| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| use crate::arith::derive_arith; |
| use crate::bigint::div::div_rem; |
| use num_bigint::BigInt; |
| use num_traits::{ |
| Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedSub, FromPrimitive, |
| Num, One, Signed, ToPrimitive, WrappingAdd, WrappingMul, WrappingNeg, WrappingSub, Zero, |
| cast::AsPrimitive, |
| }; |
| use std::cmp::Ordering; |
| use std::num::ParseIntError; |
| use std::ops::{BitAnd, BitOr, BitXor, Neg, Shl, Shr}; |
| use std::str::FromStr; |
| |
| mod div; |
| |
| /// An opaque error similar to [`std::num::ParseIntError`] |
| #[derive(Debug)] |
| pub struct ParseI256Error {} |
| |
| impl From<ParseIntError> for ParseI256Error { |
| fn from(_: ParseIntError) -> Self { |
| Self {} |
| } |
| } |
| |
| impl std::fmt::Display for ParseI256Error { |
| fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| write!(f, "Failed to parse as i256") |
| } |
| } |
| impl std::error::Error for ParseI256Error {} |
| |
| /// Error returned by i256::DivRem |
| enum DivRemError { |
| /// Division by zero |
| DivideByZero, |
| /// Division overflow |
| DivideOverflow, |
| } |
| |
| /// A signed 256-bit integer |
| #[allow(non_camel_case_types)] |
| #[derive(Copy, Clone, Default, Eq, PartialEq, Hash)] |
| #[repr(C)] |
| pub struct i256 { |
| low: u128, |
| high: i128, |
| } |
| |
| impl std::fmt::Debug for i256 { |
| fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| write!(f, "{self}") |
| } |
| } |
| |
| impl std::fmt::Display for i256 { |
| fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| write!(f, "{}", BigInt::from_signed_bytes_le(&self.to_le_bytes())) |
| } |
| } |
| |
| impl FromStr for i256 { |
| type Err = ParseI256Error; |
| |
| fn from_str(s: &str) -> Result<Self, Self::Err> { |
| // i128 can store up to 38 decimal digits |
| if s.len() <= 38 { |
| return Ok(Self::from_i128(i128::from_str(s)?)); |
| } |
| |
| let (negative, s) = match s.as_bytes()[0] { |
| b'-' => (true, &s[1..]), |
| b'+' => (false, &s[1..]), |
| _ => (false, s), |
| }; |
| |
| // Trim leading 0s |
| let s = s.trim_start_matches('0'); |
| if s.is_empty() { |
| return Ok(i256::ZERO); |
| } |
| |
| if !s.as_bytes()[0].is_ascii_digit() { |
| // Ensures no duplicate sign |
| return Err(ParseI256Error {}); |
| } |
| |
| parse_impl(s, negative) |
| } |
| } |
| |
| impl From<i8> for i256 { |
| fn from(value: i8) -> Self { |
| Self::from_i128(value.into()) |
| } |
| } |
| |
| impl From<i16> for i256 { |
| fn from(value: i16) -> Self { |
| Self::from_i128(value.into()) |
| } |
| } |
| |
| impl From<i32> for i256 { |
| fn from(value: i32) -> Self { |
| Self::from_i128(value.into()) |
| } |
| } |
| |
| impl From<i64> for i256 { |
| fn from(value: i64) -> Self { |
| Self::from_i128(value.into()) |
| } |
| } |
| |
| /// Parse `s` with any sign and leading 0s removed |
| fn parse_impl(s: &str, negative: bool) -> Result<i256, ParseI256Error> { |
| if s.len() <= 38 { |
| let low = i128::from_str(s)?; |
| return Ok(match negative { |
| true => i256::from_parts(low.neg() as _, -1), |
| false => i256::from_parts(low as _, 0), |
| }); |
| } |
| |
| let split = s.len() - 38; |
| if !s.as_bytes()[split].is_ascii_digit() { |
| // Ensures not splitting codepoint and no sign |
| return Err(ParseI256Error {}); |
| } |
| let (hs, ls) = s.split_at(split); |
| |
| let mut low = i128::from_str(ls)?; |
| let high = parse_impl(hs, negative)?; |
| |
| if negative { |
| low = -low; |
| } |
| |
| let low = i256::from_i128(low); |
| |
| high.checked_mul(i256::from_i128(10_i128.pow(38))) |
| .and_then(|high| high.checked_add(low)) |
| .ok_or(ParseI256Error {}) |
| } |
| |
| impl PartialOrd for i256 { |
| fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| Some(self.cmp(other)) |
| } |
| } |
| |
| impl Ord for i256 { |
| fn cmp(&self, other: &Self) -> Ordering { |
| // This is 25x faster than using a variable length encoding such |
| // as BigInt as it avoids allocation and branching |
| self.high.cmp(&other.high).then(self.low.cmp(&other.low)) |
| } |
| } |
| |
| impl i256 { |
| /// The additive identity for this integer type, i.e. `0`. |
| pub const ZERO: Self = i256 { low: 0, high: 0 }; |
| |
| /// The multiplicative identity for this integer type, i.e. `1`. |
| pub const ONE: Self = i256 { low: 1, high: 0 }; |
| |
| /// The multiplicative inverse for this integer type, i.e. `-1`. |
| pub const MINUS_ONE: Self = i256 { |
| low: u128::MAX, |
| high: -1, |
| }; |
| |
| /// The maximum value that can be represented by this integer type |
| pub const MAX: Self = i256 { |
| low: u128::MAX, |
| high: i128::MAX, |
| }; |
| |
| /// The minimum value that can be represented by this integer type |
| pub const MIN: Self = i256 { |
| low: u128::MIN, |
| high: i128::MIN, |
| }; |
| |
| /// Create an integer value from its representation as a byte array in little-endian. |
| #[inline] |
| pub const fn from_le_bytes(b: [u8; 32]) -> Self { |
| let (low, high) = split_array(b); |
| Self { |
| high: i128::from_le_bytes(high), |
| low: u128::from_le_bytes(low), |
| } |
| } |
| |
| /// Create an integer value from its representation as a byte array in big-endian. |
| #[inline] |
| pub const fn from_be_bytes(b: [u8; 32]) -> Self { |
| let (high, low) = split_array(b); |
