blob: 35c7bfced1fd54d9c84ff72f2729c8605667488e [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::builder::{ArrayBuilder, GenericByteBuilder, PrimitiveBuilder};
use crate::types::{ArrowDictionaryKeyType, ByteArrayType, GenericBinaryType, GenericStringType};
use crate::{
Array, ArrayRef, DictionaryArray, GenericByteArray, PrimitiveArray, TypedDictionaryArray,
};
use arrow_buffer::ArrowNativeType;
use arrow_schema::{ArrowError, DataType};
use hashbrown::HashTable;
use num_traits::NumCast;
use std::any::Any;
use std::sync::Arc;
/// Builder for [`DictionaryArray`] of [`GenericByteArray`]
///
/// For example to map a set of byte indices to String values. Note that
/// the use of a `HashMap` here will not scale to very large arrays or
/// result in an ordered dictionary.
#[derive(Debug)]
pub struct GenericByteDictionaryBuilder<K, T>
where
K: ArrowDictionaryKeyType,
T: ByteArrayType,
{
state: ahash::RandomState,
dedup: HashTable<usize>,
keys_builder: PrimitiveBuilder<K>,
values_builder: GenericByteBuilder<T>,
}
impl<K, T> Default for GenericByteDictionaryBuilder<K, T>
where
K: ArrowDictionaryKeyType,
T: ByteArrayType,
{
fn default() -> Self {
Self::new()
}
}
impl<K, T> GenericByteDictionaryBuilder<K, T>
where
K: ArrowDictionaryKeyType,
T: ByteArrayType,
{
/// Creates a new `GenericByteDictionaryBuilder`
pub fn new() -> Self {
let keys_builder = PrimitiveBuilder::new();
let values_builder = GenericByteBuilder::<T>::new();
Self {
state: Default::default(),
dedup: HashTable::with_capacity(keys_builder.capacity()),
keys_builder,
values_builder,
}
}
/// Creates a new `GenericByteDictionaryBuilder` with the provided capacities
///
/// `keys_capacity`: the number of keys, i.e. length of array to build
/// `value_capacity`: the number of distinct dictionary values, i.e. size of dictionary
/// `data_capacity`: the total number of bytes of all distinct bytes in the dictionary
pub fn with_capacity(
keys_capacity: usize,
value_capacity: usize,
data_capacity: usize,
) -> Self {
Self {
state: Default::default(),
dedup: Default::default(),
keys_builder: PrimitiveBuilder::with_capacity(keys_capacity),
values_builder: GenericByteBuilder::<T>::with_capacity(value_capacity, data_capacity),
}
}
/// Creates a new `GenericByteDictionaryBuilder` from a keys capacity and a dictionary
/// which is initialized with the given values.
/// The indices of those dictionary values are used as keys.
///
/// # Example
///
/// ```
/// # use arrow_array::builder::StringDictionaryBuilder;
/// # use arrow_array::{Int16Array, StringArray};
///
/// let dictionary_values = StringArray::from(vec![None, Some("abc"), Some("def")]);
///
/// let mut builder = StringDictionaryBuilder::new_with_dictionary(3, &dictionary_values).unwrap();
/// builder.append("def").unwrap();
/// builder.append_null();
/// builder.append("abc").unwrap();
///
/// let dictionary_array = builder.finish();
///
/// let keys = dictionary_array.keys();
///
/// assert_eq!(keys, &Int16Array::from(vec![Some(2), None, Some(1)]));
/// ```
pub fn new_with_dictionary(
keys_capacity: usize,
dictionary_values: &GenericByteArray<T>,
) -> Result<Self, ArrowError> {
let state = ahash::RandomState::default();
let dict_len = dictionary_values.len();
let mut dedup = HashTable::with_capacity(dict_len);
let values_len = dictionary_values.value_data().len();
let mut values_builder = GenericByteBuilder::<T>::with_capacity(dict_len, values_len);
K::Native::from_usize(dictionary_values.len())
.ok_or(ArrowError::DictionaryKeyOverflowError)?;
for (idx, maybe_value) in dictionary_values.iter().enumerate() {
match maybe_value {
Some(value) => {
let value_bytes: &[u8] = value.as_ref();
let hash = state.hash_one(value_bytes);
dedup
.entry(
hash,
|idx: &usize| value_bytes == get_bytes(&values_builder, *idx),
|idx: &usize| state.hash_one(get_bytes(&values_builder, *idx)),
)
.or_insert(idx);
values_builder.append_value(value);
}
None => values_builder.append_null(),
}
}
Ok(Self {
state,
dedup,
keys_builder: PrimitiveBuilder::with_capacity(keys_capacity),
values_builder,
})
}
/// Creates a new `GenericByteDictionaryBuilder` from the existing builder with the same
/// keys and values, but with a new data type for the keys.
