blob: 1b468714cffbbc7cc2753afc49d74e2b94fa18bc [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*Read/Write locking implementation based on the MultiLock code from
* Stephen Beaulieu <hippo@be.com>
*/
#include "apr_arch_proc_mutex.h"
#include "apr_strings.h"
#include "apr_portable.h"
static apr_status_t _proc_mutex_cleanup(void * data)
{
apr_proc_mutex_t *lock = (apr_proc_mutex_t*)data;
if (lock->LockCount != 0) {
/* we're still locked... */
while (atomic_add(&lock->LockCount , -1) > 1){
/* OK we had more than one person waiting on the lock so
* the sem is also locked. Release it until we have no more
* locks left.
*/
release_sem (lock->Lock);
}
}
delete_sem(lock->Lock);
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_create(apr_proc_mutex_t **mutex,
const char *fname,
apr_lockmech_e mech,
apr_pool_t *pool)
{
apr_proc_mutex_t *new;
apr_status_t stat = APR_SUCCESS;
if (mech != APR_LOCK_DEFAULT && mech != APR_LOCK_DEFAULT_TIMED) {
return APR_ENOTIMPL;
}
new = (apr_proc_mutex_t *)apr_pcalloc(pool, sizeof(apr_proc_mutex_t));
if (new == NULL){
return APR_ENOMEM;
}
if ((stat = create_sem(0, "APR_Lock")) < B_NO_ERROR) {
_proc_mutex_cleanup(new);
return stat;
}
new->LockCount = 0;
new->Lock = stat;
new->pool = pool;
apr_pool_cleanup_register(new->pool, (void *)new, _proc_mutex_cleanup,
apr_pool_cleanup_null);
(*mutex) = new;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_child_init(apr_proc_mutex_t **mutex,
const char *fname,
apr_pool_t *pool)
{
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_lock(apr_proc_mutex_t *mutex)
{
int32 stat;
if (atomic_add(&mutex->LockCount, 1) > 0) {
if ((stat = acquire_sem(mutex->Lock)) < B_NO_ERROR) {
atomic_add(&mutex->LockCount, -1);
return stat;
}
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_trylock(apr_proc_mutex_t *mutex)
{
int32 stat;
if (atomic_add(&mutex->LockCount, 1) > 0) {
stat = acquire_sem_etc(mutex->Lock, 1, 0, 0);
if (stat < B_NO_ERROR) {
atomic_add(&mutex->LockCount, -1);
if (stat == B_WOULD_BLOCK) {
stat = APR_EBUSY;
}
return stat;
}
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_timedlock(apr_proc_mutex_t *mutex,
apr_time_t timeout,
int absolute)
{
int32 stat;
if (atomic_add(&mutex->LockCount, 1) > 0) {
if (timeout < 0) {
stat = acquire_sem(mutex->Lock);
}
else {
int flag = 0;
if (timeout > 0) {
if (absolute) {
apr_time_t now = apr_time_now();
if (timeout > now) {
timeout -= now;
}
else {
timeout = 0;
}
flag = B_ABSOLUTE_TIMEOUT;
}
else {
flag = B_RELATIVE_TIMEOUT;
}
}
stat = acquire_sem_etc(mutex->Lock, 1, flag, timeout);
}
if (stat < B_NO_ERROR) {
atomic_add(&mutex->LockCount, -1);
if (stat == B_TIMED_OUT) {
stat = APR_TIMEUP;
}
return stat;
}
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_unlock(apr_proc_mutex_t *mutex)
{
int32 stat;
if (atomic_add(&mutex->LockCount, -1) > 1) {
if ((stat = release_sem(mutex->Lock)) < B_NO_ERROR) {
atomic_add(&mutex->LockCount, 1);
return stat;
}
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_destroy(apr_proc_mutex_t *mutex)
{
apr_status_t stat;
if ((stat = _proc_mutex_cleanup(mutex)) == APR_SUCCESS) {
apr_pool_cleanup_kill(mutex->pool, mutex, _proc_mutex_cleanup);
return APR_SUCCESS;
}
return stat;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_cleanup(void *mutex)
{
return _proc_mutex_cleanup(mutex);
}
APR_DECLARE(const char *) apr_proc_mutex_lockfile(apr_proc_mutex_t *mutex)
{
return NULL;
}
APR_DECLARE(apr_lockmech_e) apr_proc_mutex_mech(apr_proc_mutex_t *mutex)
{
return APR_LOCK_DEFAULT_TIMED;
}
APR_DECLARE(const char *) apr_proc_mutex_name(apr_proc_mutex_t *mutex)
{
return "beossem";
}
APR_DECLARE(const char *) apr_proc_mutex_defname(void)
{
return "beossem";
}
APR_PERMS_SET_ENOTIMPL(proc_mutex)
APR_POOL_IMPLEMENT_ACCESSOR(proc_mutex)
/* Implement OS-specific accessors defined in apr_portable.h */
APR_DECLARE(apr_status_t) apr_os_proc_mutex_get_ex(apr_os_proc_mutex_t *ospmutex,
apr_proc_mutex_t *pmutex,
apr_lockmech_e *mech)
{
ospmutex->sem = pmutex->Lock;
ospmutex->ben = pmutex->LockCount;
if (mech) {
*mech = APR_LOCK_DEFAULT_TIMED;
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_os_proc_mutex_get(apr_os_proc_mutex_t *ospmutex,
apr_proc_mutex_t *pmutex)
{
return apr_os_proc_mutex_get_ex(ospmutex, pmutex, NULL);
}
APR_DECLARE(apr_status_t) apr_os_proc_mutex_put_ex(apr_proc_mutex_t **pmutex,
apr_os_proc_mutex_t *ospmutex,
apr_lockmech_e mech,
int register_cleanup,
apr_pool_t *pool)
{
if (pool == NULL) {
return APR_ENOPOOL;
}
if (mech != APR_LOCK_DEFAULT && mech != APR_LOCK_DEFAULT_TIMED) {
return APR_ENOTIMPL;
}
if ((*pmutex) == NULL) {
(*pmutex) = (apr_proc_mutex_t *)apr_pcalloc(pool, sizeof(apr_proc_mutex_t));
(*pmutex)->pool = pool;
}
(*pmutex)->Lock = ospmutex->sem;
(*pmutex)->LockCount = ospmutex->ben;
if (register_cleanup) {
apr_pool_cleanup_register(pool, *pmutex, _proc_mutex_cleanup,
apr_pool_cleanup_null);
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_os_proc_mutex_put(apr_proc_mutex_t **pmutex,
apr_os_proc_mutex_t *ospmutex,
apr_pool_t *pool)
{
return apr_os_proc_mutex_put_ex(pmutex, ospmutex, APR_LOCK_DEFAULT_TIMED,
0, pool);
}