| Self { |
| high: i128::from_be_bytes(high), |
| low: u128::from_be_bytes(low), |
| } |
| } |
| |
| /// Create an `i256` value from a 128-bit value. |
| pub const fn from_i128(v: i128) -> Self { |
| Self::from_parts(v as u128, v >> 127) |
| } |
| |
| /// Create an integer value from its representation as string. |
| #[inline] |
| pub fn from_string(value_str: &str) -> Option<Self> { |
| value_str.parse().ok() |
| } |
| |
| /// Create an optional i256 from the provided `f64`. Returning `None` |
| /// if overflow occurred |
| pub fn from_f64(v: f64) -> Option<Self> { |
| BigInt::from_f64(v).and_then(|i| { |
| let (integer, overflow) = i256::from_bigint_with_overflow(i); |
| if overflow { None } else { Some(integer) } |
| }) |
| } |
| |
| /// Create an i256 from the provided low u128 and high i128 |
| #[inline] |
| pub const fn from_parts(low: u128, high: i128) -> Self { |
| Self { low, high } |
| } |
| |
| /// Returns this `i256` as a low u128 and high i128 |
| pub const fn to_parts(self) -> (u128, i128) { |
| (self.low, self.high) |
| } |
| |
| /// Converts this `i256` into an `i128` returning `None` if this would result |
| /// in truncation/overflow |
| pub fn to_i128(self) -> Option<i128> { |
| let as_i128 = self.low as i128; |
| |
| let high_negative = self.high < 0; |
| let low_negative = as_i128 < 0; |
| let high_valid = self.high == -1 || self.high == 0; |
| |
| (high_negative == low_negative && high_valid).then_some(self.low as i128) |
| } |
| |
| /// Wraps this `i256` into an `i128` |
| pub fn as_i128(self) -> i128 { |
| self.low as i128 |
| } |
| |
| /// Return the memory representation of this integer as a byte array in little-endian byte order. |
| #[inline] |
| pub const fn to_le_bytes(self) -> [u8; 32] { |
| let low = self.low.to_le_bytes(); |
| let high = self.high.to_le_bytes(); |
| let mut t = [0; 32]; |
| let mut i = 0; |
| while i != 16 { |
| t[i] = low[i]; |
| t[i + 16] = high[i]; |
| i += 1; |
| } |
| t |
| } |
| |
| /// Return the memory representation of this integer as a byte array in big-endian byte order. |
| #[inline] |
| pub const fn to_be_bytes(self) -> [u8; 32] { |
| let low = self.low.to_be_bytes(); |
| let high = self.high.to_be_bytes(); |
| let mut t = [0; 32]; |
| let mut i = 0; |
| while i != 16 { |
| t[i] = high[i]; |
| t[i + 16] = low[i]; |
| i += 1; |
| } |
| t |
| } |
| |
| /// Create an i256 from the provided [`BigInt`] returning a bool indicating |
| /// if overflow occurred |
| fn from_bigint_with_overflow(v: BigInt) -> (Self, bool) { |
| let v_bytes = v.to_signed_bytes_le(); |
| match v_bytes.len().cmp(&32) { |
| Ordering::Less => { |
| let mut bytes = if num_traits::Signed::is_negative(&v) { |
| [255_u8; 32] |
| } else { |
| [0; 32] |
| }; |
| bytes[0..v_bytes.len()].copy_from_slice(&v_bytes[..v_bytes.len()]); |
| (Self::from_le_bytes(bytes), false) |
| } |
| Ordering::Equal => (Self::from_le_bytes(v_bytes.try_into().unwrap()), false), |
| Ordering::Greater => (Self::from_le_bytes(v_bytes[..32].try_into().unwrap()), true), |
| } |
| } |
| |
| /// Computes the absolute value of this i256 |
| #[inline] |
| pub fn wrapping_abs(self) -> Self { |
| // -1 if negative, otherwise 0 |
| let sa = self.high >> 127; |
| let sa = Self::from_parts(sa as u128, sa); |
| |
| // Inverted if negative |
| Self::from_parts(self.low ^ sa.low, self.high ^ sa.high).wrapping_sub(sa) |
| } |
| |
| /// Computes the absolute value of this i256 returning `None` if `Self == Self::MIN` |
| #[inline] |
| pub fn checked_abs(self) -> Option<Self> { |
| (self != Self::MIN).then(|| self.wrapping_abs()) |
| } |
| |
| /// Negates this i256 |
| #[inline] |
| pub fn wrapping_neg(self) -> Self { |
| Self::from_parts(!self.low, !self.high).wrapping_add(i256::ONE) |
| } |
| |
| /// Negates this i256 returning `None` if `Self == Self::MIN` |
| #[inline] |
| pub fn checked_neg(self) -> Option<Self> { |
| (self != Self::MIN).then(|| self.wrapping_neg()) |
| } |
| |
| /// Performs wrapping addition |
| #[inline] |
| pub fn wrapping_add(self, other: Self) -> Self { |
| let (low, carry) = self.low.overflowing_add(other.low); |
| let high = self.high.wrapping_add(other.high).wrapping_add(carry as _); |
| Self { low, high } |
| } |
| |
| /// Performs checked addition |
| #[inline] |
| pub fn checked_add(self, other: Self) -> Option<Self> { |
| let r = self.wrapping_add(other); |
| ((other.is_negative() && r < self) || (!other.is_negative() && r >= self)).then_some(r) |
| } |
| |
| /// Performs wrapping subtraction |
| #[inline] |
| pub fn wrapping_sub(self, other: Self) -> Self { |
| let (low, carry) = self.low.overflowing_sub(other.low); |
| let high = self.high.wrapping_sub(other.high).wrapping_sub(carry as _); |
| Self { low, high } |
| } |
| |
| /// Performs checked subtraction |
| #[inline] |
| pub fn checked_sub(self, other: Self) -> Option<Self> { |
| let r = self.wrapping_sub(other); |
| ((other.is_negative() && r > self) || (!other.is_negative() && r <= self)).then_some(r) |
| } |
| |
| /// Performs wrapping multiplication |
| #[inline] |
| pub fn wrapping_mul(self, other: Self) -> Self { |
| let (low, high) = mulx(self.low, other.low); |
| |
| // Compute the high multiples, only impacting the high 128-bits |