///
/// # Example
/// ```
/// #
/// # use arrow_array::builder::StringDictionaryBuilder;
/// # use arrow_array::types::{UInt8Type, UInt16Type};
/// # use arrow_array::UInt16Array;
/// # use arrow_schema::ArrowError;
///
/// let mut u8_keyed_builder = StringDictionaryBuilder::<UInt8Type>::new();
///
/// // appending too many values causes the dictionary to overflow
/// for i in 0..256 {
/// u8_keyed_builder.append_value(format!("{}", i));
/// }
/// let result = u8_keyed_builder.append("256");
/// assert!(matches!(result, Err(ArrowError::DictionaryKeyOverflowError{})));
///
/// // we need to upgrade to a larger key type
/// let mut u16_keyed_builder = StringDictionaryBuilder::<UInt16Type>::try_new_from_builder(u8_keyed_builder).unwrap();
/// let dictionary_array = u16_keyed_builder.finish();
/// let keys = dictionary_array.keys();
///
/// assert_eq!(keys, &UInt16Array::from_iter(0..256));
/// ```
pub fn try_new_from_builder<K2>(
mut source: GenericByteDictionaryBuilder<K2, T>,
) -> Result<Self, ArrowError>
where
K::Native: NumCast,
K2: ArrowDictionaryKeyType,
K2::Native: NumCast,
{
let state = source.state;
let dedup = source.dedup;
let values_builder = source.values_builder;
let source_keys = source.keys_builder.finish();
let new_keys: PrimitiveArray<K> = source_keys.try_unary(|value| {
num_traits::cast::cast::<K2::Native, K::Native>(value).ok_or_else(|| {
ArrowError::CastError(format!(
"Can't cast dictionary keys from source type {:?} to type {:?}",
K2::DATA_TYPE,
K::DATA_TYPE
))
})
})?;
// drop source key here because currently source_keys and new_keys are holding reference to
// the same underlying null_buffer. Below we want to call new_keys.into_builder() it must
// be the only reference holder.
drop(source_keys);
Ok(Self {
state,
dedup,
keys_builder: new_keys
.into_builder()
.expect("underlying buffer has no references"),
values_builder,
})
}
}
impl<K, T> ArrayBuilder for GenericByteDictionaryBuilder<K, T>
where
K: ArrowDictionaryKeyType,
T: ByteArrayType,
{
/// Returns the builder as an non-mutable `Any` reference.
fn as_any(&self) -> &dyn Any {
self
}
/// Returns the builder as an mutable `Any` reference.
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
/// Returns the boxed builder as a box of `Any`.
fn into_box_any(self: Box<Self>) -> Box<dyn Any> {
self
}
/// Returns the number of array slots in the builder
fn len(&self) -> usize {
self.keys_builder.len()
}
/// Builds the array and reset this builder.
fn finish(&mut self) -> ArrayRef {
Arc::new(self.finish())
}
/// Builds the array without resetting the builder.
fn finish_cloned(&self) -> ArrayRef {
Arc::new(self.finish_cloned())
}
}
impl<K, T> GenericByteDictionaryBuilder<K, T>
where
K: ArrowDictionaryKeyType,
T: ByteArrayType,
{
fn get_or_insert_key(&mut self, value: impl AsRef<T::Native>) -> Result<K::Native, ArrowError> {
let value_native: &T::Native = value.as_ref();
let value_bytes: &[u8] = value_native.as_ref();
let state = &self.state;
let storage = &mut self.values_builder;
let hash = state.hash_one(value_bytes);
let idx = *self
.dedup
.entry(
hash,
|idx| value_bytes == get_bytes(storage, *idx),
|idx| state.hash_one(get_bytes(storage, *idx)),
)
.or_insert_with(|| {
let idx = storage.len();
storage.append_value(value);
idx
})
.get();
let key = K::Native::from_usize(idx).ok_or(ArrowError::DictionaryKeyOverflowError)?;
Ok(key)
}
/// Append a value to the array. Return an existing index
/// if already present in the values array or a new index if the
/// value is appended to the values array.
///
/// Returns an error if the new index would overflow the key type.
pub fn append(&mut self, value: impl AsRef<T::Native>) -> Result<K::Native, ArrowError> {
let key = self.get_or_insert_key(value)?;
self.keys_builder.append_value(key);
Ok(key)
}
/// Append a value multiple times to the array.
