o">.</span><span class="n">row_group</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="gh">Out[34]: </span><span class="go"></span>
<span class="go">&lt;pyarrow._parquet.RowGroupMetaData object at 0x7fe9ae077728&gt;</span>
<span class="go"> num_columns: 4</span>
<span class="go"> num_rows: 3</span>
<span class="go"> total_byte_size: 296</span>
<span class="gp">In [35]: </span><span class="n">metadata</span><span class="o">.</span><span class="n">row_group</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="gh">Out[35]: </span><span class="go"></span>
<span class="go">&lt;pyarrow._parquet.ColumnChunkMetaData object at 0x7fe9adfd8db8&gt;</span>
<span class="go"> file_offset: 108</span>
<span class="go"> file_path: </span>
<span class="go"> physical_type: DOUBLE</span>
<span class="go"> num_values: 3</span>
<span class="go"> path_in_schema: one</span>
<span class="go"> is_stats_set: True</span>
<span class="go"> statistics:</span>
<span class="go"> &lt;pyarrow._parquet.Statistics object at 0x7fe9adfd80e8&gt;</span>
<span class="go"> has_min_max: True</span>
<span class="go"> min: -1.0</span>
<span class="go"> max: 2.5</span>
<span class="go"> null_count: 1</span>
<span class="go"> distinct_count: 0</span>
<span class="go"> num_values: 2</span>
<span class="go"> physical_type: DOUBLE</span>
<span class="go"> logical_type: None</span>
<span class="go"> converted_type (legacy): NONE</span>
<span class="go"> compression: SNAPPY</span>
<span class="go"> encodings: (&#39;PLAIN_DICTIONARY&#39;, &#39;PLAIN&#39;, &#39;RLE&#39;)</span>
<span class="go"> has_dictionary_page: True</span>
<span class="go"> dictionary_page_offset: 4</span>
<span class="go"> data_page_offset: 36</span>
<span class="go"> total_compressed_size: 104</span>
<span class="go"> total_uncompressed_size: 100</span>
</pre></div>
</div>
</div>
<div class="section" id="data-type-handling">
<h2>Data Type Handling<a class="headerlink" href="#data-type-handling" title="Permalink to this headline"></a></h2>
<div class="section" id="reading-types-as-dictionaryarray">
<h3>Reading types as DictionaryArray<a class="headerlink" href="#reading-types-as-dictionaryarray" title="Permalink to this headline"></a></h3>
<p>The <code class="docutils literal notranslate"><span class="pre">read_dictionary</span></code> option in <code class="docutils literal notranslate"><span class="pre">read_table</span></code> and <code class="docutils literal notranslate"><span class="pre">ParquetDataset</span></code> will
cause columns to be read as <code class="docutils literal notranslate"><span class="pre">DictionaryArray</span></code>, which will become
<code class="docutils literal notranslate"><span class="pre">pandas.Categorical</span></code> when converted to pandas. This option is only valid for
string and binary column types, and it can yield significantly lower memory use
and improved performance for columns with many repeated string values.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pq</span><span class="o">.</span><span class="n">read_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">read_dictionary</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;binary_c0&#39;</span><span class="p">,</span> <span class="s1">&#39;stringb_c2&#39;</span><span class="p">])</span>
</pre></div>
</div>
</div>
<div class="section" id="storing-timestamps">
<h3>Storing timestamps<a class="headerlink" href="#storing-timestamps" title="Permalink to this headline"></a></h3>
<p>Some Parquet readers may only support timestamps stored in millisecond
(<code class="docutils literal notranslate"><span class="pre">'ms'</span></code>) or microsecond (<code class="docutils literal notranslate"><span class="pre">'us'</span></code>) resolution. Since pandas uses nanoseconds
to represent timestamps, this can occasionally be a nuisance. By default
(when writing version 1.0 Parquet files), the nanoseconds will be cast to
microseconds (‘us’).</p>
<p>In addition, We provide the <code class="docutils literal notranslate"><span class="pre">coerce_timestamps</span></code> option to allow you to select
the desired resolution:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">coerce_timestamps</span><span class="o">=</span><span class="s1">&#39;ms&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>If a cast to a lower resolution value may result in a loss of data, by default
an exception will be raised. This can be suppressed by passing
