blob: 2851d4361d49724ef1e3f53df1d7e005de050f89 [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr_thread_proc.h"
#include "apr_file_io.h"
#include "apr_thread_mutex.h"
#include "apr_thread_rwlock.h"
#include "apr_thread_cond.h"
#include "apr_errno.h"
#include "apr_general.h"
#include "apr_getopt.h"
#include "apr_atomic.h"
#include "testutil.h"
#if APR_HAS_THREADS
#define MAX_ITER 40000
#define MAX_COUNTER 100000
#define MAX_RETRY 5
static void *APR_THREAD_FUNC thread_rwlock_func(apr_thread_t *thd, void *data);
static void *APR_THREAD_FUNC thread_mutex_function(apr_thread_t *thd, void *data);
static void *APR_THREAD_FUNC thread_mutex_sleep_function(apr_thread_t *thd, void *data);
static void *APR_THREAD_FUNC thread_cond_producer(apr_thread_t *thd, void *data);
static void *APR_THREAD_FUNC thread_cond_consumer(apr_thread_t *thd, void *data);
static apr_thread_mutex_t *thread_mutex;
static apr_thread_rwlock_t *rwlock;
static int i = 0, x = 0;
static int buff[MAX_COUNTER];
struct {
apr_thread_mutex_t *mutex;
int nput;
int nval;
} put;
struct {
apr_thread_mutex_t *mutex;
apr_thread_cond_t *cond;
int nready;
} nready;
static apr_thread_mutex_t *timeout_mutex;
static apr_thread_cond_t *timeout_cond;
static void *APR_THREAD_FUNC thread_rwlock_func(apr_thread_t *thd, void *data)
{
int exitLoop = 1;
while (1)
{
apr_thread_rwlock_rdlock(rwlock);
if (i == MAX_ITER)
exitLoop = 0;
apr_thread_rwlock_unlock(rwlock);
if (!exitLoop)
break;
apr_thread_rwlock_wrlock(rwlock);
if (i != MAX_ITER)
{
i++;
x++;
}
apr_thread_rwlock_unlock(rwlock);
}
return NULL;
}
static void *APR_THREAD_FUNC thread_mutex_function(apr_thread_t *thd, void *data)
{
int exitLoop = 1;
/* slight delay to allow things to settle */
apr_sleep (1);
while (1) {
apr_status_t rv;
if (data) {
rv = apr_thread_mutex_timedlock(thread_mutex, *(apr_interval_time_t *)data);
}
else {
rv = apr_thread_mutex_lock(thread_mutex);
}
if (rv != APR_SUCCESS) {
fprintf(stderr, "thread_mutex_function: failed locking mutex\n");
apr_thread_exit(thd, rv);
break;
}
if (i == MAX_ITER)
exitLoop = 0;
else
{
i++;
x++;
}
rv = apr_thread_mutex_unlock(thread_mutex);
if (rv != APR_SUCCESS) {
fprintf(stderr, "thread_mutex_function: failed unlocking mutex\n");
apr_thread_exit(thd, rv);
break;
}
if (!exitLoop)
break;
}
apr_thread_exit(thd, APR_SUCCESS);
return NULL;
}
/* Sleepy-loop until f_ value matches val: */
#define wait_for_flag(f_, val) while (apr_atomic_read32(&(f_)) != val) apr_sleep(100000)
/* Helper function. Passed (apr_uint32_t *) flag as data, sets flag
* to one, locks the timeout_mutex, waits for *flag to be set to zero
* and terminates. The co-ordination could also be done via mutexes
* but since we're timedlocking timeout_mutex it would look like a
* deadlock to a mutex implementation which detects deadlocks. */
static void *APR_THREAD_FUNC thread_mutex_sleep_function(apr_thread_t *thd, void *data)
{
apr_uint32_t *flag = data;
apr_status_t rv;
rv = apr_thread_mutex_lock(timeout_mutex);
if (rv) {
fprintf(stderr, "testlock: failed to lock timeout mutex, errno %d\n", rv);
apr_thread_exit(thd, rv);
}
apr_atomic_set32(flag, 1);
wait_for_flag(*flag, 0);
rv = apr_thread_mutex_unlock(timeout_mutex);
apr_thread_exit(thd, APR_SUCCESS);
return NULL;
}
static void *APR_THREAD_FUNC thread_cond_producer(apr_thread_t *thd, void *data)
{
for (;;) {
apr_thread_mutex_lock(put.mutex);
if (put.nput >= MAX_COUNTER) {
apr_thread_mutex_unlock(put.mutex);
return NULL;
}
buff[put.nput] = put.nval;
put.nput++;
put.nval++;
apr_thread_mutex_unlock(put.mutex);
apr_thread_mutex_lock(nready.mutex);
if (nready.nready == 0)