/// This is the same as `append` but allows to append the same value multiple times without doing multiple lookups.
///
/// Returns an error if the new index would overflow the key type.
pub fn append_n(
&mut self,
value: impl AsRef<T::Native>,
count: usize,
) -> Result<K::Native, ArrowError> {
let key = self.get_or_insert_key(value)?;
self.keys_builder.append_value_n(key, count);
Ok(key)
}
/// Infallibly append a value to this builder
///
/// # Panics
///
/// Panics if the resulting length of the dictionary values array would exceed `T::Native::MAX`
pub fn append_value(&mut self, value: impl AsRef<T::Native>) {
self.append(value).expect("dictionary key overflow");
}
/// Infallibly append a value to this builder repeatedly `count` times.
/// This is the same as `append_value` but allows to append the same value multiple times without doing multiple lookups.
///
/// # Panics
///
/// Panics if the resulting length of the dictionary values array would exceed `T::Native::MAX`
pub fn append_values(&mut self, value: impl AsRef<T::Native>, count: usize) {
self.append_n(value, count)
.expect("dictionary key overflow");
}
/// Appends a null slot into the builder
#[inline]
pub fn append_null(&mut self) {
self.keys_builder.append_null()
}
/// Infallibly append `n` null slots into the builder
#[inline]
pub fn append_nulls(&mut self, n: usize) {
self.keys_builder.append_nulls(n)
}
/// Append an `Option` value into the builder
///
/// # Panics
///
/// Panics if the resulting length of the dictionary values array would exceed `T::Native::MAX`
#[inline]
pub fn append_option(&mut self, value: Option<impl AsRef<T::Native>>) {
match value {
None => self.append_null(),
Some(v) => self.append_value(v),
};
}
/// Append an `Option` value into the builder repeatedly `count` times.
/// This is the same as `append_option` but allows to append the same value multiple times without doing multiple lookups.
///
/// # Panics
///
/// Panics if the resulting length of the dictionary values array would exceed `T::Native::MAX`
pub fn append_options(&mut self, value: Option<impl AsRef<T::Native>>, count: usize) {
match value {
None => self.keys_builder.append_nulls(count),
Some(v) => self.append_values(v, count),
};
}
/// Extends builder with an existing dictionary array.
///
/// This is the same as [`Self::extend`] but is faster as it translates
/// the dictionary values once rather than doing a lookup for each item in the iterator
///
/// when dictionary values are null (the actual mapped values) the keys are null
///
pub fn extend_dictionary(
&mut self,
dictionary: &TypedDictionaryArray<K, GenericByteArray<T>>,
) -> Result<(), ArrowError> {
let values = dictionary.values();
let v_len = values.len();
let k_len = dictionary.keys().len();
if v_len == 0 && k_len == 0 {
return Ok(());
}
// All nulls
if v_len == 0 {
self.append_nulls(k_len);
return Ok(());
}
if k_len == 0 {
return Err(ArrowError::InvalidArgumentError(
"Dictionary keys should not be empty when values are not empty".to_string(),
));
}
// Orphan values will be carried over to the new dictionary
let mapped_values = values
.iter()
// Dictionary values can technically be null, so we need to handle that
.map(|dict_value| {
dict_value
.map(|dict_value| self.get_or_insert_key(dict_value))
.transpose()
})
.collect::<Result<Vec<_>, _>>()?;
// Just insert the keys without additional lookups
dictionary.keys().iter().for_each(|key| match key {
None => self.append_null(),
Some(original_dict_index) => {
let index = original_dict_index.as_usize().min(v_len - 1);
match mapped_values[index] {
None => self.append_null(),
Some(mapped_value) => self.keys_builder.append_value(mapped_value),
}
}
});
Ok(())
}
/// Builds the `DictionaryArray` and reset this builder.
pub fn finish(&mut self) -> DictionaryArray<K> {
self.dedup.clear();
let values = self.values_builder.finish();
let keys = self.keys_builder.finish();
let data_type = DataType::Dictionary(Box::new(K::DATA_TYPE), Box::new(T::DATA_TYPE));
let builder = keys
.into_data()
.into_builder()
.data_type(data_type)
.child_data(vec![values.into_data()]);
DictionaryArray::from(unsafe { builder.build_unchecked() })
}
/// Builds the `DictionaryArray` without resetting the builder.
pub fn finish_cloned(&self) -> DictionaryArray<K> {
let values = self.values_builder.finish_cloned();
let keys = self.keys_builder.finish_cloned();
let data_type = DataType::Dictionary(Box::new(K::DATA_TYPE), Box::new(T::DATA_TYPE));
let builder = keys
.into_data()
.into_builder()
.data_type(data_type)
.child_data(vec![values.into_data()]);
DictionaryArray::from(unsafe { builder.build_unchecked() })
}
/// Builds the `DictionaryArray` without resetting the values builder or
/// the internal de-duplication map.
