blob: ca31644419af41ee07af7bc78b6ea181738dd22b [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define INCL_DOSERRORS
#define INCL_DOS
#include "apr_arch_threadproc.h"
#include "apr_thread_proc.h"
#include "apr_general.h"
#include "apr_lib.h"
#include "apr_portable.h"
#include "apr_arch_file_io.h"
#include <stdlib.h>
APR_DECLARE(apr_status_t) apr_threadattr_create(apr_threadattr_t **new, apr_pool_t *pool)
{
(*new) = (apr_threadattr_t *)apr_palloc(pool, sizeof(apr_threadattr_t));
if ((*new) == NULL) {
return APR_ENOMEM;
}
(*new)->pool = pool;
(*new)->attr = 0;
(*new)->stacksize = 0;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_threadattr_detach_set(apr_threadattr_t *attr, apr_int32_t on)
{
attr->attr |= APR_THREADATTR_DETACHED;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_threadattr_detach_get(apr_threadattr_t *attr)
{
return (attr->attr & APR_THREADATTR_DETACHED) ? APR_DETACH : APR_NOTDETACH;
}
APR_DECLARE(apr_status_t) apr_threadattr_stacksize_set(apr_threadattr_t *attr,
apr_size_t stacksize)
{
attr->stacksize = stacksize;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_threadattr_guardsize_set(apr_threadattr_t *attr,
apr_size_t size)
{
return APR_ENOTIMPL;
}
APR_DECLARE(apr_status_t) apr_threadattr_max_free_set(apr_threadattr_t *attr,
apr_size_t size)
{
attr->max_free = size;
return APR_SUCCESS;
}
#if APR_HAS_THREAD_LOCAL
static APR_THREAD_LOCAL apr_thread_t *current_thread = NULL;
#endif
static void dummy_worker(void *opaque)
{
#if APR_HAS_THREAD_LOCAL
current_thread = thread;
#endif
apr_thread_t *thread = (apr_thread_t *)opaque;
apr_pool_owner_set(thread->pool, 0);
thread->exitval = thread->func(thread, thread->data);
if (thd->attr->attr & APR_THREADATTR_DETACHED) {
apr_pool_destroy(thread->pool);
}
}
static apr_status_t alloc_thread(apr_thread_t **new,
apr_threadattr_t *attr,
apr_thread_start_t func, void *data,
apr_pool_t *pool)
{
apr_status_t stat;
apr_abortfunc_t abort_fn = apr_pool_abort_get(pool);
apr_pool_t *p;
/* The thread can be detached anytime (from the creation or later with
* apr_thread_detach), so it needs its own pool and allocator to not
* depend on a parent pool which could be destroyed before the thread
* exits. The allocator needs no mutex obviously since the pool should
* not be used nor create children pools outside the thread. Passing
* NULL allocator will create one like that.
*/
stat = apr_pool_create_unmanaged_ex(&p, abort_fn, NULL);
if (stat != APR_SUCCESS) {
return stat;
}
if (attr && attr->max_free) {
apr_allocator_max_free_set(apr_pool_allocator_get(p), attr->max_free);
}
(*new) = (apr_thread_t *)apr_pcalloc(p, sizeof(apr_thread_t));
if ((*new) == NULL) {
apr_pool_destroy(p);
return APR_ENOMEM;
}
(*new)->pool = p;
(*new)->func = func;
(*new)->data = data;
if (attr == NULL) {
stat = apr_threadattr_create(&attr, p);
if (stat != APR_SUCCESS) {
apr_pool_destroy(p);
return stat;
}
}
(*new)->attr = attr;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_create(apr_thread_t **new,
apr_threadattr_t *attr,
apr_thread_start_t func, void *data,
apr_pool_t *pool)
{
apr_status_t stat;
stat = alloc_thread(new, attr, func, data, pool);
if (stat != APR_SUCCESS) {
return stat;
}
(*new)->tid = _beginthread(dummy_worker, NULL,
(*new)->attr->stacksize > 0 ?