apr_thread_cond_signal(nready.cond);
nready.nready++;
apr_thread_mutex_unlock(nready.mutex);
*((int *) data) += 1;
}
return NULL;
}
static void *APR_THREAD_FUNC thread_cond_consumer(apr_thread_t *thd, void *data)
{
int i;
for (i = 0; i < MAX_COUNTER; i++) {
apr_thread_mutex_lock(nready.mutex);
while (nready.nready == 0)
apr_thread_cond_wait(nready.cond, nready.mutex);
nready.nready--;
apr_thread_mutex_unlock(nready.mutex);
if (buff[i] != i)
printf("buff[%d] = %d\n", i, buff[i]);
}
return NULL;
}
#define JOIN_WITH_SUCCESS(tc_, thd_) do { apr_status_t rv__thd; \
APR_ASSERT_SUCCESS(tc_, "join thread", apr_thread_join(&rv__thd, thd_)); \
APR_ASSERT_SUCCESS(tc_, "spawned thread terminated successfully", rv__thd); \
} while (0)
static void test_thread_mutex(abts_case *tc, void *data)
{
apr_thread_t *t1, *t2, *t3, *t4;
apr_status_t s1, s2, s3, s4;
s1 = apr_thread_mutex_create(&thread_mutex, APR_THREAD_MUTEX_DEFAULT, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s1);
ABTS_PTR_NOTNULL(tc, thread_mutex);
i = 0;
x = 0;
s1 = apr_thread_create(&t1, NULL, thread_mutex_function, NULL, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s1);
s2 = apr_thread_create(&t2, NULL, thread_mutex_function, NULL, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s2);
s3 = apr_thread_create(&t3, NULL, thread_mutex_function, NULL, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s3);
s4 = apr_thread_create(&t4, NULL, thread_mutex_function, NULL, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s4);
JOIN_WITH_SUCCESS(tc, t1);
JOIN_WITH_SUCCESS(tc, t2);
JOIN_WITH_SUCCESS(tc, t3);
JOIN_WITH_SUCCESS(tc, t4);
ABTS_INT_EQUAL(tc, MAX_ITER, x);
}
static void test_thread_timedmutex(abts_case *tc, void *data)
{
apr_thread_t *t1, *t2, *t3, *t4;
apr_status_t s1, s2, s3, s4;
apr_interval_time_t timeout;
s1 = apr_thread_mutex_create(&thread_mutex, APR_THREAD_MUTEX_TIMED, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s1);
ABTS_PTR_NOTNULL(tc, thread_mutex);
i = 0;
x = 0;
timeout = apr_time_from_sec(5);
s1 = apr_thread_create(&t1, NULL, thread_mutex_function, &timeout, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s1);
s2 = apr_thread_create(&t2, NULL, thread_mutex_function, &timeout, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s2);
s3 = apr_thread_create(&t3, NULL, thread_mutex_function, &timeout, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s3);
s4 = apr_thread_create(&t4, NULL, thread_mutex_function, &timeout, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s4);
JOIN_WITH_SUCCESS(tc, t1);
JOIN_WITH_SUCCESS(tc, t2);
JOIN_WITH_SUCCESS(tc, t3);
JOIN_WITH_SUCCESS(tc, t4);
ABTS_INT_EQUAL(tc, MAX_ITER, x);
}
static void test_thread_rwlock(abts_case *tc, void *data)
{
apr_thread_t *t1, *t2, *t3, *t4;
apr_status_t s1, s2, s3, s4;
s1 = apr_thread_rwlock_create(&rwlock, p);
if (s1 == APR_ENOTIMPL) {
ABTS_NOT_IMPL(tc, "rwlocks not implemented");
return;
}
APR_ASSERT_SUCCESS(tc, "rwlock_create", s1);
ABTS_PTR_NOTNULL(tc, rwlock);
i = 0;
x = 0;
s1 = apr_thread_create(&t1, NULL, thread_rwlock_func, NULL, p);
APR_ASSERT_SUCCESS(tc, "create thread 1", s1);
s2 = apr_thread_create(&t2, NULL, thread_rwlock_func, NULL, p);
APR_ASSERT_SUCCESS(tc, "create thread 2", s2);
s3 = apr_thread_create(&t3, NULL, thread_rwlock_func, NULL, p);
APR_ASSERT_SUCCESS(tc, "create thread 3", s3);
s4 = apr_thread_create(&t4, NULL, thread_rwlock_func, NULL, p);
APR_ASSERT_SUCCESS(tc, "create thread 4", s4);
apr_thread_join(&s1, t1);
apr_thread_join(&s2, t2);
apr_thread_join(&s3, t3);
apr_thread_join(&s4, t4);
ABTS_INT_EQUAL(tc, MAX_ITER, x);
apr_thread_rwlock_destroy(rwlock);
}