///
/// The advantage of doing this is that the values will represent the entire
/// set of what has been built so-far by this builder and ensures
/// consistency in the assignment of keys to values across multiple calls
/// to `finish_preserve_values`. This enables ipc writers to efficiently
/// emit delta dictionaries.
///
/// The downside to this is that building the record requires creating a
/// copy of the values, which can become slowly more expensive if the
/// dictionary grows.
///
/// Additionally, if record batches from multiple different dictionary
/// builders for the same column are fed into a single ipc writer, beware
/// that entire dictionaries are likely to be re-sent frequently even when
/// the majority of the values are not used by the current record batch.
pub fn finish_preserve_values(&mut self) -> DictionaryArray<K> {
let values = self.values_builder.finish_cloned();
let keys = self.keys_builder.finish();
let data_type = DataType::Dictionary(Box::new(K::DATA_TYPE), Box::new(T::DATA_TYPE));
let builder = keys
.into_data()
.into_builder()
.data_type(data_type)
.child_data(vec![values.into_data()]);
DictionaryArray::from(unsafe { builder.build_unchecked() })
}
/// Returns the current null buffer as a slice
pub fn validity_slice(&self) -> Option<&[u8]> {
self.keys_builder.validity_slice()
}
}
impl<K: ArrowDictionaryKeyType, T: ByteArrayType, V: AsRef<T::Native>> Extend<Option<V>>
for GenericByteDictionaryBuilder<K, T>
{
#[inline]
fn extend<I: IntoIterator<Item = Option<V>>>(&mut self, iter: I) {
for v in iter {
self.append_option(v)
}
}
}
fn get_bytes<T: ByteArrayType>(values: &GenericByteBuilder<T>, idx: usize) -> &[u8] {
let offsets = values.offsets_slice();
let values = values.values_slice();
let end_offset = offsets[idx + 1].as_usize();
let start_offset = offsets[idx].as_usize();
&values[start_offset..end_offset]
}
/// Builder for [`DictionaryArray`] of [`StringArray`](crate::array::StringArray)
///
/// ```
/// // Create a dictionary array indexed by bytes whose values are Strings.
/// // It can thus hold up to 256 distinct string values.
///
/// # use arrow_array::builder::StringDictionaryBuilder;
/// # use arrow_array::{Int8Array, StringArray};
/// # use arrow_array::types::Int8Type;
///
/// let mut builder = StringDictionaryBuilder::<Int8Type>::new();
///
/// // The builder builds the dictionary value by value
/// builder.append("abc").unwrap();
/// builder.append_null();
/// builder.append_n("def", 2).unwrap(); // appends "def" twice with a single lookup
/// builder.append("abc").unwrap();
/// let array = builder.finish();
///
/// assert_eq!(
/// array.keys(),
/// &Int8Array::from(vec![Some(0), None, Some(1), Some(1), Some(0)])
/// );
///
/// // Values are polymorphic and so require a downcast.
/// let av = array.values();
/// let ava: &StringArray = av.as_any().downcast_ref::<StringArray>().unwrap();
///
/// assert_eq!(ava.value(0), "abc");
/// assert_eq!(ava.value(1), "def");
///
/// ```
pub type StringDictionaryBuilder<K> = GenericByteDictionaryBuilder<K, GenericStringType<i32>>;
/// Builder for [`DictionaryArray`] of [`LargeStringArray`](crate::array::LargeStringArray)
pub type LargeStringDictionaryBuilder<K> = GenericByteDictionaryBuilder<K, GenericStringType<i64>>;
/// Builder for [`DictionaryArray`] of [`BinaryArray`](crate::array::BinaryArray)
///
/// ```
/// // Create a dictionary array indexed by bytes whose values are binary.
/// // It can thus hold up to 256 distinct binary values.
