blob: 64417bfe3b0258ebb5ed33a57c579338f2386d32 [file] [log] [blame]
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Data Types and In-Memory Data Model &mdash; Apache Arrow v2.0.0</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/language_data.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<link rel="canonical" href="https://arrow.apache.org/docs/python/data.html" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Compute Functions" href="compute.html" />
<link rel="prev" title="Memory and IO Interfaces" href="memory.html" />
<!-- Matomo -->
<script>
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["setDoNotTrack", true]);
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '20']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../index.html" class="icon icon-home" alt="Documentation Home"> Apache Arrow
</a>
<div class="version">
2.0.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Specifications and Protocols</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../format/Versioning.html">Format Versioning and Stability</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/Columnar.html">Arrow Columnar Format</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/Flight.html">Arrow Flight RPC</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/Integration.html">Integration Testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/CDataInterface.html">The Arrow C data interface</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/CStreamInterface.html">The Arrow C stream interface</a></li>
<li class="toctree-l1"><a class="reference internal" href="../format/Other.html">Other Data Structures</a></li>
</ul>
<p class="caption"><span class="caption-text">Libraries</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../status.html">Implementation Status</a></li>
<li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/docs/c_glib/">C/GLib</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpp/index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow/blob/master/csharp/README.md">C#</a></li>
<li class="toctree-l1"><a class="reference external" href="https://godoc.org/github.com/apache/arrow/go/arrow">Go</a></li>
<li class="toctree-l1"><a class="reference internal" href="../java/index.html">Java</a></li>
<li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/docs/js/">JavaScript</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow/blob/master/matlab/README.md">MATLAB</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Python</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="install.html">Installing PyArrow</a></li>
<li class="toctree-l2"><a class="reference internal" href="memory.html">Memory and IO Interfaces</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Data Types and In-Memory Data Model</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#type-metadata">Type Metadata</a></li>
<li class="toctree-l3"><a class="reference internal" href="#schemas">Schemas</a></li>
<li class="toctree-l3"><a class="reference internal" href="#arrays">Arrays</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#none-values-and-nan-handling">None values and NAN handling</a></li>
<li class="toctree-l4"><a class="reference internal" href="#list-arrays">List arrays</a></li>
<li class="toctree-l4"><a class="reference internal" href="#struct-arrays">Struct arrays</a></li>
<li class="toctree-l4"><a class="reference internal" href="#union-arrays">Union arrays</a></li>
<li class="toctree-l4"><a class="reference internal" href="#dictionary-arrays">Dictionary Arrays</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#record-batches">Record Batches</a></li>
<li class="toctree-l3"><a class="reference internal" href="#tables">Tables</a></li>
<li class="toctree-l3"><a class="reference internal" href="#custom-schema-and-field-metadata">Custom Schema and Field Metadata</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="compute.html">Compute Functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="ipc.html">Streaming, Serialization, and IPC</a></li>
<li class="toctree-l2"><a class="reference internal" href="filesystems.html">Filesystem Interface</a></li>
<li class="toctree-l2"><a class="reference internal" href="filesystems_deprecated.html">Filesystem Interface (legacy)</a></li>
<li class="toctree-l2"><a class="reference internal" href="plasma.html">The Plasma In-Memory Object Store</a></li>
<li class="toctree-l2"><a class="reference internal" href="numpy.html">NumPy Integration</a></li>
<li class="toctree-l2"><a class="reference internal" href="pandas.html">Pandas Integration</a></li>
<li class="toctree-l2"><a class="reference internal" href="timestamps.html">Timestamps</a></li>
<li class="toctree-l2"><a class="reference internal" href="csv.html">Reading CSV files</a></li>
<li class="toctree-l2"><a class="reference internal" href="feather.html">Feather File Format</a></li>
<li class="toctree-l2"><a class="reference internal" href="json.html">Reading JSON files</a></li>
<li class="toctree-l2"><a class="reference internal" href="parquet.html">Reading and Writing the Apache Parquet Format</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataset.html">Tabular Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html">CUDA Integration</a></li>
<li class="toctree-l2"><a class="reference internal" href="extending_types.html">Extending pyarrow</a></li>
<li class="toctree-l2"><a class="reference internal" href="extending.html">Using pyarrow from C++ and Cython Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="api.html">API Reference</a></li>
<li class="toctree-l2"><a class="reference internal" href="getting_involved.html">Getting Involved</a></li>
<li class="toctree-l2"><a class="reference internal" href="benchmarks.html">Benchmarks</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference external" href="https://arrow.apache.org/docs/r/">R</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/apache/arrow/blob/master/ruby/README.md">Ruby</a></li>
<li class="toctree-l1"><a class="reference external" href="https://docs.rs/crate/arrow/">Rust</a></li>
</ul>