static void test_cond(abts_case *tc, void *data)
{
apr_thread_t *p1, *p2, *p3, *p4, *c1;
apr_status_t s0, s1, s2, s3, s4;
int count1, count2, count3, count4;
int sum;
APR_ASSERT_SUCCESS(tc, "create put mutex",
apr_thread_mutex_create(&put.mutex,
APR_THREAD_MUTEX_DEFAULT, p));
ABTS_PTR_NOTNULL(tc, put.mutex);
APR_ASSERT_SUCCESS(tc, "create nready mutex",
apr_thread_mutex_create(&nready.mutex,
APR_THREAD_MUTEX_DEFAULT, p));
ABTS_PTR_NOTNULL(tc, nready.mutex);
APR_ASSERT_SUCCESS(tc, "create condvar",
apr_thread_cond_create(&nready.cond, p));
ABTS_PTR_NOTNULL(tc, nready.cond);
count1 = count2 = count3 = count4 = 0;
put.nput = put.nval = 0;
nready.nready = 0;
i = 0;
x = 0;
s0 = apr_thread_create(&p1, NULL, thread_cond_producer, &count1, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s0);
s1 = apr_thread_create(&p2, NULL, thread_cond_producer, &count2, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s1);
s2 = apr_thread_create(&p3, NULL, thread_cond_producer, &count3, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s2);
s3 = apr_thread_create(&p4, NULL, thread_cond_producer, &count4, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s3);
s4 = apr_thread_create(&c1, NULL, thread_cond_consumer, NULL, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s4);
apr_thread_join(&s0, p1);
apr_thread_join(&s1, p2);
apr_thread_join(&s2, p3);
apr_thread_join(&s3, p4);
apr_thread_join(&s4, c1);
APR_ASSERT_SUCCESS(tc, "destroy condvar",
apr_thread_cond_destroy(nready.cond));
sum = count1 + count2 + count3 + count4;
/*
printf("count1 = %d count2 = %d count3 = %d count4 = %d\n",
count1, count2, count3, count4);
*/
ABTS_INT_EQUAL(tc, MAX_COUNTER, sum);
}
static void test_timeoutcond(abts_case *tc, void *data)
{
apr_status_t s;
apr_interval_time_t timeout;
apr_time_t begin, end;
int i;
s = apr_thread_mutex_create(&timeout_mutex, APR_THREAD_MUTEX_DEFAULT, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s);
ABTS_PTR_NOTNULL(tc, timeout_mutex);
s = apr_thread_cond_create(&timeout_cond, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s);
ABTS_PTR_NOTNULL(tc, timeout_cond);
timeout = apr_time_from_sec(5);
for (i = 0; i < MAX_RETRY; i++) {
apr_thread_mutex_lock(timeout_mutex);
begin = apr_time_now();
s = apr_thread_cond_timedwait(timeout_cond, timeout_mutex, timeout);
end = apr_time_now();
apr_thread_mutex_unlock(timeout_mutex);
if (s != APR_SUCCESS && !APR_STATUS_IS_TIMEUP(s)) {
continue;
}
ABTS_INT_EQUAL(tc, 1, APR_STATUS_IS_TIMEUP(s));
ABTS_ASSERT(tc, "Timer returned too late", end - begin - timeout < 500000);
break;
}
ABTS_ASSERT(tc, "Too many retries", i < MAX_RETRY);
APR_ASSERT_SUCCESS(tc, "Unable to destroy the conditional",
apr_thread_cond_destroy(timeout_cond));
}
/* Test whether _timedlock times out appropriately. Since
* double-locking a non-recursive mutex has undefined behaviour, and
* double-locking a recursive mutex succeeds immediately, a thread is
* spawned to hold the lock while this thread tests whether _timedlock
* times out. */
static void test_timeoutmutex(abts_case *tc, void *data)
{
apr_status_t s;
apr_interval_time_t timeout;
apr_time_t begin, end;
apr_thread_t *th;
apr_uint32_t flag = 0;
int i;
s = apr_thread_mutex_create(&timeout_mutex,
APR_THREAD_MUTEX_TIMED |
APR_THREAD_MUTEX_UNNESTED, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s);
ABTS_PTR_NOTNULL(tc, timeout_mutex);
s = apr_thread_create(&th, NULL, thread_mutex_sleep_function, &flag, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, s);
wait_for_flag(flag, 1); /* the thread will set flag to 1 once the
* timeout_mutex is locked. */
timeout = apr_time_from_sec(5);