<code class="docutils literal notranslate"><span class="pre">allow_truncated_timestamps=True</span></code>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">coerce_timestamps</span><span class="o">=</span><span class="s1">&#39;ms&#39;</span><span class="p">,</span>
<span class="n">allow_truncated_timestamps</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
<p>Timestamps with nanoseconds can be stored without casting when using the
more recent Parquet format version 2.0:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">version</span><span class="o">=</span><span class="s1">&#39;2.0&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>However, many Parquet readers do not yet support this newer format version, and
therefore the default is to write version 1.0 files. When compatibility across
different processing frameworks is required, it is recommended to use the
default version 1.0.</p>
<p>Older Parquet implementations use <code class="docutils literal notranslate"><span class="pre">INT96</span></code> based storage of
timestamps, but this is now deprecated. This includes some older
versions of Apache Impala and Apache Spark. To write timestamps in
this format, set the <code class="docutils literal notranslate"><span class="pre">use_deprecated_int96_timestamps</span></code> option to
<code class="docutils literal notranslate"><span class="pre">True</span></code> in <code class="docutils literal notranslate"><span class="pre">write_table</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">use_deprecated_int96_timestamps</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="compression-encoding-and-file-compatibility">
<h2>Compression, Encoding, and File Compatibility<a class="headerlink" href="#compression-encoding-and-file-compatibility" title="Permalink to this headline"></a></h2>
<p>The most commonly used Parquet implementations use dictionary encoding when
writing files; if the dictionaries grow too large, then they “fall back” to
plain encoding. Whether dictionary encoding is used can be toggled using the
<code class="docutils literal notranslate"><span class="pre">use_dictionary</span></code> option:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">use_dictionary</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
<p>The data pages within a column in a row group can be compressed after the
encoding passes (dictionary, RLE encoding). In PyArrow we use Snappy
compression by default, but Brotli, Gzip, and uncompressed are also supported:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">compression</span><span class="o">=</span><span class="s1">&#39;snappy&#39;</span><span class="p">)</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">compression</span><span class="o">=</span><span class="s1">&#39;gzip&#39;</span><span class="p">)</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">compression</span><span class="o">=</span><span class="s1">&#39;brotli&#39;</span><span class="p">)</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">compression</span><span class="o">=</span><span class="s1">&#39;none&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Snappy generally results in better performance, while Gzip may yield smaller
files.</p>
<p>These settings can also be set on a per-column basis:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">where</span><span class="p">,</span> <span class="n">compression</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;foo&#39;</span><span class="p">:</span> <span class="s1">&#39;snappy&#39;</span><span class="p">,</span> <span class="s1">&#39;bar&#39;</span><span class="p">:</span> <span class="s1">&#39;gzip&#39;</span><span class="p">},</span>
<span class="n">use_dictionary</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;foo&#39;</span><span class="p">,</span> <span class="s1">&#39;bar&#39;</span><span class="p">])</span>
</pre></div>
</div>
</div>
<div class="section" id="partitioned-datasets-multiple-files">
<h2>Partitioned Datasets (Multiple Files)<a class="headerlink" href="#partitioned-datasets-multiple-files" title="Permalink to this headline"></a></h2>
<p>Multiple Parquet files constitute a Parquet <em>dataset</em>. These may present in a
number of ways:</p>
<ul class="simple">
<li><p>A list of Parquet absolute file paths</p></li>
<li><p>A directory name containing nested directories defining a partitioned dataset</p></li>
</ul>
<p>A dataset partitioned by year and month may look like on disk:</p>
<div class="highlight-text notranslate"><div class="highlight"><pre><span></span>dataset_name/
year=2007/
month=01/
0.parq
1.parq
...
month=02/
0.parq
1.parq
...
month=03/
...
year=2008/
month=01/
...
...