///
/// # use arrow_array::builder::BinaryDictionaryBuilder;
/// # use arrow_array::{BinaryArray, Int8Array};
/// # use arrow_array::types::Int8Type;
///
/// let mut builder = BinaryDictionaryBuilder::<Int8Type>::new();
///
/// // The builder builds the dictionary value by value
/// builder.append(b"abc").unwrap();
/// builder.append_null();
/// builder.append(b"def").unwrap();
/// builder.append(b"def").unwrap();
/// builder.append(b"abc").unwrap();
/// let array = builder.finish();
///
/// assert_eq!(
/// array.keys(),
/// &Int8Array::from(vec![Some(0), None, Some(1), Some(1), Some(0)])
/// );
///
/// // Values are polymorphic and so require a downcast.
/// let av = array.values();
/// let ava: &BinaryArray = av.as_any().downcast_ref::<BinaryArray>().unwrap();
///
/// assert_eq!(ava.value(0), b"abc");
/// assert_eq!(ava.value(1), b"def");
///
/// ```
pub type BinaryDictionaryBuilder<K> = GenericByteDictionaryBuilder<K, GenericBinaryType<i32>>;
/// Builder for [`DictionaryArray`] of [`LargeBinaryArray`](crate::array::LargeBinaryArray)
pub type LargeBinaryDictionaryBuilder<K> = GenericByteDictionaryBuilder<K, GenericBinaryType<i64>>;
#[cfg(test)]
mod tests {
use super::*;
use crate::array::Int8Array;
use crate::cast::AsArray;
use crate::types::{Int8Type, Int16Type, Int32Type, UInt8Type, UInt16Type, Utf8Type};
use crate::{ArrowPrimitiveType, BinaryArray, StringArray};
fn test_bytes_dictionary_builder<T>(values: Vec<&T::Native>)
where
T: ByteArrayType,
<T as ByteArrayType>::Native: PartialEq,
<T as ByteArrayType>::Native: AsRef<<T as ByteArrayType>::Native>,
{
let mut builder = GenericByteDictionaryBuilder::<Int8Type, T>::new();
builder.append(values[0]).unwrap();
builder.append_null();
builder.append(values[1]).unwrap();
builder.append(values[1]).unwrap();
builder.append(values[0]).unwrap();
let array = builder.finish();
assert_eq!(
array.keys(),
&Int8Array::from(vec![Some(0), None, Some(1), Some(1), Some(0)])
);
// Values are polymorphic and so require a downcast.
let av = array.values();
let ava: &GenericByteArray<T> = av.as_any().downcast_ref::<GenericByteArray<T>>().unwrap();
assert_eq!(*ava.value(0), *values[0]);
assert_eq!(*ava.value(1), *values[1]);
}
#[test]
fn test_string_dictionary_builder() {
test_bytes_dictionary_builder::<GenericStringType<i32>>(vec!["abc", "def"]);
}
#[test]
fn test_binary_dictionary_builder() {
test_bytes_dictionary_builder::<GenericBinaryType<i32>>(vec![b"abc", b"def"]);
}
fn test_bytes_dictionary_builder_finish_cloned<T>(values: Vec<&T::Native>)
where
T: ByteArrayType,
<T as ByteArrayType>::Native: PartialEq,
<T as ByteArrayType>::Native: AsRef<<T as ByteArrayType>::Native>,
{
let mut builder = GenericByteDictionaryBuilder::<Int8Type, T>::new();
builder.append(values[0]).unwrap();
builder.append_null();
builder.append(values[1]).unwrap();
builder.append(values[1]).unwrap();
builder.append(values[0]).unwrap();
let mut array = builder.finish_cloned();
assert_eq!(
array.keys(),
&Int8Array::from(vec![Some(0), None, Some(1), Some(1), Some(0)])
);
// Values are polymorphic and so require a downcast.
let av = array.values();
let ava: &GenericByteArray<T> = av.as_any().downcast_ref::<GenericByteArray<T>>().unwrap();
assert_eq!(ava.value(0), values[0]);
assert_eq!(ava.value(1), values[1]);
builder.append(values[0]).unwrap();
builder.append(values[2]).unwrap();
builder.append(values[1]).unwrap();
array = builder.finish();
assert_eq!(
array.keys(),
&Int8Array::from(vec![
Some(0),
None,
Some(1),
Some(1),
Some(0),
Some(0),
Some(2),
Some(1)
])
);
// Values are polymorphic and so require a downcast.