<p class="caption"><span class="caption-text">Development</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../developers/contributing.html">Contributing to Apache Arrow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/cpp/index.html">C++ Development</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/python.html">Python Development</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/archery.html">Daily Development using Archery</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/crossbow.html">Packaging and Testing with Crossbow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/docker.html">Running Docker Builds</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/benchmarks.html">Benchmarks</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developers/documentation.html">Building the Documentation</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">Apache Arrow</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="index.html">Python bindings</a> &raquo;</li>
<li>Data Types and In-Memory Data Model</li>
<li class="wy-breadcrumbs-aside">
<a href="../_sources/python/data.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="data-types-and-in-memory-data-model">
<span id="data"></span><h1>Data Types and In-Memory Data Model<a class="headerlink" href="#data-types-and-in-memory-data-model" title="Permalink to this headline"></a></h1>
<p>Apache Arrow defines columnar array data structures by composing type metadata
with memory buffers, like the ones explained in the documentation on
<a class="reference internal" href="memory.html#io"><span class="std std-ref">Memory and IO</span></a>. These data structures are exposed in Python through
a series of interrelated classes:</p>
<ul class="simple">
<li><p><strong>Type Metadata</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.DataType</span></code>, which describe a logical
array type</p></li>
<li><p><strong>Schemas</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.Schema</span></code>, which describe a named
collection of types. These can be thought of as the column types in a
table-like object.</p></li>
<li><p><strong>Arrays</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.Array</span></code>, which are atomic, contiguous
columnar data structures composed from Arrow Buffer objects</p></li>
<li><p><strong>Record Batches</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.RecordBatch</span></code>, which are a
collection of Array objects with a particular Schema</p></li>
<li><p><strong>Tables</strong>: Instances of <code class="docutils literal notranslate"><span class="pre">pyarrow.Table</span></code>, a logical table data structure in
which each column consists of one or more <code class="docutils literal notranslate"><span class="pre">pyarrow.Array</span></code> objects of the
same type.</p></li>
</ul>
<p>We will examine these in the sections below in a series of examples.</p>
<div class="section" id="type-metadata">
<span id="data-types"></span><h2>Type Metadata<a class="headerlink" href="#type-metadata" title="Permalink to this headline"></a></h2>
<p>Apache Arrow defines language agnostic column-oriented data structures for
array data. These include:</p>
<ul class="simple">
<li><p><strong>Fixed-length primitive types</strong>: numbers, booleans, date and times, fixed
size binary, decimals, and other values that fit into a given number</p></li>
<li><p><strong>Variable-length primitive types</strong>: binary, string</p></li>
<li><p><strong>Nested types</strong>: list, struct, and union</p></li>
<li><p><strong>Dictionary type</strong>: An encoded categorical type (more on this later)</p></li>
</ul>
<p>Each logical data type in Arrow has a corresponding factory function for
creating an instance of that type object in Python:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [1]: </span><span class="kn">import</span> <span class="nn">pyarrow</span> <span class="kn">as</span> <span class="nn">pa</span>
<span class="gp">In [2]: </span><span class="n">t1</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">int32</span><span class="p">()</span>
<span class="gp">In [3]: </span><span class="n">t2</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">string</span><span class="p">()</span>
<span class="gp">In [4]: </span><span class="n">t3</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">binary</span><span class="p">()</span>
<span class="gp">In [5]: </span><span class="n">t4</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">binary</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span>
<span class="gp">In [6]: </span><span class="n">t5</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">timestamp</span><span class="p">(</span><span class="s1">&#39;ms&#39;</span><span class="p">)</span>
<span class="gp">In [7]: </span><span class="n">t1</span>
<span class="gh">Out[7]: </span><span class="go">DataType(int32)</span>
<span class="gp">In [8]: </span><span class="k">print</span><span class="p">(</span><span class="n">t1</span><span class="p">)</span>
<span class="go">int32</span>
<span class="gp">In [9]: </span><span class="k">print</span><span class="p">(</span><span class="n">t4</span><span class="p">)</span>
<span class="go">fixed_size_binary[10]</span>
<span class="gp">In [10]: </span><span class="k">print</span><span class="p">(</span><span class="n">t5</span><span class="p">)</span>
<span class="go">timestamp[ms]</span>
</pre></div>
</div>
<p>We use the name <strong>logical type</strong> because the <strong>physical</strong> storage may be the
same for one or more types. For example, <code class="docutils literal notranslate"><span class="pre">int64</span></code>, <code class="docutils literal notranslate"><span class="pre">float64</span></code>, and
<code class="docutils literal notranslate"><span class="pre">timestamp[ms]</span></code> all occupy 64 bits per value.</p>
<p>These objects are <cite>metadata</cite>; they are used for describing the data in arrays,
schemas, and record batches. In Python, they can be used in functions where the
input data (e.g. Python objects) may be coerced to more than one Arrow type.</p>
<p>The <a class="reference internal" href="generated/pyarrow.Field.html#pyarrow.Field" title="pyarrow.Field"><code class="xref py py-class docutils literal notranslate"><span class="pre">Field</span></code></a> type is a type plus a name and optional
user-defined metadata:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [11]: </span><span class="n">f0</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">&#39;int32_field&#39;</span><span class="p">,</span> <span class="n">t1</span><span class="p">)</span>
<span class="gp">In [12]: </span><span class="n">f0</span>
<span class="gh">Out[12]: </span><span class="go">pyarrow.Field&lt;int32_field: int32&gt;</span>
<span class="gp">In [13]: </span><span class="n">f0</span><span class="o">.</span><span class="n">name</span>