| let hl = self.high.wrapping_mul(other.low as i128); |
| let lh = (self.low as i128).wrapping_mul(other.high); |
| |
| Self { |
| low, |
| high: (high as i128).wrapping_add(hl).wrapping_add(lh), |
| } |
| } |
| |
| /// Performs checked multiplication |
| #[inline] |
| pub fn checked_mul(self, other: Self) -> Option<Self> { |
| if self == i256::ZERO || other == i256::ZERO { |
| return Some(i256::ZERO); |
| } |
| |
| // Shift sign bit down to construct mask of all set bits if negative |
| let l_sa = self.high >> 127; |
| let r_sa = other.high >> 127; |
| let out_sa = (l_sa ^ r_sa) as u128; |
| |
| // Compute absolute values |
| let l_abs = self.wrapping_abs(); |
| let r_abs = other.wrapping_abs(); |
| |
| // Overflow if both high parts are non-zero |
| if l_abs.high != 0 && r_abs.high != 0 { |
| return None; |
| } |
| |
| // Perform checked multiplication on absolute values |
| let (low, high) = mulx(l_abs.low, r_abs.low); |
| |
| // Compute the high multiples, only impacting the high 128-bits |
| let hl = (l_abs.high as u128).checked_mul(r_abs.low)?; |
| let lh = l_abs.low.checked_mul(r_abs.high as u128)?; |
| |
| let high = high.checked_add(hl)?.checked_add(lh)?; |
| |
| // Reverse absolute value, if necessary |
| let (low, c) = (low ^ out_sa).overflowing_sub(out_sa); |
| let high = (high ^ out_sa).wrapping_sub(out_sa).wrapping_sub(c as u128) as i128; |
| |
| // Check for overflow in final conversion |
| (high.is_negative() == (self.is_negative() ^ other.is_negative())) |
| .then_some(Self { low, high }) |
| } |
| |
| /// Division operation, returns (quotient, remainder). |
| /// This basically implements [Long division]: `<https://en.wikipedia.org/wiki/Division_algorithm>` |
| #[inline] |
| fn div_rem(self, other: Self) -> Result<(Self, Self), DivRemError> { |
| if other == Self::ZERO { |
| return Err(DivRemError::DivideByZero); |
| } |
| if other == Self::MINUS_ONE && self == Self::MIN { |
| return Err(DivRemError::DivideOverflow); |
| } |
| |
| let a = self.wrapping_abs(); |
| let b = other.wrapping_abs(); |
| |
| let (div, rem) = div_rem(&a.as_digits(), &b.as_digits()); |
| let div = Self::from_digits(div); |
| let rem = Self::from_digits(rem); |
| |
| Ok(( |
| if self.is_negative() == other.is_negative() { |
| div |
| } else { |
| div.wrapping_neg() |
| }, |
| if self.is_negative() { |
| rem.wrapping_neg() |
| } else { |
| rem |
| }, |
| )) |
| } |
| |
| /// Interpret this [`i256`] as 4 `u64` digits, least significant first |
| fn as_digits(self) -> [u64; 4] { |
| [ |
| self.low as u64, |
| (self.low >> 64) as u64, |
| self.high as u64, |
| (self.high as u128 >> 64) as u64, |
| ] |
| } |
| |
| /// Interpret 4 `u64` digits, least significant first, as a [`i256`] |
| fn from_digits(digits: [u64; 4]) -> Self { |
| Self::from_parts( |
| digits[0] as u128 | ((digits[1] as u128) << 64), |
| digits[2] as i128 | ((digits[3] as i128) << 64), |
| ) |
| } |
| |
| /// Performs wrapping division |
| #[inline] |
| pub fn wrapping_div(self, other: Self) -> Self { |
| match self.div_rem(other) { |
| Ok((v, _)) => v, |
| Err(DivRemError::DivideByZero) => panic!("attempt to divide by zero"), |
| Err(_) => Self::MIN, |
| } |
| } |
| |
| /// Performs checked division |
| #[inline] |
| pub fn checked_div(self, other: Self) -> Option<Self> { |
| self.div_rem(other).map(|(v, _)| v).ok() |
| } |
| |
| /// Performs wrapping remainder |
| #[inline] |
| pub fn wrapping_rem(self, other: Self) -> Self { |
| match self.div_rem(other) { |
| Ok((_, v)) => v, |
| Err(DivRemError::DivideByZero) => panic!("attempt to divide by zero"), |
| Err(_) => Self::ZERO, |
| } |
| } |
| |
| /// Performs checked remainder |
| #[inline] |
| pub fn checked_rem(self, other: Self) -> Option<Self> { |
| self.div_rem(other).map(|(_, v)| v).ok() |
| } |
| |
| /// Performs checked exponentiation |
| #[inline] |
| pub fn checked_pow(self, mut exp: u32) -> Option<Self> { |
| if exp == 0 { |
| return Some(i256::from_i128(1)); |
| } |
| |
| let mut base = self; |
| let mut acc: Self = i256::from_i128(1); |
| |
| while exp > 1 { |
| if (exp & 1) == 1 { |
| acc = acc.checked_mul(base)?; |
| } |
| exp /= 2; |
| base = base.checked_mul(base)?; |
| } |
| // since exp!=0, finally the exp must be 1. |
| // Deal with the final bit of the exponent separately, since |
| // squaring the base afterwards is not necessary and may cause a |
| // needless overflow. |
| acc.checked_mul(base) |
| } |
| |
| /// Performs wrapping exponentiation |
| #[inline] |
| pub fn wrapping_pow(self, mut exp: u32) -> Self { |
| if exp == 0 { |
| return i256::from_i128(1); |
| } |
| |
| let mut base = self; |
| let mut acc: Self = i256::from_i128(1); |
| |
| while exp > 1 { |
| if (exp & 1) == 1 { |
| acc = acc.wrapping_mul(base); |
| } |
| exp /= 2; |
| base = base.wrapping_mul(base); |
| } |
| |
| // since exp!=0, finally the exp must be 1. |
| // Deal with the final bit of the exponent separately, since |
| // squaring the base afterwards is not necessary and may cause a |
| // needless overflow. |
| acc.wrapping_mul(base) |
| } |
| |
| /// Returns a number [`i256`] representing sign of this [`i256`]. |
| /// |
| /// 0 if the number is zero |
| /// 1 if the number is positive |
| /// -1 if the number is negative |
| pub const fn signum(self) -> Self { |