(*new)->attr->stacksize : APR_THREAD_STACKSIZE,
(*new));
if ((*new)->tid < 0) {
stat = errno;
apr_pool_destroy((*new)->pool);
return stat;
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_current_create(apr_thread_t **current,
apr_threadattr_t *attr,
apr_pool_t *pool)
{
#if APR_HAS_THREAD_LOCAL
apr_status_t stat;
*current = apr_thread_current();
if (*current) {
return APR_EEXIST;
}
stat = alloc_thread(current, attr, NULL, NULL, pool);
if (stat != APR_SUCCESS) {
*current = NULL;
return stat;
}
(*current)->tid = apr_os_thread_current();
current_thread = *current;
return APR_SUCCESS;
#else
return APR_ENOTIMPL;
#endif
}
APR_DECLARE(void) apr_thread_current_after_fork(void)
{
#if APR_HAS_THREAD_LOCAL
current_thread = NULL;
#endif
}
APR_DECLARE(apr_thread_t *) apr_thread_current(void)
{
#if APR_HAS_THREAD_LOCAL
return current_thread;
#else
return NULL;
#endif
}
APR_DECLARE(apr_os_thread_t) apr_os_thread_current()
{
PIB *ppib;
TIB *ptib;
DosGetInfoBlocks(&ptib, &ppib);
return ptib->tib_ptib2->tib2_ultid;
}
APR_DECLARE(void) apr_thread_exit(apr_thread_t *thd, apr_status_t retval)
{
thd->exitval = retval;
if (thd->attr->attr & APR_THREADATTR_DETACHED) {
apr_pool_destroy(thd->pool);
}
_endthread();
}
APR_DECLARE(apr_status_t) apr_thread_join(apr_status_t *retval, apr_thread_t *thd)
{
ULONG rc;
TID waittid = thd->tid;
if (thd->attr->attr & APR_THREADATTR_DETACHED)
return APR_EINVAL;
rc = DosWaitThread(&waittid, DCWW_WAIT);
if (rc == ERROR_INVALID_THREADID)
rc = 0; /* Thread had already terminated */
*retval = thd->exitval;
if (rc == 0) {
apr_pool_destroy(thd->pool);
}
return APR_FROM_OS_ERROR(rc);
}
APR_DECLARE(apr_status_t) apr_thread_detach(apr_thread_t *thd)
{
if (thd->attr->attr & APR_THREADATTR_DETACHED) {
return APR_EINVAL;
}
thd->attr->attr |= APR_THREADATTR_DETACHED;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_name_set(const char *name,
apr_thread_t *thread,
apr_pool_t *pool)
{
return APR_ENOTIMPL;
}
APR_DECLARE(apr_status_t) apr_thread_name_get(char ** name,
apr_thread_t *thread,
apr_pool_t *pool)
{
return APR_ENOTIMPL;
}
void apr_thread_yield()
{
DosSleep(0);
}
APR_DECLARE(apr_status_t) apr_os_thread_get(apr_os_thread_t **thethd, apr_thread_t *thd)
{
*thethd = &thd->tid;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_os_thread_put(apr_thread_t **thd, apr_os_thread_t *thethd,
apr_pool_t *pool)
{
if ((*thd) == NULL) {
(*thd) = (apr_thread_t *)apr_pcalloc(pool, sizeof(apr_thread_t));
(*thd)->pool = pool;
}
(*thd)->tid = *thethd;
return APR_SUCCESS;
}
int apr_os_thread_equal(apr_os_thread_t tid1, apr_os_thread_t tid2)
{
return tid1 == tid2;
}
APR_DECLARE(apr_status_t) apr_thread_data_get(void **data, const char *key, apr_thread_t *thread)
{
if (thread == NULL) {
*data = NULL;
return APR_ENOTHREAD;
}
return apr_pool_userdata_get(data, key, thread->pool);
}
APR_DECLARE(apr_status_t) apr_thread_data_set(void *data, const char *key,
apr_status_t (*cleanup) (void *),
apr_thread_t *thread)
{
if (thread == NULL) {
return APR_ENOTHREAD;
}
return apr_pool_userdata_set(data, key, cleanup, thread->pool);
}
APR_POOL_IMPLEMENT_ACCESSOR(thread)
static apr_status_t thread_once_cleanup(void *vcontrol)
{
apr_thread_once_t *control = (apr_thread_once_t *)vcontrol;
if (control->sem) {
DosCloseEventSem(control->sem);
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_once_init(apr_thread_once_t **control,
apr_pool_t *p)
{
ULONG rc;
*control = (apr_thread_once_t *)apr_pcalloc(p, sizeof(apr_thread_once_t));
rc = DosCreateEventSem(NULL, &(*control)->sem, 0, TRUE);
apr_pool_cleanup_register(p, control, thread_once_cleanup, apr_pool_cleanup_null);
return APR_FROM_OS_ERROR(rc);
}
APR_DECLARE(apr_status_t) apr_thread_once(apr_thread_once_t *control,
void (*func)(void))
{
if (!control->hit) {
ULONG count, rc;
rc = DosResetEventSem(control->sem, &count);
if (rc == 0 && count) {
control->hit = 1;
func();
}
}
return APR_SUCCESS;
}