<span class="gh">Out[13]: </span><span class="go">&#39;int32_field&#39;</span>
<span class="gp">In [14]: </span><span class="n">f0</span><span class="o">.</span><span class="n">type</span>
<span class="gh">Out[14]: </span><span class="go">DataType(int32)</span>
</pre></div>
</div>
<p>Arrow supports <strong>nested value types</strong> like list, struct, and union. When
creating these, you must pass types or fields to indicate the data types of the
types’ children. For example, we can define a list of int32 values with:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [15]: </span><span class="n">t6</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">list_</span><span class="p">(</span><span class="n">t1</span><span class="p">)</span>
<span class="gp">In [16]: </span><span class="n">t6</span>
<span class="gh">Out[16]: </span><span class="go">ListType(list&lt;item: int32&gt;)</span>
</pre></div>
</div>
<p>A <cite>struct</cite> is a collection of named fields:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [17]: </span><span class="n">fields</span> <span class="o">=</span> <span class="p">[</span>
<span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">&#39;s0&#39;</span><span class="p">,</span> <span class="n">t1</span><span class="p">),</span>
<span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">&#39;s1&#39;</span><span class="p">,</span> <span class="n">t2</span><span class="p">),</span>
<span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">&#39;s2&#39;</span><span class="p">,</span> <span class="n">t4</span><span class="p">),</span>
<span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">&#39;s3&#39;</span><span class="p">,</span> <span class="n">t6</span><span class="p">),</span>
<span class="gp"> ....: </span><span class="p">]</span>
<span class="gp"> ....: </span>
<span class="gp">In [18]: </span><span class="n">t7</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">struct</span><span class="p">(</span><span class="n">fields</span><span class="p">)</span>
<span class="gp">In [19]: </span><span class="k">print</span><span class="p">(</span><span class="n">t7</span><span class="p">)</span>
<span class="go">struct&lt;s0: int32, s1: string, s2: fixed_size_binary[10], s3: list&lt;item: int32&gt;&gt;</span>
</pre></div>
</div>
<p>For convenience, you can pass <code class="docutils literal notranslate"><span class="pre">(name,</span> <span class="pre">type)</span></code> tuples directly instead of
<a class="reference internal" href="generated/pyarrow.Field.html#pyarrow.Field" title="pyarrow.Field"><code class="xref py py-class docutils literal notranslate"><span class="pre">Field</span></code></a> instances:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [20]: </span><span class="n">t8</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">struct</span><span class="p">([(</span><span class="s1">&#39;s0&#39;</span><span class="p">,</span> <span class="n">t1</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;s1&#39;</span><span class="p">,</span> <span class="n">t2</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;s2&#39;</span><span class="p">,</span> <span class="n">t4</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;s3&#39;</span><span class="p">,</span> <span class="n">t6</span><span class="p">)])</span>
<span class="gp">In [21]: </span><span class="k">print</span><span class="p">(</span><span class="n">t8</span><span class="p">)</span>
<span class="go">struct&lt;s0: int32, s1: string, s2: fixed_size_binary[10], s3: list&lt;item: int32&gt;&gt;</span>
<span class="gp">In [22]: </span><span class="n">t8</span> <span class="o">==</span> <span class="n">t7</span>
<span class="gh">Out[22]: </span><span class="go">True</span>
</pre></div>
</div>
<p>See <a class="reference internal" href="api/datatypes.html#api-types"><span class="std std-ref">Data Types API</span></a> for a full listing of data type
functions.</p>
</div>
<div class="section" id="schemas">
<span id="data-schema"></span><h2>Schemas<a class="headerlink" href="#schemas" title="Permalink to this headline"></a></h2>
<p>The <a class="reference internal" href="generated/pyarrow.Schema.html#pyarrow.Schema" title="pyarrow.Schema"><code class="xref py py-class docutils literal notranslate"><span class="pre">Schema</span></code></a> type is similar to the <code class="docutils literal notranslate"><span class="pre">struct</span></code> array type; it
defines the column names and types in a record batch or table data
structure. The <a class="reference internal" href="generated/pyarrow.schema.html#pyarrow.schema" title="pyarrow.schema"><code class="xref py py-func docutils literal notranslate"><span class="pre">pyarrow.schema()</span></code></a> factory function makes new Schema objects in
Python:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [23]: </span><span class="n">my_schema</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">schema</span><span class="p">([(</span><span class="s1">&#39;field0&#39;</span><span class="p">,</span> <span class="n">t1</span><span class="p">),</span>
<span class="gp"> ....: </span> <span class="p">(</span><span class="s1">&#39;field1&#39;</span><span class="p">,</span> <span class="n">t2</span><span class="p">),</span>
<span class="gp"> ....: </span> <span class="p">(</span><span class="s1">&#39;field2&#39;</span><span class="p">,</span> <span class="n">t4</span><span class="p">),</span>
<span class="gp"> ....: </span> <span class="p">(</span><span class="s1">&#39;field3&#39;</span><span class="p">,</span> <span class="n">t6</span><span class="p">)])</span>
<span class="gp"> ....: </span>
<span class="gp">In [24]: </span><span class="n">my_schema</span>
<span class="gh">Out[24]: </span><span class="go"></span>
<span class="go">field0: int32</span>
<span class="go">field1: string</span>
<span class="go">field2: fixed_size_binary[10]</span>
<span class="go">field3: list&lt;item: int32&gt;</span>
<span class="go"> child 0, item: int32</span>
</pre></div>
</div>
<p>In some applications, you may not create schemas directly, only using the ones
that are embedded in <a class="reference internal" href="ipc.html#ipc"><span class="std std-ref">IPC messages</span></a>.</p>
</div>
<div class="section" id="arrays">
<span id="data-array"></span><h2>Arrays<a class="headerlink" href="#arrays" title="Permalink to this headline"></a></h2>
<p>For each data type, there is an accompanying array data structure for holding
memory buffers that define a single contiguous chunk of columnar array