</pre></div>
</div>
</div>
<div class="section" id="writing-to-partitioned-datasets">
<h2>Writing to Partitioned Datasets<a class="headerlink" href="#writing-to-partitioned-datasets" title="Permalink to this headline"></a></h2>
<p>You can write a partitioned dataset for any <code class="docutils literal notranslate"><span class="pre">pyarrow</span></code> file system that is a
file-store (e.g. local, HDFS, S3). The default behaviour when no filesystem is
added is to use the local filesystem.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Local dataset write</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_to_dataset</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">root_path</span><span class="o">=</span><span class="s1">&#39;dataset_name&#39;</span><span class="p">,</span>
<span class="n">partition_cols</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;one&#39;</span><span class="p">,</span> <span class="s1">&#39;two&#39;</span><span class="p">])</span>
</pre></div>
</div>
<p>The root path in this case specifies the parent directory to which data will be
saved. The partition columns are the column names by which to partition the
dataset. Columns are partitioned in the order they are given. The partition
splits are determined by the unique values in the partition columns.</p>
<p>To use another filesystem you only need to add the filesystem parameter, the
individual table writes are wrapped using <code class="docutils literal notranslate"><span class="pre">with</span></code> statements so the
<code class="docutils literal notranslate"><span class="pre">pq.write_to_dataset</span></code> function does not need to be.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Remote file-system example</span>
<span class="n">fs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">hdfs</span><span class="o">.</span><span class="n">connect</span><span class="p">(</span><span class="n">host</span><span class="p">,</span> <span class="n">port</span><span class="p">,</span> <span class="n">user</span><span class="o">=</span><span class="n">user</span><span class="p">,</span> <span class="n">kerb_ticket</span><span class="o">=</span><span class="n">ticket_cache_path</span><span class="p">)</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_to_dataset</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">root_path</span><span class="o">=</span><span class="s1">&#39;dataset_name&#39;</span><span class="p">,</span>
<span class="n">partition_cols</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;one&#39;</span><span class="p">,</span> <span class="s1">&#39;two&#39;</span><span class="p">],</span> <span class="n">filesystem</span><span class="o">=</span><span class="n">fs</span><span class="p">)</span>
</pre></div>
</div>
<p>Compatibility Note: if using <code class="docutils literal notranslate"><span class="pre">pq.write_to_dataset</span></code> to create a table that
will then be used by HIVE then partition column values must be compatible with
the allowed character set of the HIVE version you are running.</p>
<div class="section" id="writing-metadata-and-common-medata-files">
<h3>Writing <code class="docutils literal notranslate"><span class="pre">_metadata</span></code> and <code class="docutils literal notranslate"><span class="pre">_common_medata</span></code> files<a class="headerlink" href="#writing-metadata-and-common-medata-files" title="Permalink to this headline"></a></h3>
<p>Some processing frameworks such as Spark or Dask (optionally) use <code class="docutils literal notranslate"><span class="pre">_metadata</span></code>
and <code class="docutils literal notranslate"><span class="pre">_common_metadata</span></code> files with partitioned datasets.</p>
<p>Those files include information about the schema of the full dataset (for
<code class="docutils literal notranslate"><span class="pre">_common_metadata</span></code>) and potentially all row group metadata of all files in the
partitioned dataset as well (for <code class="docutils literal notranslate"><span class="pre">_metadata</span></code>). The actual files are
metadata-only Parquet files. Note this is not a Parquet standard, but a
convention set in practice by those frameworks.</p>
<p>Using those files can give a more efficient creation of a parquet Dataset,
since it can use the stored schema and and file paths of all row groups,
instead of inferring the schema and crawling the directories for all Parquet
files (this is especially the case for filesystems where accessing files
is expensive).</p>
<p>The <a class="reference internal" href="generated/pyarrow.parquet.write_to_dataset.html#pyarrow.parquet.write_to_dataset" title="pyarrow.parquet.write_to_dataset"><code class="xref py py-func docutils literal notranslate"><span class="pre">write_to_dataset()</span></code></a> function does not automatically
write such metadata files, but you can use it to gather the metadata and
combine and write them manually:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Write a dataset and collect metadata information of all written files</span>
<span class="n">metadata_collector</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_to_dataset</span><span class="p">(</span><span class="n">table</span><span class="p">,</span> <span class="n">root_path</span><span class="p">,</span> <span class="n">metadata_collector</span><span class="o">=</span><span class="n">metadata_collector</span><span class="p">)</span>