| if self.is_positive() { |
| i256::ONE |
| } else if self.is_negative() { |
| i256::MINUS_ONE |
| } else { |
| i256::ZERO |
| } |
| } |
| |
| /// Returns `true` if this [`i256`] is negative |
| #[inline] |
| pub const fn is_negative(self) -> bool { |
| self.high.is_negative() |
| } |
| |
| /// Returns `true` if this [`i256`] is positive |
| pub const fn is_positive(self) -> bool { |
| self.high.is_positive() || self.high == 0 && self.low != 0 |
| } |
| |
| /// Returns the number of leading zeros in the binary representation of this [`i256`]. |
| pub const fn leading_zeros(&self) -> u32 { |
| match self.high { |
| 0 => u128::BITS + self.low.leading_zeros(), |
| _ => self.high.leading_zeros(), |
| } |
| } |
| |
| /// Returns the number of trailing zeros in the binary representation of this [`i256`]. |
| pub const fn trailing_zeros(&self) -> u32 { |
| match self.low { |
| 0 => u128::BITS + self.high.trailing_zeros(), |
| _ => self.low.trailing_zeros(), |
| } |
| } |
| |
| fn redundant_leading_sign_bits_i256(n: i256) -> u8 { |
| let mask = n >> 255; // all ones or all zeros |
| ((n ^ mask).leading_zeros() - 1) as u8 // we only need one sign bit |
| } |
| |
| fn i256_to_f64(input: i256) -> f64 { |
| let k = i256::redundant_leading_sign_bits_i256(input); |
| let n = input << k; // left-justify (no redundant sign bits) |
| let n = (n.high >> 64) as i64; // throw away the lower 192 bits |
| (n as f64) * f64::powi(2.0, 192 - (k as i32)) // convert to f64 and scale it, as we left-shift k bit previous, so we need to scale it by 2^(192-k) |
| } |
| } |
| |
| /// Temporary workaround due to lack of stable const array slicing |
| /// See <https://github.com/rust-lang/rust/issues/90091> |
| const fn split_array<const N: usize, const M: usize>(vals: [u8; N]) -> ([u8; M], [u8; M]) { |
| let mut a = [0; M]; |
| let mut b = [0; M]; |
| let mut i = 0; |
| while i != M { |
| a[i] = vals[i]; |
| b[i] = vals[i + M]; |
| i += 1; |
| } |
| (a, b) |
| } |
| |
| /// Performs an unsigned multiplication of `a * b` returning a tuple of |
| /// `(low, high)` where `low` contains the lower 128-bits of the result |
| /// and `high` the higher 128-bits |
| /// |
| /// This mirrors the x86 mulx instruction but for 128-bit types |
| #[inline] |
| fn mulx(a: u128, b: u128) -> (u128, u128) { |
| let split = |a: u128| (a & (u64::MAX as u128), a >> 64); |
| |
| const MASK: u128 = u64::MAX as _; |
| |
| let (a_low, a_high) = split(a); |
| let (b_low, b_high) = split(b); |
| |
| // Carry stores the upper 64-bits of low and lower 64-bits of high |
| let (mut low, mut carry) = split(a_low * b_low); |
| carry += a_high * b_low; |
| |
| // Update low and high with corresponding parts of carry |
| low += carry << 64; |
| let mut high = carry >> 64; |
| |
| // Update carry with overflow from low |
| carry = low >> 64; |
| low &= MASK; |
| |
| // Perform multiply including overflow from low |
| carry += b_high * a_low; |
| |
| // Update low and high with values from carry |
| low += carry << 64; |
| high += carry >> 64; |
| |
| // Perform 4th multiplication |
| high += a_high * b_high; |
| |
| (low, high) |
| } |
| |
| derive_arith!( |
| i256, |
| Add, |
| AddAssign, |
| add, |
| add_assign, |
| wrapping_add, |
| checked_add |
| ); |
| derive_arith!( |
| i256, |
| Sub, |
| SubAssign, |
| sub, |
| sub_assign, |
| wrapping_sub, |
| checked_sub |
| ); |
| derive_arith!( |
| i256, |
| Mul, |
| MulAssign, |
| mul, |
| mul_assign, |
| wrapping_mul, |
| checked_mul |
| ); |
| derive_arith!( |
| i256, |
| Div, |
| DivAssign, |
| div, |
| div_assign, |
| wrapping_div, |
| checked_div |
| ); |
| derive_arith!( |
| i256, |
| Rem, |
| RemAssign, |
| rem, |
| rem_assign, |
| wrapping_rem, |
| checked_rem |
| ); |
| |
| impl Neg for i256 { |
| type Output = i256; |
| |
| #[cfg(debug_assertions)] |
| fn neg(self) -> Self::Output { |
| self.checked_neg().expect("i256 overflow") |
| } |
| |
| #[cfg(not(debug_assertions))] |
| fn neg(self) -> Self::Output { |
| self.wrapping_neg() |
| } |
| } |
| |
| impl BitAnd for i256 { |
| type Output = i256; |
| |
| #[inline] |
| fn bitand(self, rhs: Self) -> Self::Output { |
| Self { |
| low: self.low & rhs.low, |
| high: self.high & rhs.high, |
| } |
| } |
| } |
| |
| impl BitOr for i256 { |
| type Output = i256; |
| |
| #[inline] |
| fn bitor(self, rhs: Self) -> Self::Output { |
| Self { |
| low: self.low | rhs.low, |
| high: self.high | rhs.high, |
| } |
| } |
| } |
| |
| impl BitXor for i256 { |
| type Output = i256; |
| |
| #[inline] |
| fn bitxor(self, rhs: Self) -> Self::Output { |
| Self { |
| low: self.low ^ rhs.low, |
| high: self.high ^ rhs.high, |
| } |
| } |
| } |
| |
| impl Shl<u8> for i256 { |
| type Output = i256; |
| |
| #[inline] |
| fn shl(self, rhs: u8) -> Self::Output { |
| if rhs == 0 { |
| self |
| } else if rhs < 128 { |
| Self { |
| high: (self.high << rhs) | (self.low >> (128 - rhs)) as i128, |
| low: self.low << rhs, |
| } |
| } else { |
| Self { |
| high: (self.low << (rhs - 128)) as i128, |
| low: 0, |
| } |
| } |
| } |
| } |
| |
| impl Shr<u8> for i256 { |
| type Output = i256; |
| |
| #[inline] |
| fn shr(self, rhs: u8) -> Self::Output { |
| if rhs == 0 { |
| self |
| } else if rhs < 128 { |
| Self { |
| high: self.high >> rhs, |