data. When you are using PyArrow, this data may come from IPC tools, though it
can also be created from various types of Python sequences (lists, NumPy
arrays, pandas data).</p>
<p>A simple way to create arrays is with <code class="docutils literal notranslate"><span class="pre">pyarrow.array</span></code>, which is similar to
the <code class="docutils literal notranslate"><span class="pre">numpy.array</span></code> function. By default PyArrow will infer the data type
for you:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [25]: </span><span class="n">arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="gp">In [26]: </span><span class="n">arr</span>
<span class="gh">Out[26]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7feab9d51fa8&gt;</span>
<span class="go">[</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
<span class="go"> null,</span>
<span class="go"> 3</span>
<span class="go">]</span>
</pre></div>
</div>
<p>But you may also pass a specific data type to override type inference:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [27]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">uint16</span><span class="p">())</span>
<span class="gh">Out[27]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.UInt16Array object at 0x7feab9d51528&gt;</span>
<span class="go">[</span>
<span class="go"> 1,</span>
<span class="go"> 2</span>
<span class="go">]</span>
</pre></div>
</div>
<p>The array’s <code class="docutils literal notranslate"><span class="pre">type</span></code> attribute is the corresponding piece of type metadata:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [28]: </span><span class="n">arr</span><span class="o">.</span><span class="n">type</span>
<span class="gh">Out[28]: </span><span class="go">DataType(int64)</span>
</pre></div>
</div>
<p>Each in-memory array has a known length and null count (which will be 0 if
there are no null values):</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [29]: </span><span class="nb">len</span><span class="p">(</span><span class="n">arr</span><span class="p">)</span>
<span class="gh">Out[29]: </span><span class="go">4</span>
<span class="gp">In [30]: </span><span class="n">arr</span><span class="o">.</span><span class="n">null_count</span>
<span class="gh">Out[30]: </span><span class="go">1</span>
</pre></div>
</div>
<p>Scalar values can be selected with normal indexing. <code class="docutils literal notranslate"><span class="pre">pyarrow.array</span></code> converts
<code class="docutils literal notranslate"><span class="pre">None</span></code> values to Arrow nulls; we return the special <code class="docutils literal notranslate"><span class="pre">pyarrow.NA</span></code> value for
nulls:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [31]: </span><span class="n">arr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gh">Out[31]: </span><span class="go">&lt;pyarrow.Int64Scalar: 1&gt;</span>
<span class="gp">In [32]: </span><span class="n">arr</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="gh">Out[32]: </span><span class="go">&lt;pyarrow.Int64Scalar: None&gt;</span>
</pre></div>
</div>
<p>Arrow data is immutable, so values can be selected but not assigned.</p>
<p>Arrays can be sliced without copying:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [33]: </span><span class="n">arr</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">]</span>
<span class="gh">Out[33]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7feab9d518e8&gt;</span>
<span class="go">[</span>
<span class="go"> 2,</span>
<span class="go"> null</span>
<span class="go">]</span>
</pre></div>
</div>
<div class="section" id="none-values-and-nan-handling">
<h3>None values and NAN handling<a class="headerlink" href="#none-values-and-nan-handling" title="Permalink to this headline"></a></h3>
<p>As mentioned in the above section, the Python object <code class="docutils literal notranslate"><span class="pre">None</span></code> is always
converted to an Arrow null element on the conversion to <code class="docutils literal notranslate"><span class="pre">pyarrow.Array</span></code>. For
the float NaN value which is either represented by the Python object
<code class="docutils literal notranslate"><span class="pre">float('nan')</span></code> or <code class="docutils literal notranslate"><span class="pre">numpy.nan</span></code> we normally convert it to a <em>valid</em> float
value during the conversion. If an integer input is supplied to
<code class="docutils literal notranslate"><span class="pre">pyarrow.array</span></code> that contains <code class="docutils literal notranslate"><span class="pre">np.nan</span></code>, <code class="docutils literal notranslate"><span class="pre">ValueError</span></code> is raised.</p>
<p>To handle better compatibility with Pandas, we support interpreting NaN values as
null elements. This is enabled automatically on all <code class="docutils literal notranslate"><span class="pre">from_pandas</span></code> function and
can be enable on the other conversion functions by passing <code class="docutils literal notranslate"><span class="pre">from_pandas=True</span></code>
as a function parameter.</p>
</div>
<div class="section" id="list-arrays">
<h3>List arrays<a class="headerlink" href="#list-arrays" title="Permalink to this headline"></a></h3>
<p><code class="docutils literal notranslate"><span class="pre">pyarrow.array</span></code> is able to infer the type of simple nested data structures
like lists:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [34]: </span><span class="n">nested_arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([[],</span> <span class="bp">None</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="bp">None</span><span class="p">,</span> <span class="mi">1</span><span class="p">]])</span>
<span class="gp">In [35]: </span><span class="k">print</span><span class="p">(</span><span class="n">nested_arr</span><span class="o">.</span><span class="n">type</span><span class="p">)</span>
<span class="go">list&lt;item: int64&gt;</span>
</pre></div>
</div>
</div>
<div class="section" id="struct-arrays">
<h3>Struct arrays<a class="headerlink" href="#struct-arrays" title="Permalink to this headline"></a></h3>
<p>For other kinds of nested arrays, such as struct arrays, you currently need
to pass the type explicitly. Struct arrays can be initialized from a