let av2 = array.values();
let ava2: &GenericByteArray<T> =
av2.as_any().downcast_ref::<GenericByteArray<T>>().unwrap();
assert_eq!(ava2.value(0), values[0]);
assert_eq!(ava2.value(1), values[1]);
assert_eq!(ava2.value(2), values[2]);
}
#[test]
fn test_string_dictionary_builder_finish_cloned() {
test_bytes_dictionary_builder_finish_cloned::<GenericStringType<i32>>(vec![
"abc", "def", "ghi",
]);
}
#[test]
fn test_binary_dictionary_builder_finish_cloned() {
test_bytes_dictionary_builder_finish_cloned::<GenericBinaryType<i32>>(vec![
b"abc", b"def", b"ghi",
]);
}
fn _test_try_new_from_builder_generic_for_key_types<K1, K2, T>(values: Vec<&T::Native>)
where
K1: ArrowDictionaryKeyType,
K1::Native: NumCast,
K2: ArrowDictionaryKeyType,
K2::Native: NumCast + From<u8>,
T: ByteArrayType,
<T as ByteArrayType>::Native: PartialEq + AsRef<<T as ByteArrayType>::Native>,
{
let mut source = GenericByteDictionaryBuilder::<K1, T>::new();
source.append(values[0]).unwrap();
source.append(values[1]).unwrap();
source.append_null();
source.append(values[2]).unwrap();
let mut result =
GenericByteDictionaryBuilder::<K2, T>::try_new_from_builder(source).unwrap();
let array = result.finish();
let mut expected_keys_builder = PrimitiveBuilder::<K2>::new();
expected_keys_builder
.append_value(<<K2 as ArrowPrimitiveType>::Native as From<u8>>::from(0u8));
expected_keys_builder
.append_value(<<K2 as ArrowPrimitiveType>::Native as From<u8>>::from(1u8));
expected_keys_builder.append_null();
expected_keys_builder
.append_value(<<K2 as ArrowPrimitiveType>::Native as From<u8>>::from(2u8));
let expected_keys = expected_keys_builder.finish();
assert_eq!(array.keys(), &expected_keys);
let av = array.values();
let ava: &GenericByteArray<T> = av.as_any().downcast_ref::<GenericByteArray<T>>().unwrap();
assert_eq!(ava.value(0), values[0]);
assert_eq!(ava.value(1), values[1]);
assert_eq!(ava.value(2), values[2]);
}
fn test_try_new_from_builder<T>(values: Vec<&T::Native>)
where
T: ByteArrayType,
<T as ByteArrayType>::Native: PartialEq + AsRef<<T as ByteArrayType>::Native>,
{
// test cast to bigger size unsigned
_test_try_new_from_builder_generic_for_key_types::<UInt8Type, UInt16Type, T>(
values.clone(),
);
// test cast going to smaller size unsigned
_test_try_new_from_builder_generic_for_key_types::<UInt16Type, UInt8Type, T>(
values.clone(),
);
// test cast going to bigger size signed
_test_try_new_from_builder_generic_for_key_types::<Int8Type, Int16Type, T>(values.clone());
// test cast going to smaller size signed
_test_try_new_from_builder_generic_for_key_types::<Int32Type, Int16Type, T>(values.clone());
// test going from signed to signed for different size changes
_test_try_new_from_builder_generic_for_key_types::<UInt8Type, Int16Type, T>(values.clone());
_test_try_new_from_builder_generic_for_key_types::<Int8Type, UInt8Type, T>(values.clone());
_test_try_new_from_builder_generic_for_key_types::<Int8Type, UInt16Type, T>(values.clone());
_test_try_new_from_builder_generic_for_key_types::<Int32Type, Int16Type, T>(values.clone());
}
#[test]
fn test_string_dictionary_builder_try_new_from_builder() {
test_try_new_from_builder::<GenericStringType<i32>>(vec!["abc", "def", "ghi"]);
}
#[test]
fn test_binary_dictionary_builder_try_new_from_builder() {
test_try_new_from_builder::<GenericBinaryType<i32>>(vec![b"abc", b"def", b"ghi"]);
}
#[test]
fn test_try_new_from_builder_cast_fails() {
let mut source_builder = StringDictionaryBuilder::<UInt16Type>::new();
for i in 0..257 {
source_builder.append_value(format!("val{i}"));
}
// there should be too many values that we can't downcast to the underlying type
// we have keys that wouldn't fit into UInt8Type
let result = StringDictionaryBuilder::<UInt8Type>::try_new_from_builder(source_builder);
assert!(result.is_err());
if let Err(e) = result {
assert!(matches!(e, ArrowError::CastError(_)));
assert_eq!(
e.to_string(),
"Cast error: Can't cast dictionary keys from source type UInt16 to type UInt8"
);
}
}
fn test_bytes_dictionary_builder_with_existing_dictionary<T>(
dictionary: GenericByteArray<T>,
values: Vec<&T::Native>,
) where
T: ByteArrayType,
<T as ByteArrayType>::Native: PartialEq,
<T as ByteArrayType>::Native: AsRef<<T as ByteArrayType>::Native>,
{
let mut builder =
GenericByteDictionaryBuilder::<Int8Type, T>::new_with_dictionary(6, &dictionary)
.unwrap();
builder.append(values[0]).unwrap();
builder.append_null();
builder.append(values[1]).unwrap();
builder.append(values[1]).unwrap();
builder.append(values[0]).unwrap();
builder.append(values[2]).unwrap();
let array = builder.finish();
assert_eq!(
array.keys(),
&Int8Array::from(vec![Some(2), None, Some(1), Some(1), Some(2), Some(3)])
);
// Values are polymorphic and so require a downcast.