<span class="c1"># Write the ``_common_metadata`` parquet file without row groups statistics</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_metadata</span><span class="p">(</span><span class="n">table</span><span class="o">.</span><span class="n">schema</span><span class="p">,</span> <span class="n">root_path</span> <span class="o">/</span> <span class="s1">&#39;_common_metadata&#39;</span><span class="p">)</span>
<span class="c1"># Write the ``_metadata`` parquet file with row groups statistics of all files</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_metadata</span><span class="p">(</span>
<span class="n">table</span><span class="o">.</span><span class="n">schema</span><span class="p">,</span> <span class="n">root_path</span> <span class="o">/</span> <span class="s1">&#39;_metadata&#39;</span><span class="p">,</span>
<span class="n">metadata_collector</span><span class="o">=</span><span class="n">metadata_collector</span>
<span class="p">)</span>
</pre></div>
</div>
<p>When not using the <a class="reference internal" href="generated/pyarrow.parquet.write_to_dataset.html#pyarrow.parquet.write_to_dataset" title="pyarrow.parquet.write_to_dataset"><code class="xref py py-func docutils literal notranslate"><span class="pre">write_to_dataset()</span></code></a> function, but
writing the individual files of the partitioned dataset using
<a class="reference internal" href="generated/pyarrow.parquet.write_table.html#pyarrow.parquet.write_table" title="pyarrow.parquet.write_table"><code class="xref py py-func docutils literal notranslate"><span class="pre">write_table()</span></code></a> or <a class="reference internal" href="generated/pyarrow.parquet.ParquetWriter.html#pyarrow.parquet.ParquetWriter" title="pyarrow.parquet.ParquetWriter"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParquetWriter</span></code></a>,
the <code class="docutils literal notranslate"><span class="pre">metadata_collector</span></code> keyword can also be used to collect the FileMetaData
of the written files. In this case, you need to ensure to set the file path
contained in the row group metadata yourself before combining the metadata, and
the schemas of all different files and collected FileMetaData objects should be
the same:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">metadata_collector</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_table</span><span class="p">(</span>
<span class="n">table1</span><span class="p">,</span> <span class="n">root_path</span> <span class="o">/</span> <span class="s2">&quot;year=2017/data1.parquet&quot;</span><span class="p">,</span>
<span class="n">metadata_collector</span><span class="o">=</span><span class="n">metadata_collector</span>
<span class="p">)</span>
<span class="c1"># set the file path relative to the root of the partitioned dataset</span>
<span class="n">metadata_collector</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">set_file_path</span><span class="p">(</span><span class="s2">&quot;year=2017/data1.parquet&quot;</span><span class="p">)</span>
<span class="c1"># combine and write the metadata</span>
<span class="n">metadata</span> <span class="o">=</span> <span class="n">metadata_collector</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">for</span> <span class="n">_meta</span> <span class="ow">in</span> <span class="n">metadata_collector</span><span class="p">[</span><span class="mi">1</span><span class="p">:]:</span>
<span class="n">metadata</span><span class="o">.</span><span class="n">append_row_groups</span><span class="p">(</span><span class="n">_meta</span><span class="p">)</span>
<span class="n">metadata</span><span class="o">.</span><span class="n">write_metadata_file</span><span class="p">(</span><span class="n">root_path</span> <span class="o">/</span> <span class="s2">&quot;_metadata&quot;</span><span class="p">)</span>
<span class="c1"># or use pq.write_metadata to combine and write in a single step</span>
<span class="n">pq</span><span class="o">.</span><span class="n">write_metadata</span><span class="p">(</span>
<span class="n">table1</span><span class="o">.</span><span class="n">schema</span><span class="p">,</span> <span class="n">root_path</span> <span class="o">/</span> <span class="s2">&quot;_metadata&quot;</span><span class="p">,</span>
<span class="n">metadata_collector</span><span class="o">=</span><span class="n">metadata_collector</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="reading-from-partitioned-datasets">
<h2>Reading from Partitioned Datasets<a class="headerlink" href="#reading-from-partitioned-datasets" title="Permalink to this headline"></a></h2>
<p>The <a class="reference internal" href="generated/pyarrow.parquet.ParquetDataset.html#pyarrow.parquet.ParquetDataset" title="pyarrow.parquet.ParquetDataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">ParquetDataset</span></code></a> class accepts either a directory name or a list
or file paths, and can discover and infer some common partition structures,
such as those produced by Hive:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dataset</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">ParquetDataset</span><span class="p">(</span><span class="s1">&#39;dataset_name/&#39;</span><span class="p">)</span>
<span class="n">table</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">read</span><span class="p">()</span>