sequence of Python dicts or tuples:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [36]: </span><span class="n">ty</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">struct</span><span class="p">([(</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">int8</span><span class="p">()),</span>
<span class="gp"> ....: </span> <span class="p">(</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">pa</span><span class="o">.</span><span class="n">bool_</span><span class="p">())])</span>
<span class="gp"> ....: </span>
<span class="gp">In [37]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span> <span class="s1">&#39;y&#39;</span><span class="p">:</span> <span class="bp">True</span><span class="p">},</span> <span class="p">{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span> <span class="s1">&#39;y&#39;</span><span class="p">:</span> <span class="bp">False</span><span class="p">}],</span> <span class="nb">type</span><span class="o">=</span><span class="n">ty</span><span class="p">)</span>
<span class="gh">Out[37]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.StructArray object at 0x7feab9d515e8&gt;</span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int8</span>
<span class="go"> [</span>
<span class="go"> 1,</span>
<span class="go"> 2</span>
<span class="go"> ]</span>
<span class="go">-- child 1 type: bool</span>
<span class="go"> [</span>
<span class="go"> true,</span>
<span class="go"> false</span>
<span class="go"> ]</span>
<span class="gp">In [38]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([(</span><span class="mi">3</span><span class="p">,</span> <span class="bp">True</span><span class="p">),</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="bp">False</span><span class="p">)],</span> <span class="nb">type</span><span class="o">=</span><span class="n">ty</span><span class="p">)</span>
<span class="gh">Out[38]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.StructArray object at 0x7feab9e39e28&gt;</span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int8</span>
<span class="go"> [</span>
<span class="go"> 3,</span>
<span class="go"> 4</span>
<span class="go"> ]</span>
<span class="go">-- child 1 type: bool</span>
<span class="go"> [</span>
<span class="go"> true,</span>
<span class="go"> false</span>
<span class="go"> ]</span>
</pre></div>
</div>
<p>When initializing a struct array, nulls are allowed both at the struct
level and at the individual field level. If initializing from a sequence
of Python dicts, a missing dict key is handled as a null value:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [39]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">},</span> <span class="bp">None</span><span class="p">,</span> <span class="p">{</span><span class="s1">&#39;y&#39;</span><span class="p">:</span> <span class="bp">None</span><span class="p">}],</span> <span class="nb">type</span><span class="o">=</span><span class="n">ty</span><span class="p">)</span>
<span class="gh">Out[39]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.StructArray object at 0x7feab9e39888&gt;</span>
<span class="go">-- is_valid:</span>
<span class="go"> [</span>
<span class="go"> true,</span>
<span class="go"> false,</span>
<span class="go"> true</span>
<span class="go"> ]</span>
<span class="go">-- child 0 type: int8</span>
<span class="go"> [</span>
<span class="go"> 1,</span>
<span class="go"> null,</span>
<span class="go"> null</span>
<span class="go"> ]</span>
<span class="go">-- child 1 type: bool</span>
<span class="go"> [</span>
<span class="go"> null,</span>
<span class="go"> null,</span>
<span class="go"> null</span>
<span class="go"> ]</span>
</pre></div>
</div>
<p>You can also construct a struct array from existing arrays for each of the
struct’s components. In this case, data storage will be shared with the
individual arrays, and no copy is involved:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [40]: </span><span class="n">xs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">int16</span><span class="p">())</span>
<span class="gp">In [41]: </span><span class="n">ys</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">,</span> <span class="bp">True</span><span class="p">])</span>
<span class="gp">In [42]: </span><span class="n">arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">StructArray</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">((</span><span class="n">xs</span><span class="p">,</span> <span class="n">ys</span><span class="p">),</span> <span class="n">names</span><span class="o">=</span><span class="p">(</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="s1">&#39;y&#39;</span><span class="p">))</span>
<span class="gp">In [43]: </span><span class="n">arr</span><span class="o">.</span><span class="n">type</span>
<span class="gh">Out[43]: </span><span class="go">StructType(struct&lt;x: int16, y: bool&gt;)</span>
<span class="gp">In [44]: </span><span class="n">arr</span>
<span class="gh">Out[44]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.StructArray object at 0x7feab9e39408&gt;</span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int16</span>
<span class="go"> [</span>
<span class="go"> 5,</span>
<span class="go"> 6,</span>
<span class="go"> 7</span>
<span class="go"> ]</span>
<span class="go">-- child 1 type: bool</span>
<span class="go"> [</span>
<span class="go"> false,</span>
<span class="go"> true,</span>
<span class="go"> true</span>
<span class="go"> ]</span>
</pre></div>
</div>
</div>
<div class="section" id="union-arrays">
<h3>Union arrays<a class="headerlink" href="#union-arrays" title="Permalink to this headline"></a></h3>
<p>The union type represents a nested array type where each value can be one
(and only one) of a set of possible types. There are two possible
storage types for union arrays: sparse and dense.</p>
<p>In a sparse union array, each of the child arrays has the same length
as the resulting union array. They are adjuncted with a <code class="docutils literal notranslate"><span class="pre">int8</span></code> “types”
array that tells, for each value, from which child array it must be
selected:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [45]: </span><span class="n">xs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">])</span>
<span class="gp">In [46]: </span><span class="n">ys</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">False</span><span class="p">,</span> <span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">])</span>
<span class="gp">In [47]: </span><span class="n">types</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">int8</span><span class="p">())</span>