| low: (self.low >> rhs) | ((self.high as u128) << (128 - rhs)), |
| } |
| } else { |
| Self { |
| high: self.high >> 127, |
| low: (self.high >> (rhs - 128)) as u128, |
| } |
| } |
| } |
| } |
| |
| macro_rules! define_as_primitive { |
| ($native_ty:ty) => { |
| impl AsPrimitive<i256> for $native_ty { |
| fn as_(self) -> i256 { |
| i256::from_i128(self as i128) |
| } |
| } |
| }; |
| } |
| |
| define_as_primitive!(i8); |
| define_as_primitive!(i16); |
| define_as_primitive!(i32); |
| define_as_primitive!(i64); |
| define_as_primitive!(u8); |
| define_as_primitive!(u16); |
| define_as_primitive!(u32); |
| define_as_primitive!(u64); |
| |
| impl ToPrimitive for i256 { |
| fn to_i64(&self) -> Option<i64> { |
| let as_i128 = self.low as i128; |
| |
| let high_negative = self.high < 0; |
| let low_negative = as_i128 < 0; |
| let high_valid = self.high == -1 || self.high == 0; |
| |
| if high_negative == low_negative && high_valid { |
| let (low_bytes, high_bytes) = split_array(u128::to_le_bytes(self.low)); |
| let high = i64::from_le_bytes(high_bytes); |
| let low = i64::from_le_bytes(low_bytes); |
| |
| let high_negative = high < 0; |
| let low_negative = low < 0; |
| let high_valid = self.high == -1 || self.high == 0; |
| |
| (high_negative == low_negative && high_valid).then_some(low) |
| } else { |
| None |
| } |
| } |
| |
| fn to_f64(&self) -> Option<f64> { |
| match *self { |
| Self::MIN => Some(-2_f64.powi(255)), |
| Self::ZERO => Some(0f64), |
| Self::ONE => Some(1f64), |
| n => Some(Self::i256_to_f64(n)), |
| } |
| } |
| |
| fn to_u64(&self) -> Option<u64> { |
| let as_i128 = self.low as i128; |
| |
| let high_negative = self.high < 0; |
| let low_negative = as_i128 < 0; |
| let high_valid = self.high == -1 || self.high == 0; |
| |
| if high_negative == low_negative && high_valid { |
| self.low.to_u64() |
| } else { |
| None |
| } |
| } |
| } |
| |
| // num_traits checked implementations |
| |
| impl CheckedNeg for i256 { |
| fn checked_neg(&self) -> Option<Self> { |
| (*self).checked_neg() |
| } |
| } |
| |
| impl CheckedAdd for i256 { |
| fn checked_add(&self, v: &i256) -> Option<Self> { |
| (*self).checked_add(*v) |
| } |
| } |
| |
| impl CheckedSub for i256 { |
| fn checked_sub(&self, v: &i256) -> Option<Self> { |
| (*self).checked_sub(*v) |
| } |
| } |
| |
| impl CheckedDiv for i256 { |
| fn checked_div(&self, v: &i256) -> Option<Self> { |
| (*self).checked_div(*v) |
| } |
| } |
| |
| impl CheckedMul for i256 { |
| fn checked_mul(&self, v: &i256) -> Option<Self> { |
| (*self).checked_mul(*v) |
| } |
| } |
| |
| impl CheckedRem for i256 { |
| fn checked_rem(&self, v: &i256) -> Option<Self> { |
| (*self).checked_rem(*v) |
| } |
| } |
| |
| impl WrappingAdd for i256 { |
| fn wrapping_add(&self, v: &Self) -> Self { |
| (*self).wrapping_add(*v) |
| } |
| } |
| |
| impl WrappingSub for i256 { |
| fn wrapping_sub(&self, v: &Self) -> Self { |
| (*self).wrapping_sub(*v) |
| } |
| } |
| |
| impl WrappingMul for i256 { |
| fn wrapping_mul(&self, v: &Self) -> Self { |
| (*self).wrapping_mul(*v) |
| } |
| } |
| |
| impl WrappingNeg for i256 { |
| fn wrapping_neg(&self) -> Self { |
| (*self).wrapping_neg() |
| } |
| } |
| |
| impl Zero for i256 { |
| fn zero() -> Self { |
| i256::ZERO |
| } |
| |
| fn is_zero(&self) -> bool { |
| *self == i256::ZERO |
| } |
| } |
| |
| impl One for i256 { |
| fn one() -> Self { |
| i256::ONE |
| } |
| |
| fn is_one(&self) -> bool { |
| *self == i256::ONE |
| } |
| } |
| |
| impl Num for i256 { |
| type FromStrRadixErr = ParseI256Error; |
| |
| fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> { |
| if radix == 10 { |
| str.parse() |
| } else { |
| // Parsing from non-10 baseseeÃŽ is not supported |
| Err(ParseI256Error {}) |
| } |
| } |
| } |
| |
| impl Signed for i256 { |
| fn abs(&self) -> Self { |
| self.wrapping_abs() |
| } |
| |
| fn abs_sub(&self, other: &Self) -> Self { |
| if self > other { |
| self.wrapping_sub(other) |
| } else { |
| i256::ZERO |
| } |
| } |
| |
| fn signum(&self) -> Self { |
| (*self).signum() |
| } |
| |
| fn is_positive(&self) -> bool { |
| (*self).is_positive() |
| } |
| |
| fn is_negative(&self) -> bool { |
| (*self).is_negative() |
| } |
| } |
| |
| impl Bounded for i256 { |
| fn min_value() -> Self { |
| i256::MIN |
| } |
| |
| fn max_value() -> Self { |
| i256::MAX |
| } |
| } |
| |
| #[cfg(all(test, not(miri)))] // llvm.x86.subborrow.64 not supported by MIRI |
| mod tests { |
| use super::*; |
| use num_traits::Signed; |
| use rand::{Rng, rng}; |
| |
| #[test] |
| fn test_signed_cmp() { |
| let a = i256::from_parts(i128::MAX as u128, 12); |
| let b = i256::from_parts(i128::MIN as u128, 12); |
| assert!(a < b); |
| |
| let a = i256::from_parts(i128::MAX as u128, 12); |
| let b = i256::from_parts(i128::MIN as u128, -12); |
| assert!(a > b); |
| } |
| |
| #[test] |
| fn test_to_i128() { |
| let vals = [ |
| BigInt::from_i128(-1).unwrap(), |
| BigInt::from_i128(i128::MAX).unwrap(), |
| BigInt::from_i128(i128::MIN).unwrap(), |
| BigInt::from_u128(u128::MIN).unwrap(), |
| BigInt::from_u128(u128::MAX).unwrap(), |
| ]; |
| |
| for v in vals { |
| let (t, overflow) = i256::from_bigint_with_overflow(v.clone()); |
| assert!(!overflow); |
| assert_eq!(t.to_i128(), v.to_i128(), "{v} vs {t}"); |
| } |
| } |
| |