</pre></div>
</div>
<p>You can also use the convenience function <code class="docutils literal notranslate"><span class="pre">read_table</span></code> exposed by
<code class="docutils literal notranslate"><span class="pre">pyarrow.parquet</span></code> that avoids the need for an additional Dataset object
creation step.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">table</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">read_table</span><span class="p">(</span><span class="s1">&#39;dataset_name&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Note: the partition columns in the original table will have their types
converted to Arrow dictionary types (pandas categorical) on load. Ordering of
partition columns is not preserved through the save/load process. If reading
from a remote filesystem into a pandas dataframe you may need to run
<code class="docutils literal notranslate"><span class="pre">sort_index</span></code> to maintain row ordering (as long as the <code class="docutils literal notranslate"><span class="pre">preserve_index</span></code>
option was enabled on write).</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The ParquetDataset is being reimplemented based on the new generic Dataset
API (see the <a class="reference internal" href="dataset.html#dataset"><span class="std std-ref">Tabular Datasets</span></a> docs for an overview). This is not yet the
default, but can already be enabled by passing the <code class="docutils literal notranslate"><span class="pre">use_legacy_dataset=False</span></code>
keyword to <code class="xref py py-class docutils literal notranslate"><span class="pre">ParquetDataset</span></code> or <code class="xref py py-func docutils literal notranslate"><span class="pre">read_table()</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">pq</span><span class="o">.</span><span class="n">ParquetDataset</span><span class="p">(</span><span class="s1">&#39;dataset_name/&#39;</span><span class="p">,</span> <span class="n">use_legacy_dataset</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
</pre></div>
</div>
<p>Enabling this gives the following new features:</p>
<ul class="simple">
<li><p>Filtering on all columns (using row group statistics) instead of only on
the partition keys.</p></li>
<li><p>More fine-grained partitioning: support for a directory partitioning scheme
in addition to the Hive-like partitioning (e.g. “/2019/11/15/” instead of
“/year=2019/month=11/day=15/”), and the ability to specify a schema for
the partition keys.</p></li>
<li><p>General performance improvement and bug fixes.</p></li>
</ul>
<p>It also has the following changes in behaviour:</p>
<ul class="simple">
<li><p>The partition keys need to be explicitly included in the <code class="docutils literal notranslate"><span class="pre">columns</span></code>
keyword when you want to include them in the result while reading a
subset of the columns</p></li>
</ul>
<p>This new implementation is already enabled in <code class="docutils literal notranslate"><span class="pre">read_table</span></code>, and in the
future, this will be turned on by default for <code class="docutils literal notranslate"><span class="pre">ParquetDataset</span></code>. The new
implementation does not yet cover all existing ParquetDataset features (e.g.
specifying the <code class="docutils literal notranslate"><span class="pre">metadata</span></code>, or the <code class="docutils literal notranslate"><span class="pre">pieces</span></code> property API). Feedback is
very welcome.</p>
</div>
</div>
<div class="section" id="using-with-spark">
<h2>Using with Spark<a class="headerlink" href="#using-with-spark" title="Permalink to this headline"></a></h2>
<p>Spark places some constraints on the types of Parquet files it will read. The
option <code class="docutils literal notranslate"><span class="pre">flavor='spark'</span></code> will set these options automatically and also
sanitize field characters unsupported by Spark SQL.</p>
</div>
<div class="section" id="multithreaded-reads">
<h2>Multithreaded Reads<a class="headerlink" href="#multithreaded-reads" title="Permalink to this headline"></a></h2>
<p>Each of the reading functions by default use multi-threading for reading
columns in parallel. Depending on the speed of IO
and how expensive it is to decode the columns in a particular file
(particularly with GZIP compression), this can yield significantly higher data
throughput.</p>
<p>This can be disabled by specifying <code class="docutils literal notranslate"><span class="pre">use_threads=False</span></code>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The number of threads to use concurrently is automatically inferred by Arrow
and can be inspected using the <a class="reference internal" href="generated/pyarrow.cpu_count.html#pyarrow.cpu_count" title="pyarrow.cpu_count"><code class="xref py py-func docutils literal notranslate"><span class="pre">cpu_count()</span></code></a> function.</p>
</div>
</div>
<div class="section" id="reading-a-parquet-file-from-azure-blob-storage">
<h2>Reading a Parquet File from Azure Blob storage<a class="headerlink" href="#reading-a-parquet-file-from-azure-blob-storage" title="Permalink to this headline"></a></h2>
<p>The code below shows how to use Azure’s storage sdk along with pyarrow to read
a parquet file into a Pandas dataframe.