<span class="gp">In [48]: </span><span class="n">union_arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">UnionArray</span><span class="o">.</span><span class="n">from_sparse</span><span class="p">(</span><span class="n">types</span><span class="p">,</span> <span class="p">[</span><span class="n">xs</span><span class="p">,</span> <span class="n">ys</span><span class="p">])</span>
<span class="gp">In [49]: </span><span class="n">union_arr</span><span class="o">.</span><span class="n">type</span>
<span class="gh">Out[49]: </span><span class="go">UnionType(sparse_union&lt;0: int64=0, 1: bool=1&gt;)</span>
<span class="gp">In [50]: </span><span class="n">union_arr</span>
<span class="gh">Out[50]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7feab9e39f48&gt;</span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- type_ids: [</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
<span class="go"> 1</span>
<span class="go"> ]</span>
<span class="go">-- child 0 type: int64</span>
<span class="go"> [</span>
<span class="go"> 5,</span>
<span class="go"> 6,</span>
<span class="go"> 7</span>
<span class="go"> ]</span>
<span class="go">-- child 1 type: bool</span>
<span class="go"> [</span>
<span class="go"> false,</span>
<span class="go"> false,</span>
<span class="go"> true</span>
<span class="go"> ]</span>
</pre></div>
</div>
<p>In a dense union array, you also pass, in addition to the <code class="docutils literal notranslate"><span class="pre">int8</span></code> “types”
array, a <code class="docutils literal notranslate"><span class="pre">int32</span></code> “offsets” array that tells, for each value, at
each offset in the selected child array it can be found:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [51]: </span><span class="n">xs</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">])</span>
<span class="gp">In [52]: </span><span class="n">ys</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">])</span>
<span class="gp">In [53]: </span><span class="n">types</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">int8</span><span class="p">())</span>
<span class="gp">In [54]: </span><span class="n">offsets</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">int32</span><span class="p">())</span>
<span class="gp">In [55]: </span><span class="n">union_arr</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">UnionArray</span><span class="o">.</span><span class="n">from_dense</span><span class="p">(</span><span class="n">types</span><span class="p">,</span> <span class="n">offsets</span><span class="p">,</span> <span class="p">[</span><span class="n">xs</span><span class="p">,</span> <span class="n">ys</span><span class="p">])</span>
<span class="gp">In [56]: </span><span class="n">union_arr</span><span class="o">.</span><span class="n">type</span>
<span class="gh">Out[56]: </span><span class="go">UnionType(dense_union&lt;0: int64=0, 1: bool=1&gt;)</span>
<span class="gp">In [57]: </span><span class="n">union_arr</span>
<span class="gh">Out[57]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7feabafacac8&gt;</span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- type_ids: [</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
<span class="go"> 1,</span>
<span class="go"> 0,</span>
<span class="go"> 0</span>
<span class="go"> ]</span>
<span class="go">-- value_offsets: [</span>
<span class="go"> 0,</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
<span class="go"> 1,</span>
<span class="go"> 2</span>
<span class="go"> ]</span>
<span class="go">-- child 0 type: int64</span>
<span class="go"> [</span>
<span class="go"> 5,</span>
<span class="go"> 6,</span>
<span class="go"> 7</span>
<span class="go"> ]</span>
<span class="go">-- child 1 type: bool</span>
<span class="go"> [</span>
<span class="go"> false,</span>
<span class="go"> true</span>
<span class="go"> ]</span>
</pre></div>
</div>
</div>
<div class="section" id="dictionary-arrays">
<h3>Dictionary Arrays<a class="headerlink" href="#dictionary-arrays" title="Permalink to this headline"></a></h3>
<p>The <strong>Dictionary</strong> type in PyArrow is a special array type that is similar to a
factor in R or a <code class="docutils literal notranslate"><span class="pre">pandas.Categorical</span></code>. It enables one or more record batches
in a file or stream to transmit integer <em>indices</em> referencing a shared
<strong>dictionary</strong> containing the distinct values in the logical array. This is
particularly often used with strings to save memory and improve performance.</p>
<p>The way that dictionaries are handled in the Apache Arrow format and the way
they appear in C++ and Python is slightly different. We define a special
<a class="reference internal" href="generated/pyarrow.DictionaryArray.html#pyarrow.DictionaryArray" title="pyarrow.DictionaryArray"><code class="xref py py-class docutils literal notranslate"><span class="pre">DictionaryArray</span></code></a> type with a corresponding dictionary type. Let’s
consider an example:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [58]: </span><span class="n">indices</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="gp">In [59]: </span><span class="n">dictionary</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s1">&#39;foo&#39;</span><span class="p">,</span> <span class="s1">&#39;bar&#39;</span><span class="p">,</span> <span class="s1">&#39;baz&#39;</span><span class="p">])</span>
<span class="gp">In [60]: </span><span class="n">dict_array</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">DictionaryArray</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">(</span><span class="n">indices</span><span class="p">,</span> <span class="n">dictionary</span><span class="p">)</span>
<span class="gp">In [61]: </span><span class="n">dict_array</span>
<span class="gh">Out[61]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.DictionaryArray object at 0x7fea7f55d908&gt;</span>
<span class="go">-- dictionary:</span>
<span class="go"> [</span>
<span class="go"> &quot;foo&quot;,</span>
<span class="go"> &quot;bar&quot;,</span>
<span class="go"> &quot;baz&quot;</span>
<span class="go"> ]</span>
<span class="go">-- indices:</span>
<span class="go"> [</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
<span class="go"> 0,</span>
<span class="go"> null,</span>
<span class="go"> 2</span>
<span class="go"> ]</span>
</pre></div>
</div>