let av = array.values();
let ava: &GenericByteArray<T> = av.as_any().downcast_ref::<GenericByteArray<T>>().unwrap();
assert!(!ava.is_valid(0));
assert_eq!(ava.value(1), values[1]);
assert_eq!(ava.value(2), values[0]);
assert_eq!(ava.value(3), values[2]);
}
#[test]
fn test_string_dictionary_builder_with_existing_dictionary() {
test_bytes_dictionary_builder_with_existing_dictionary::<GenericStringType<i32>>(
StringArray::from(vec![None, Some("def"), Some("abc")]),
vec!["abc", "def", "ghi"],
);
}
#[test]
fn test_binary_dictionary_builder_with_existing_dictionary() {
let values: Vec<Option<&[u8]>> = vec![None, Some(b"def"), Some(b"abc")];
test_bytes_dictionary_builder_with_existing_dictionary::<GenericBinaryType<i32>>(
BinaryArray::from(values),
vec![b"abc", b"def", b"ghi"],
);
}
fn test_bytes_dictionary_builder_with_reserved_null_value<T>(
dictionary: GenericByteArray<T>,
values: Vec<&T::Native>,
) where
T: ByteArrayType,
<T as ByteArrayType>::Native: PartialEq,
<T as ByteArrayType>::Native: AsRef<<T as ByteArrayType>::Native>,
{
let mut builder =
GenericByteDictionaryBuilder::<Int16Type, T>::new_with_dictionary(4, &dictionary)
.unwrap();
builder.append(values[0]).unwrap();
builder.append_null();
builder.append(values[1]).unwrap();
builder.append(values[0]).unwrap();
let array = builder.finish();
assert!(array.is_null(1));
assert!(!array.is_valid(1));
let keys = array.keys();
assert_eq!(keys.value(0), 1);
assert!(keys.is_null(1));
// zero initialization is currently guaranteed by Buffer allocation and resizing
assert_eq!(keys.value(1), 0);
assert_eq!(keys.value(2), 2);
assert_eq!(keys.value(3), 1);
}
#[test]
fn test_string_dictionary_builder_with_reserved_null_value() {
let v: Vec<Option<&str>> = vec![None];
test_bytes_dictionary_builder_with_reserved_null_value::<GenericStringType<i32>>(
StringArray::from(v),
vec!["abc", "def"],
);
}
#[test]
fn test_binary_dictionary_builder_with_reserved_null_value() {
let values: Vec<Option<&[u8]>> = vec![None];
test_bytes_dictionary_builder_with_reserved_null_value::<GenericBinaryType<i32>>(
BinaryArray::from(values),
vec![b"abc", b"def"],
);
}
#[test]
fn test_extend() {
let mut builder = GenericByteDictionaryBuilder::<Int32Type, Utf8Type>::new();
builder.extend(["a", "b", "c", "a", "b", "c"].into_iter().map(Some));
builder.extend(["c", "d", "a"].into_iter().map(Some));
let dict = builder.finish();
assert_eq!(dict.keys().values(), &[0, 1, 2, 0, 1, 2, 2, 3, 0]);
assert_eq!(dict.values().len(), 4);
}
#[test]
fn test_extend_dictionary() {
let some_dict = {
let mut builder = GenericByteDictionaryBuilder::<Int32Type, Utf8Type>::new();
builder.extend(["a", "b", "c", "a", "b", "c"].into_iter().map(Some));
builder.extend([None::<&str>]);
builder.extend(["c", "d", "a"].into_iter().map(Some));
builder.append_null();
builder.finish()
};
let mut builder = GenericByteDictionaryBuilder::<Int32Type, Utf8Type>::new();
builder.extend(["e", "e", "f", "e", "d"].into_iter().map(Some));
builder
.extend_dictionary(&some_dict.downcast_dict().unwrap())
.unwrap();
let dict = builder.finish();
assert_eq!(dict.values().len(), 6);
let values = dict
.downcast_dict::<GenericByteArray<Utf8Type>>()
.unwrap()
.into_iter()
.collect::<Vec<_>>();
assert_eq!(
values,
[
Some("e"),
Some("e"),