This is suitable for executing inside a Jupyter notebook running on a Python 3
kernel.</p>
<p>Dependencies:</p>
<ul class="simple">
<li><p>python 3.6.2</p></li>
<li><p>azure-storage 0.36.0</p></li>
<li><p>pyarrow 0.8.0</p></li>
</ul>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">pyarrow.parquet</span> <span class="kn">as</span> <span class="nn">pq</span>
<span class="kn">from</span> <span class="nn">io</span> <span class="kn">import</span> <span class="n">BytesIO</span>
<span class="kn">from</span> <span class="nn">azure.storage.blob</span> <span class="kn">import</span> <span class="n">BlockBlobService</span>
<span class="n">account_name</span> <span class="o">=</span> <span class="s1">&#39;...&#39;</span>
<span class="n">account_key</span> <span class="o">=</span> <span class="s1">&#39;...&#39;</span>
<span class="n">container_name</span> <span class="o">=</span> <span class="s1">&#39;...&#39;</span>
<span class="n">parquet_file</span> <span class="o">=</span> <span class="s1">&#39;mysample.parquet&#39;</span>
<span class="n">byte_stream</span> <span class="o">=</span> <span class="n">io</span><span class="o">.</span><span class="n">BytesIO</span><span class="p">()</span>
<span class="n">block_blob_service</span> <span class="o">=</span> <span class="n">BlockBlobService</span><span class="p">(</span><span class="n">account_name</span><span class="o">=</span><span class="n">account_name</span><span class="p">,</span> <span class="n">account_key</span><span class="o">=</span><span class="n">account_key</span><span class="p">)</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">block_blob_service</span><span class="o">.</span><span class="n">get_blob_to_stream</span><span class="p">(</span><span class="n">container_name</span><span class="o">=</span><span class="n">container_name</span><span class="p">,</span> <span class="n">blob_name</span><span class="o">=</span><span class="n">parquet_file</span><span class="p">,</span> <span class="n">stream</span><span class="o">=</span><span class="n">byte_stream</span><span class="p">)</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pq</span><span class="o">.</span><span class="n">read_table</span><span class="p">(</span><span class="n">source</span><span class="o">=</span><span class="n">byte_stream</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="c1"># Do work on df ...</span>
<span class="k">finally</span><span class="p">:</span>
<span class="c1"># Add finally block to ensure closure of the stream</span>
<span class="n">byte_stream</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
<p>Notes:</p>
<ul class="simple">
<li><p>The <code class="docutils literal notranslate"><span class="pre">account_key</span></code> can be found under <code class="docutils literal notranslate"><span class="pre">Settings</span> <span class="pre">-&gt;</span> <span class="pre">Access</span> <span class="pre">keys</span></code> in the
Microsoft Azure portal for a given container</p></li>
<li><p>The code above works for a container with private access, Lease State =
Available, Lease Status = Unlocked</p></li>
<li><p>The parquet file was Blob Type = Block blob</p></li>
</ul>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="dataset.html" class="btn btn-neutral float-right" title="Tabular Datasets" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="json.html" class="btn btn-neutral float-left" title="Reading JSON files" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016-2019 Apache Software Foundation
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script type="text/javascript" src="/docs/_static/versionwarning.js"></script></body>
</html>