<p>Here we have:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [62]: </span><span class="k">print</span><span class="p">(</span><span class="n">dict_array</span><span class="o">.</span><span class="n">type</span><span class="p">)</span>
<span class="go">dictionary&lt;values=string, indices=int64, ordered=0&gt;</span>
<span class="gp">In [63]: </span><span class="n">dict_array</span><span class="o">.</span><span class="n">indices</span>
<span class="gh">Out[63]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7feabafac768&gt;</span>
<span class="go">[</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
<span class="go"> 0,</span>
<span class="go"> null,</span>
<span class="go"> 2</span>
<span class="go">]</span>
<span class="gp">In [64]: </span><span class="n">dict_array</span><span class="o">.</span><span class="n">dictionary</span>
<span class="gh">Out[64]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.StringArray object at 0x7feabafac048&gt;</span>
<span class="go">[</span>
<span class="go"> &quot;foo&quot;,</span>
<span class="go"> &quot;bar&quot;,</span>
<span class="go"> &quot;baz&quot;</span>
<span class="go">]</span>
</pre></div>
</div>
<p>When using <a class="reference internal" href="generated/pyarrow.DictionaryArray.html#pyarrow.DictionaryArray" title="pyarrow.DictionaryArray"><code class="xref py py-class docutils literal notranslate"><span class="pre">DictionaryArray</span></code></a> with pandas, the analogue is
<code class="docutils literal notranslate"><span class="pre">pandas.Categorical</span></code> (more on this later):</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [65]: </span><span class="n">dict_array</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[65]: </span><span class="go"></span>
<span class="go">0 foo</span>
<span class="go">1 bar</span>
<span class="go">2 foo</span>
<span class="go">3 bar</span>
<span class="go">4 baz</span>
<span class="go">5 foo</span>
<span class="go">6 NaN</span>
<span class="go">7 baz</span>
<span class="go">dtype: category</span>
<span class="go">Categories (3, object): [&#39;foo&#39;, &#39;bar&#39;, &#39;baz&#39;]</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="record-batches">
<span id="data-record-batch"></span><h2>Record Batches<a class="headerlink" href="#record-batches" title="Permalink to this headline"></a></h2>
<p>A <strong>Record Batch</strong> in Apache Arrow is a collection of equal-length array
instances. Let’s consider a collection of arrays:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [66]: </span><span class="n">data</span> <span class="o">=</span> <span class="p">[</span>
<span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]),</span>
<span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="s1">&#39;foo&#39;</span><span class="p">,</span> <span class="s1">&#39;bar&#39;</span><span class="p">,</span> <span class="s1">&#39;baz&#39;</span><span class="p">,</span> <span class="bp">None</span><span class="p">]),</span>
<span class="gp"> ....: </span> <span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">True</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="bp">False</span><span class="p">,</span> <span class="bp">True</span><span class="p">])</span>
<span class="gp"> ....: </span><span class="p">]</span>
<span class="gp"> ....: </span>
</pre></div>
</div>
<p>A record batch can be created from this list of arrays using
<code class="docutils literal notranslate"><span class="pre">RecordBatch.from_arrays</span></code>:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [67]: </span><span class="n">batch</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">RecordBatch</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="p">[</span><span class="s1">&#39;f0&#39;</span><span class="p">,</span> <span class="s1">&#39;f1&#39;</span><span class="p">,</span> <span class="s1">&#39;f2&#39;</span><span class="p">])</span>
<span class="gp">In [68]: </span><span class="n">batch</span><span class="o">.</span><span class="n">num_columns</span>
<span class="gh">Out[68]: </span><span class="go">3</span>
<span class="gp">In [69]: </span><span class="n">batch</span><span class="o">.</span><span class="n">num_rows</span>
<span class="gh">Out[69]: </span><span class="go">4</span>
<span class="gp">In [70]: </span><span class="n">batch</span><span class="o">.</span><span class="n">schema</span>
<span class="gh">Out[70]: </span><span class="go"></span>
<span class="go">f0: int64</span>
<span class="go">f1: string</span>
<span class="go">f2: bool</span>
<span class="gp">In [71]: </span><span class="n">batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="gh">Out[71]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.StringArray object at 0x7feabafac108&gt;</span>
<span class="go">[</span>
<span class="go"> &quot;foo&quot;,</span>
<span class="go"> &quot;bar&quot;,</span>
<span class="go"> &quot;baz&quot;,</span>
<span class="go"> null</span>
<span class="go">]</span>
</pre></div>
</div>
<p>A record batch can be sliced without copying memory like an array:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [72]: </span><span class="n">batch2</span> <span class="o">=</span> <span class="n">batch</span><span class="o">.</span><span class="n">slice</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="gp">In [73]: </span><span class="n">batch2</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="gh">Out[73]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.StringArray object at 0x7feabafac828&gt;</span>
<span class="go">[</span>
<span class="go"> &quot;bar&quot;,</span>
<span class="go"> &quot;baz&quot;,</span>
<span class="go"> null</span>
<span class="go">]</span>
</pre></div>
</div>
</div>
<div class="section" id="tables">
<span id="data-table"></span><h2>Tables<a class="headerlink" href="#tables" title="Permalink to this headline"></a></h2>
<p>The PyArrow <a class="reference internal" href="generated/pyarrow.Table.html#pyarrow.Table" title="pyarrow.Table"><code class="xref py py-class docutils literal notranslate"><span class="pre">Table</span></code></a> type is not part of the Apache Arrow
specification, but is rather a tool to help with wrangling multiple record
batches and array pieces as a single logical dataset. As a relevant example, we
may receive multiple small record batches in a socket stream, then need to
concatenate them into contiguous memory for use in NumPy or pandas. The Table
object makes this efficient without requiring additional memory copying.</p>
<p>Considering the record batch we created above, we can create a Table containing