| /// Tests operations against the two provided [`i256`] |
| fn test_ops(il: i256, ir: i256) { |
| let bl = BigInt::from_signed_bytes_le(&il.to_le_bytes()); |
| let br = BigInt::from_signed_bytes_le(&ir.to_le_bytes()); |
| |
| // Comparison |
| assert_eq!(il.cmp(&ir), bl.cmp(&br), "{bl} cmp {br}"); |
| |
| // Conversions |
| assert_eq!(i256::from_le_bytes(il.to_le_bytes()), il); |
| assert_eq!(i256::from_be_bytes(il.to_be_bytes()), il); |
| assert_eq!(i256::from_le_bytes(ir.to_le_bytes()), ir); |
| assert_eq!(i256::from_be_bytes(ir.to_be_bytes()), ir); |
| |
| // To i128 |
| assert_eq!(il.to_i128(), bl.to_i128(), "{bl}"); |
| assert_eq!(ir.to_i128(), br.to_i128(), "{br}"); |
| |
| // Absolute value |
| let (abs, overflow) = i256::from_bigint_with_overflow(bl.abs()); |
| assert_eq!(il.wrapping_abs(), abs); |
| assert_eq!(il.checked_abs().is_none(), overflow); |
| |
| let (abs, overflow) = i256::from_bigint_with_overflow(br.abs()); |
| assert_eq!(ir.wrapping_abs(), abs); |
| assert_eq!(ir.checked_abs().is_none(), overflow); |
| |
| // Negation |
| let (neg, overflow) = i256::from_bigint_with_overflow(bl.clone().neg()); |
| assert_eq!(il.wrapping_neg(), neg); |
| assert_eq!(il.checked_neg().is_none(), overflow); |
| |
| // Negation |
| let (neg, overflow) = i256::from_bigint_with_overflow(br.clone().neg()); |
| assert_eq!(ir.wrapping_neg(), neg); |
| assert_eq!(ir.checked_neg().is_none(), overflow); |
| |
| // Addition |
| let actual = il.wrapping_add(ir); |
| let (expected, overflow) = i256::from_bigint_with_overflow(bl.clone() + br.clone()); |
| assert_eq!(actual, expected); |
| |
| let checked = il.checked_add(ir); |
| match overflow { |
| true => assert!(checked.is_none()), |
| false => assert_eq!(checked, Some(actual)), |
| } |
| |
| // Subtraction |
| let actual = il.wrapping_sub(ir); |
| let (expected, overflow) = i256::from_bigint_with_overflow(bl.clone() - br.clone()); |
| assert_eq!(actual.to_string(), expected.to_string()); |
| |
| let checked = il.checked_sub(ir); |
| match overflow { |
| true => assert!(checked.is_none()), |
| false => assert_eq!(checked, Some(actual), "{bl} - {br} = {expected}"), |
| } |
| |
| // Multiplication |
| let actual = il.wrapping_mul(ir); |
| let (expected, overflow) = i256::from_bigint_with_overflow(bl.clone() * br.clone()); |
| assert_eq!(actual.to_string(), expected.to_string()); |
| |
| let checked = il.checked_mul(ir); |
| match overflow { |
| true => assert!( |
| checked.is_none(), |
| "{il} * {ir} = {actual} vs {bl} * {br} = {expected}" |
| ), |
| false => assert_eq!( |
| checked, |
| Some(actual), |
| "{il} * {ir} = {actual} vs {bl} * {br} = {expected}" |
| ), |
| } |
| |
| // Division |
| if ir != i256::ZERO { |
| let actual = il.wrapping_div(ir); |
| let expected = bl.clone() / br.clone(); |
| let checked = il.checked_div(ir); |
| |
| if ir == i256::MINUS_ONE && il == i256::MIN { |
| // BigInt produces an integer over i256::MAX |
| assert_eq!(actual, i256::MIN); |
| assert!(checked.is_none()); |
| } else { |
| assert_eq!(actual.to_string(), expected.to_string()); |
| assert_eq!(checked.unwrap().to_string(), expected.to_string()); |
| } |
| } else { |
| // `wrapping_div` panics on division by zero |
| assert!(il.checked_div(ir).is_none()); |
| } |
| |
| // Remainder |
| if ir != i256::ZERO { |
| let actual = il.wrapping_rem(ir); |
| let expected = bl.clone() % br.clone(); |
| let checked = il.checked_rem(ir); |
| |
| assert_eq!(actual.to_string(), expected.to_string(), "{il} % {ir}"); |
| |
| if ir == i256::MINUS_ONE && il == i256::MIN { |
| assert!(checked.is_none()); |
| } else { |
| assert_eq!(checked.unwrap().to_string(), expected.to_string()); |
| } |
| } else { |
| // `wrapping_rem` panics on division by zero |
| assert!(il.checked_rem(ir).is_none()); |
| } |
| |
| // Exponentiation |
| for exp in vec![0, 1, 2, 3, 8, 100].into_iter() { |
| let actual = il.wrapping_pow(exp); |
| let (expected, overflow) = i256::from_bigint_with_overflow(bl.clone().pow(exp)); |
| assert_eq!(actual.to_string(), expected.to_string()); |
| |
| let checked = il.checked_pow(exp); |
| match overflow { |
| true => assert!( |
| checked.is_none(), |
| "{il} ^ {exp} = {actual} vs {bl} * {exp} = {expected}" |
| ), |
| false => assert_eq!( |
| checked, |
| Some(actual), |
| "{il} ^ {exp} = {actual} vs {bl} ^ {exp} = {expected}" |
| ), |
| } |
| } |
| |
| // Bit operations |
| let actual = il & ir; |
| let (expected, _) = i256::from_bigint_with_overflow(bl.clone() & br.clone()); |
| assert_eq!(actual.to_string(), expected.to_string()); |
| |
| let actual = il | ir; |
| let (expected, _) = i256::from_bigint_with_overflow(bl.clone() | br.clone()); |
| assert_eq!(actual.to_string(), expected.to_string()); |
| |
| let actual = il ^ ir; |
| let (expected, _) = i256::from_bigint_with_overflow(bl.clone() ^ br); |
| assert_eq!(actual.to_string(), expected.to_string()); |
| |
| for shift in [0_u8, 1, 4, 126, 128, 129, 254, 255] { |
| let actual = il << shift; |
| let (expected, _) = i256::from_bigint_with_overflow(bl.clone() << shift); |
| assert_eq!(actual.to_string(), expected.to_string()); |
| |
| let actual = il >> shift; |
| let (expected, _) = i256::from_bigint_with_overflow(bl.clone() >> shift); |
| assert_eq!(actual.to_string(), expected.to_string()); |