Some("f"),
Some("e"),
Some("d"),
Some("a"),
Some("b"),
Some("c"),
Some("a"),
Some("b"),
Some("c"),
None,
Some("c"),
Some("d"),
Some("a"),
None
]
);
}
#[test]
fn test_extend_dictionary_with_null_in_mapped_value() {
let some_dict = {
let mut values_builder = GenericByteBuilder::<Utf8Type>::new();
let mut keys_builder = PrimitiveBuilder::<Int32Type>::new();
// Manually build a dictionary values that the mapped values have null
values_builder.append_null();
keys_builder.append_value(0);
values_builder.append_value("I like worm hugs");
keys_builder.append_value(1);
let values = values_builder.finish();
let keys = keys_builder.finish();
let data_type = DataType::Dictionary(
Box::new(Int32Type::DATA_TYPE),
Box::new(Utf8Type::DATA_TYPE),
);
let builder = keys
.into_data()
.into_builder()
.data_type(data_type)
.child_data(vec![values.into_data()]);
DictionaryArray::from(unsafe { builder.build_unchecked() })
};
let some_dict_values = some_dict.values().as_string::<i32>();
assert_eq!(
some_dict_values.into_iter().collect::<Vec<_>>(),
&[None, Some("I like worm hugs")]
);
let mut builder = GenericByteDictionaryBuilder::<Int32Type, Utf8Type>::new();
builder
.extend_dictionary(&some_dict.downcast_dict().unwrap())
.unwrap();
let dict = builder.finish();
assert_eq!(dict.values().len(), 1);
let values = dict
.downcast_dict::<GenericByteArray<Utf8Type>>()
.unwrap()
.into_iter()
.collect::<Vec<_>>();
assert_eq!(values, [None, Some("I like worm hugs")]);
}
#[test]
fn test_extend_all_null_dictionary() {
let some_dict = {
let mut builder = GenericByteDictionaryBuilder::<Int32Type, Utf8Type>::new();
builder.append_nulls(2);
builder.finish()
};
let mut builder = GenericByteDictionaryBuilder::<Int32Type, Utf8Type>::new();
builder
.extend_dictionary(&some_dict.downcast_dict().unwrap())
.unwrap();
let dict = builder.finish();
assert_eq!(dict.values().len(), 0);
let values = dict
.downcast_dict::<GenericByteArray<Utf8Type>>()
.unwrap()
.into_iter()
.collect::<Vec<_>>();
assert_eq!(values, [None, None]);
}
#[test]
fn test_finish_preserve_values() {
// Create the first dictionary
let mut builder = GenericByteDictionaryBuilder::<Int32Type, Utf8Type>::new();
builder.append("a").unwrap();
builder.append("b").unwrap();
builder.append("c").unwrap();
let dict = builder.finish_preserve_values();
assert_eq!(dict.keys().values(), &[0, 1, 2]);
assert_eq!(dict.values().len(), 3);
let values = dict
.downcast_dict::<GenericByteArray<Utf8Type>>()
.unwrap()
.into_iter()
.collect::<Vec<_>>();
assert_eq!(values, [Some("a"), Some("b"), Some("c")]);
// Create a new dictionary
builder.append("d").unwrap();
builder.append("e").unwrap();
let dict2 = builder.finish_preserve_values();
// Make sure the keys are assigned after the old ones and we have the
// right values
assert_eq!(dict2.keys().values(), &[3, 4]);
let values = dict2
.downcast_dict::<GenericByteArray<Utf8Type>>()
.unwrap()
.into_iter()
.collect::<Vec<_>>();
assert_eq!(values, [Some("d"), Some("e")]);
// Check that we have all of the expected values
assert_eq!(dict2.values().len(), 5);
let all_values = dict2
.values()
.as_any()
.downcast_ref::<StringArray>()
.unwrap()
.into_iter()
.collect::<Vec<_>>();
assert_eq!(
all_values,
[Some("a"), Some("b"), Some("c"), Some("d"), Some("e"),]
);
}
}