one or more copies of the batch using <code class="docutils literal notranslate"><span class="pre">Table.from_batches</span></code>:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [74]: </span><span class="n">batches</span> <span class="o">=</span> <span class="p">[</span><span class="n">batch</span><span class="p">]</span> <span class="o">*</span> <span class="mi">5</span>
<span class="gp">In [75]: </span><span class="n">table</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">Table</span><span class="o">.</span><span class="n">from_batches</span><span class="p">(</span><span class="n">batches</span><span class="p">)</span>
<span class="gp">In [76]: </span><span class="n">table</span>
<span class="gh">Out[76]: </span><span class="go"></span>
<span class="go">pyarrow.Table</span>
<span class="go">f0: int64</span>
<span class="go">f1: string</span>
<span class="go">f2: bool</span>
<span class="gp">In [77]: </span><span class="n">table</span><span class="o">.</span><span class="n">num_rows</span>
<span class="gh">Out[77]: </span><span class="go">20</span>
</pre></div>
</div>
<p>The table’s columns are instances of <a class="reference internal" href="generated/pyarrow.ChunkedArray.html#pyarrow.ChunkedArray" title="pyarrow.ChunkedArray"><code class="xref py py-class docutils literal notranslate"><span class="pre">ChunkedArray</span></code></a>, which is a
container for one or more arrays of the same type.</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [78]: </span><span class="n">c</span> <span class="o">=</span> <span class="n">table</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">In [79]: </span><span class="n">c</span>
<span class="gh">Out[79]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.ChunkedArray object at 0x7fea81b5faf0&gt;</span>
<span class="go">[</span>
<span class="go"> [</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
<span class="go"> 3,</span>
<span class="go"> 4</span>
<span class="go"> ],</span>
<span class="go"> [</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
<span class="go"> 3,</span>
<span class="go"> 4</span>
<span class="go"> ],</span>
<span class="go"> [</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
<span class="go"> 3,</span>
<span class="go"> 4</span>
<span class="go"> ],</span>
<span class="go"> [</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
<span class="go"> 3,</span>
<span class="go"> 4</span>
<span class="go"> ],</span>
<span class="go"> [</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
<span class="go"> 3,</span>
<span class="go"> 4</span>
<span class="go"> ]</span>
<span class="go">]</span>
<span class="gp">In [80]: </span><span class="n">c</span><span class="o">.</span><span class="n">num_chunks</span>
<span class="gh">Out[80]: </span><span class="go">5</span>
<span class="gp">In [81]: </span><span class="n">c</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="gh">Out[81]: </span><span class="go"></span>
<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7feabaface88&gt;</span>
<span class="go">[</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
<span class="go"> 3,</span>
<span class="go"> 4</span>
<span class="go">]</span>
</pre></div>
</div>
<p>As you’ll see in the <a class="reference internal" href="pandas.html#pandas-interop"><span class="std std-ref">pandas section</span></a>, we can convert
these objects to contiguous NumPy arrays for use in pandas:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [82]: </span><span class="n">c</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[82]: </span><span class="go"></span>
<span class="go">0 1</span>
<span class="go">1 2</span>
<span class="go">2 3</span>
<span class="go">3 4</span>
<span class="go">4 1</span>
<span class="go">5 2</span>
<span class="go">6 3</span>
<span class="go">7 4</span>
<span class="go">8 1</span>
<span class="go">9 2</span>
<span class="go">10 3</span>
<span class="go">11 4</span>
<span class="go">12 1</span>
<span class="go">13 2</span>
<span class="go">14 3</span>
<span class="go">15 4</span>
<span class="go">16 1</span>
<span class="go">17 2</span>
<span class="go">18 3</span>
<span class="go">19 4</span>
<span class="go">Name: f0, dtype: int64</span>
</pre></div>
</div>
<p>Multiple tables can also be concatenated together to form a single table using
<code class="docutils literal notranslate"><span class="pre">pyarrow.concat_tables</span></code>, if the schemas are equal:</p>
<div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [83]: </span><span class="n">tables</span> <span class="o">=</span> <span class="p">[</span><span class="n">table</span><span class="p">]</span> <span class="o">*</span> <span class="mi">2</span>
<span class="gp">In [84]: </span><span class="n">table_all</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">concat_tables</span><span class="p">(</span><span class="n">tables</span><span class="p">)</span>
<span class="gp">In [85]: </span><span class="n">table_all</span><span class="o">.</span><span class="n">num_rows</span>
<span class="gh">Out[85]: </span><span class="go">40</span>
<span class="gp">In [86]: </span><span class="n">c</span> <span class="o">=</span> <span class="n">table_all</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">In [87]: </span><span class="n">c</span><span class="o">.</span><span class="n">num_chunks</span>
<span class="gh">Out[87]: </span><span class="go">10</span>
</pre></div>
</div>
<p>This is similar to <code class="docutils literal notranslate"><span class="pre">Table.from_batches</span></code>, but uses tables as input instead of
record batches. Record batches can be made into tables, but not the other way
around, so if your data is already in table form, then use
<code class="docutils literal notranslate"><span class="pre">pyarrow.concat_tables</span></code>.</p>
</div>
<div class="section" id="custom-schema-and-field-metadata">
<h2>Custom Schema and Field Metadata<a class="headerlink" href="#custom-schema-and-field-metadata" title="Permalink to this headline"></a></h2>
<p>TODO</p>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="compute.html" class="btn btn-neutral float-right" title="Compute Functions" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="memory.html" class="btn btn-neutral float-left" title="Memory and IO Interfaces" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016-2019 Apache Software Foundation
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script type="text/javascript" src="/docs/_static/versionwarning.js"></script></body>
</html>