| } |
| } |
| |
| #[test] |
| fn test_i256() { |
| let candidates = [ |
| i256::ZERO, |
| i256::ONE, |
| i256::MINUS_ONE, |
| i256::from_i128(2), |
| i256::from_i128(-2), |
| i256::from_parts(u128::MAX, 1), |
| i256::from_parts(u128::MAX, -1), |
| i256::from_parts(0, 1), |
| i256::from_parts(0, -1), |
| i256::from_parts(1, -1), |
| i256::from_parts(1, 1), |
| i256::from_parts(0, i128::MAX), |
| i256::from_parts(0, i128::MIN), |
| i256::from_parts(1, i128::MAX), |
| i256::from_parts(1, i128::MIN), |
| i256::from_parts(u128::MAX, i128::MIN), |
| i256::from_parts(100, 32), |
| i256::MIN, |
| i256::MAX, |
| i256::MIN >> 1, |
| i256::MAX >> 1, |
| i256::ONE << 127, |
| i256::ONE << 128, |
| i256::ONE << 129, |
| i256::MINUS_ONE << 127, |
| i256::MINUS_ONE << 128, |
| i256::MINUS_ONE << 129, |
| ]; |
| |
| for il in candidates { |
| for ir in candidates { |
| test_ops(il, ir) |
| } |
| } |
| } |
| |
| #[test] |
| fn test_signed_ops() { |
| // signum |
| assert_eq!(i256::from_i128(1).signum(), i256::ONE); |
| assert_eq!(i256::from_i128(0).signum(), i256::ZERO); |
| assert_eq!(i256::from_i128(-0).signum(), i256::ZERO); |
| assert_eq!(i256::from_i128(-1).signum(), i256::MINUS_ONE); |
| |
| // is_positive |
| assert!(i256::from_i128(1).is_positive()); |
| assert!(!i256::from_i128(0).is_positive()); |
| assert!(!i256::from_i128(-0).is_positive()); |
| assert!(!i256::from_i128(-1).is_positive()); |
| |
| // is_negative |
| assert!(!i256::from_i128(1).is_negative()); |
| assert!(!i256::from_i128(0).is_negative()); |
| assert!(!i256::from_i128(-0).is_negative()); |
| assert!(i256::from_i128(-1).is_negative()); |
| } |
| |
| #[test] |
| #[cfg_attr(miri, ignore)] |
| fn test_i256_fuzz() { |
| let mut rng = rng(); |
| |
| for _ in 0..1000 { |
| let mut l = [0_u8; 32]; |
| let len = rng.random_range(0..32); |
| l.iter_mut().take(len).for_each(|x| *x = rng.random()); |
| |
| let mut r = [0_u8; 32]; |
| let len = rng.random_range(0..32); |
| r.iter_mut().take(len).for_each(|x| *x = rng.random()); |
| |
| test_ops(i256::from_le_bytes(l), i256::from_le_bytes(r)) |
| } |
| } |
| |
| #[test] |
| fn test_i256_to_primitive() { |
| let a = i256::MAX; |
| assert!(a.to_i64().is_none()); |
| assert!(a.to_u64().is_none()); |
| |
| let a = i256::from_i128(i128::MAX); |
| assert!(a.to_i64().is_none()); |
| assert!(a.to_u64().is_none()); |
| |
| let a = i256::from_i128(i64::MAX as i128); |
| assert_eq!(a.to_i64().unwrap(), i64::MAX); |
| assert_eq!(a.to_u64().unwrap(), i64::MAX as u64); |
| |
| let a = i256::from_i128(i64::MAX as i128 + 1); |
| assert!(a.to_i64().is_none()); |
| assert_eq!(a.to_u64().unwrap(), i64::MAX as u64 + 1); |
| |
| let a = i256::MIN; |
| assert!(a.to_i64().is_none()); |
| assert!(a.to_u64().is_none()); |
| |
| let a = i256::from_i128(i128::MIN); |
| assert!(a.to_i64().is_none()); |
| assert!(a.to_u64().is_none()); |
| |
| let a = i256::from_i128(i64::MIN as i128); |
| assert_eq!(a.to_i64().unwrap(), i64::MIN); |
| assert!(a.to_u64().is_none()); |
| |
| let a = i256::from_i128(i64::MIN as i128 - 1); |
| assert!(a.to_i64().is_none()); |
| assert!(a.to_u64().is_none()); |
| } |
| |
| #[test] |
| fn test_i256_as_i128() { |
| let a = i256::from_i128(i128::MAX).wrapping_add(i256::from_i128(1)); |
| let i128 = a.as_i128(); |
| assert_eq!(i128, i128::MIN); |
| |
| let a = i256::from_i128(i128::MAX).wrapping_add(i256::from_i128(2)); |
| let i128 = a.as_i128(); |
| assert_eq!(i128, i128::MIN + 1); |
| |
| let a = i256::from_i128(i128::MIN).wrapping_sub(i256::from_i128(1)); |
| let i128 = a.as_i128(); |
| assert_eq!(i128, i128::MAX); |
| |
| let a = i256::from_i128(i128::MIN).wrapping_sub(i256::from_i128(2)); |
| let i128 = a.as_i128(); |
| assert_eq!(i128, i128::MAX - 1); |
| } |
| |
| #[test] |
| fn test_string_roundtrip() { |
| let roundtrip_cases = [ |
| i256::ZERO, |
| i256::ONE, |
| i256::MINUS_ONE, |
| i256::from_i128(123456789), |
| i256::from_i128(-123456789), |
| i256::from_i128(i128::MIN), |
| i256::from_i128(i128::MAX), |
| i256::MIN, |
| i256::MAX, |
| ]; |
| for case in roundtrip_cases { |
| let formatted = case.to_string(); |
| let back: i256 = formatted.parse().unwrap(); |
| assert_eq!(case, back); |
| } |
| } |
| |
| #[test] |
| fn test_from_string() { |
| let cases = [ |
| ( |
| "000000000000000000000000000000000000000011", |
| Some(i256::from_i128(11)), |
| ), |
| ( |
| "-000000000000000000000000000000000000000011", |
| Some(i256::from_i128(-11)), |
| ), |
| ( |
| "-0000000000000000000000000000000000000000123456789", |
| Some(i256::from_i128(-123456789)), |
| ), |
| ("-", None), |
| ("+", None), |
| ("--1", None), |
| ("-+1", None), |
| ("000000000000000000000000000000000000000", Some(i256::ZERO)), |
| ("0000000000000000000000000000000000000000-11", None), |
| ("11-1111111111111111111111111111111111111", None), |
| ( |
| "115792089237316195423570985008687907853269984665640564039457584007913129639936", |
| None, |
| ), |
| ]; |
| for (case, expected) in cases { |
| assert_eq!(i256::from_string(case), expected) |
| } |
| } |
| |
| #[allow(clippy::op_ref)] |
| fn test_reference_op(il: i256, ir: i256) { |
| let r1 = il + ir; |
| let r2 = &il + ir; |
| let r3 = il + &ir; |
| let r4 = &il + &ir; |
| assert_eq!(r1, r2); |
| assert_eq!(r1, r3); |