for (i = 0; i < MAX_RETRY; i++) {
begin = apr_time_now();
s = apr_thread_mutex_timedlock(timeout_mutex, timeout);
end = apr_time_now();
if (s != APR_SUCCESS && !APR_STATUS_IS_TIMEUP(s)) {
continue;
}
ABTS_INT_EQUAL(tc, 1, APR_STATUS_IS_TIMEUP(s));
ABTS_ASSERT(tc, "Timer returned too late", end - begin - timeout < 1000000);
break;
}
apr_atomic_set32(&flag, 0); /* tell the thread to exit. */
JOIN_WITH_SUCCESS(tc, th);
ABTS_ASSERT(tc, "Too many retries", i < MAX_RETRY);
APR_ASSERT_SUCCESS(tc, "Unable to destroy the timeout mutex",
apr_thread_mutex_destroy(timeout_mutex));
}
static void test_thread_nestedmutex(abts_case *tc, void *data)
{
apr_thread_mutex_t *m;
apr_status_t rv;
rv = apr_thread_mutex_create(&m, APR_THREAD_MUTEX_NESTED, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
ABTS_PTR_NOTNULL(tc, m);
rv = apr_thread_mutex_lock(m);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
rv = apr_thread_mutex_trylock(m);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
if (rv == APR_SUCCESS)
{
rv = apr_thread_mutex_unlock(m);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
}
rv = apr_thread_mutex_unlock(m);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
}
static void test_thread_unnestedmutex(abts_case *tc, void *data)
{
apr_thread_mutex_t *m;
apr_status_t rv;
rv = apr_thread_mutex_create(&m, APR_THREAD_MUTEX_UNNESTED, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
ABTS_PTR_NOTNULL(tc, m);
rv = apr_thread_mutex_lock(m);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
rv = apr_thread_mutex_trylock(m);
ABTS_INT_EQUAL(tc, APR_EBUSY, rv);
if (rv == APR_SUCCESS)
{
rv = apr_thread_mutex_unlock(m);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
}
rv = apr_thread_mutex_unlock(m);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
}
#ifdef WIN32
static void *APR_THREAD_FUNC
thread_win32_abandoned_mutex_function(apr_thread_t *thd, void *data)
{
apr_thread_mutex_t *mutex = data;
apr_status_t rv;
rv = apr_thread_mutex_lock(mutex);
/* exit from thread without unlocking mutex. */
apr_thread_exit(thd, rv);
return NULL;
}
static void test_win32_abandoned_mutex(abts_case *tc, void *data)
{
apr_status_t rv;
apr_thread_t *thread;
apr_thread_mutex_t *mutex;
/* Create timed mutex: APR will create Win32 mutex object in this case. */
rv = apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_TIMED, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
rv = apr_thread_create(&thread, NULL, thread_win32_abandoned_mutex_function,
mutex, p);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
apr_thread_join(&rv, thread);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
rv = apr_thread_mutex_trylock(mutex);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
rv = apr_thread_mutex_unlock (mutex);
ABTS_INT_EQUAL(tc, APR_SUCCESS, rv);
}
#endif
#endif /* !APR_HAS_THREADS */
#if !APR_HAS_THREADS
static void threads_not_impl(abts_case *tc, void *data)
{
ABTS_NOT_IMPL(tc, "Threads not implemented on this platform");
}
#endif
abts_suite *testlock(abts_suite *suite)
{
suite = ADD_SUITE(suite)
#if !APR_HAS_THREADS
abts_run_test(suite, threads_not_impl, NULL);
#else
abts_run_test(suite, test_thread_mutex, NULL);
abts_run_test(suite, test_thread_timedmutex, NULL);
abts_run_test(suite, test_thread_nestedmutex, NULL);
abts_run_test(suite, test_thread_unnestedmutex, NULL);
abts_run_test(suite, test_thread_rwlock, NULL);
abts_run_test(suite, test_cond, NULL);
abts_run_test(suite, test_timeoutcond, NULL);
abts_run_test(suite, test_timeoutmutex, NULL);
#ifdef WIN32
abts_run_test(suite, test_win32_abandoned_mutex, NULL);
#endif
#endif
return suite;
}