| assert_eq!(r1, r4); |
| |
| let r1 = il - ir; |
| let r2 = &il - ir; |
| let r3 = il - &ir; |
| let r4 = &il - &ir; |
| assert_eq!(r1, r2); |
| assert_eq!(r1, r3); |
| assert_eq!(r1, r4); |
| |
| let r1 = il * ir; |
| let r2 = &il * ir; |
| let r3 = il * &ir; |
| let r4 = &il * &ir; |
| assert_eq!(r1, r2); |
| assert_eq!(r1, r3); |
| assert_eq!(r1, r4); |
| |
| let r1 = il / ir; |
| let r2 = &il / ir; |
| let r3 = il / &ir; |
| let r4 = &il / &ir; |
| assert_eq!(r1, r2); |
| assert_eq!(r1, r3); |
| assert_eq!(r1, r4); |
| } |
| |
| #[test] |
| fn test_i256_reference_op() { |
| let candidates = [ |
| i256::ONE, |
| i256::MINUS_ONE, |
| i256::from_i128(2), |
| i256::from_i128(-2), |
| i256::from_i128(3), |
| i256::from_i128(-3), |
| ]; |
| |
| for il in candidates { |
| for ir in candidates { |
| test_reference_op(il, ir) |
| } |
| } |
| } |
| |
| #[test] |
| fn test_decimal256_to_f64_typical_values() { |
| let v = i256::from_i128(42_i128); |
| assert_eq!(v.to_f64().unwrap(), 42.0); |
| |
| let v = i256::from_i128(-123456789012345678i128); |
| assert_eq!(v.to_f64().unwrap(), -123456789012345678.0); |
| |
| let v = i256::from_string("0").unwrap(); |
| assert_eq!(v.to_f64().unwrap(), 0.0); |
| |
| let v = i256::from_string("1").unwrap(); |
| assert_eq!(v.to_f64().unwrap(), 1.0); |
| |
| let mut rng = rng(); |
| for _ in 0..10 { |
| let f64_value = |
| (rng.random_range(i128::MIN..i128::MAX) as f64) * rng.random_range(0.0..1.0); |
| let big = i256::from_f64(f64_value).unwrap(); |
| assert_eq!(big.to_f64().unwrap(), f64_value); |
| } |
| } |
| |
| #[test] |
| fn test_decimal256_to_f64_large_positive_value() { |
| let max_f = f64::MAX; |
| let big = i256::from_f64(max_f * 2.0).unwrap_or(i256::MAX); |
| let out = big.to_f64().unwrap(); |
| assert!(out.is_finite() && out.is_sign_positive()); |
| } |
| |
| #[test] |
| fn test_decimal256_to_f64_large_negative_value() { |
| let max_f = f64::MAX; |
| let big_neg = i256::from_f64(-(max_f * 2.0)).unwrap_or(i256::MIN); |
| let out = big_neg.to_f64().unwrap(); |
| assert!(out.is_finite() && out.is_sign_negative()); |
| } |
| |
| #[test] |
| fn test_num_traits() { |
| let value = i256::from_i128(-5); |
| assert_eq!( |
| <i256 as CheckedNeg>::checked_neg(&value), |
| Some(i256::from(5)) |
| ); |
| |
| assert_eq!( |
| <i256 as CheckedAdd>::checked_add(&value, &value), |
| Some(i256::from(-10)) |
| ); |
| |
| assert_eq!( |
| <i256 as CheckedSub>::checked_sub(&value, &value), |
| Some(i256::from(0)) |
| ); |
| |
| assert_eq!( |
| <i256 as CheckedMul>::checked_mul(&value, &value), |
| Some(i256::from(25)) |
| ); |
| |
| assert_eq!( |
| <i256 as CheckedDiv>::checked_div(&value, &value), |
| Some(i256::from(1)) |
| ); |
| |
| assert_eq!( |
| <i256 as CheckedRem>::checked_rem(&value, &value), |
| Some(i256::from(0)) |
| ); |
| |
| assert_eq!( |
| <i256 as WrappingAdd>::wrapping_add(&value, &value), |
| i256::from(-10) |
| ); |
| |
| assert_eq!( |
| <i256 as WrappingSub>::wrapping_sub(&value, &value), |
| i256::from(0) |
| ); |
| |
| assert_eq!( |
| <i256 as WrappingMul>::wrapping_mul(&value, &value), |
| i256::from(25) |
| ); |
| |
| assert_eq!(<i256 as WrappingNeg>::wrapping_neg(&value), i256::from(5)); |
| |
| // A single check for wrapping behavior, rely on trait implementation for others |
| let result = <i256 as WrappingAdd>::wrapping_add(&i256::MAX, &i256::ONE); |
| assert_eq!(result, i256::MIN); |
| |
| assert_eq!(<i256 as Signed>::abs(&value), i256::from(5)); |
| |
| assert_eq!(<i256 as One>::one(), i256::from(1)); |
| assert_eq!(<i256 as Zero>::zero(), i256::from(0)); |
| |
| assert_eq!(<i256 as Bounded>::min_value(), i256::MIN); |
| assert_eq!(<i256 as Bounded>::max_value(), i256::MAX); |
| } |
| |
| #[test] |
| fn test_numtraits_from_str_radix() { |
| assert_eq!( |
| i256::from_str_radix("123456789", 10).expect("parsed"), |
| i256::from(123456789) |
| ); |
| assert_eq!( |
| i256::from_str_radix("0", 10).expect("parsed"), |
| i256::from(0) |
| ); |
| assert!(i256::from_str_radix("abc", 10).is_err()); |
| assert!(i256::from_str_radix("0", 16).is_err()); |
| } |
| |
| #[test] |
| fn test_leading_zeros() { |
| // Without high part |
| assert_eq!(i256::from(0).leading_zeros(), 256); |
| assert_eq!(i256::from(1).leading_zeros(), 256 - 1); |
| assert_eq!(i256::from(16).leading_zeros(), 256 - 5); |
| assert_eq!(i256::from(17).leading_zeros(), 256 - 5); |
| |
| // With high part |
| assert_eq!(i256::from_parts(2, 16).leading_zeros(), 128 - 5); |
| assert_eq!(i256::from_parts(2, i128::MAX).leading_zeros(), 1); |
| |
| assert_eq!(i256::MAX.leading_zeros(), 1); |
| assert_eq!(i256::from(-1).leading_zeros(), 0); |
| } |
| |
| #[test] |
| fn test_trailing_zeros() { |
| // Without high part |
| assert_eq!(i256::from(0).trailing_zeros(), 256); |
| assert_eq!(i256::from(2).trailing_zeros(), 1); |
| assert_eq!(i256::from(16).trailing_zeros(), 4); |
| assert_eq!(i256::from(17).trailing_zeros(), 0); |
| // With high part |
| assert_eq!(i256::from_parts(0, i128::MAX).trailing_zeros(), 128); |
| assert_eq!(i256::from_parts(0, 16).trailing_zeros(), 128 + 4); |
| assert_eq!(i256::from_parts(2, i128::MAX).trailing_zeros(), 1); |
| |
| assert_eq!(i256::MAX.trailing_zeros(), 0); |
| assert_eq!(i256::from(-1).trailing_zeros(), 0); |
| } |
| } |