blob: 5a940316350f5bd215090dd493b83263252d05c3 [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr.h"
#include "apr_lib.h"
#include "apr_strings.h"
#include "apr_pools.h"
#include "apr_tables.h"
#include "apr_buckets.h"
#include "apr_errno.h"
#define APR_WANT_MEMFUNC
#define APR_WANT_STRFUNC
#include "apr_want.h"
#if APR_HAVE_SYS_UIO_H
#include <sys/uio.h>
#endif
static apr_status_t brigade_cleanup(void *data)
{
return apr_brigade_cleanup(data);
}
APR_DECLARE(apr_status_t) apr_brigade_cleanup(void *data)
{
apr_bucket_brigade *b = data;
#ifndef APR_BUCKET_DEBUG
while (!APR_BRIGADE_EMPTY(b)) {
apr_bucket_delete(APR_BRIGADE_FIRST(b));
}
#else
/* Debugging version with checks which will only trigger if the
* bucket list becomes corrupt. */
apr_bucket *e;
apr_bucket *prev = NULL;
APR_BRIGADE_CHECK_CONSISTENCY(b);
while (!APR_BRIGADE_EMPTY(b)) {
e = APR_BRIGADE_FIRST(b);
assert(e != prev);
prev = e;
apr_bucket_delete(e);
}
#endif
/* We don't need to free(bb) because it's allocated from a pool. */
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_brigade_destroy(apr_bucket_brigade *b)
{
#ifndef APR_BUCKET_DEBUG
return apr_pool_cleanup_run(b->p, b, brigade_cleanup);
#else
apr_status_t rv;
APR_BRIGADE_CHECK_CONSISTENCY(b);
rv = apr_pool_cleanup_run(b->p, b, brigade_cleanup);
/* Trigger consistency check failures if the brigade is
* re-used. */
b->p = NULL;
b->bucket_alloc = NULL;
return rv;
#endif
}
APR_DECLARE(apr_bucket_brigade *) apr_brigade_create(apr_pool_t *p,
apr_bucket_alloc_t *list)
{
apr_bucket_brigade *b;
b = apr_palloc(p, sizeof(*b));
b->p = p;
b->bucket_alloc = list;
APR_RING_INIT(&b->list, apr_bucket, link);
apr_pool_cleanup_register(b->p, b, brigade_cleanup, apr_pool_cleanup_null);
return b;
}
APR_DECLARE(apr_bucket_brigade *) apr_brigade_split_ex(apr_bucket_brigade *b,
apr_bucket *e,
apr_bucket_brigade *a)
{
apr_bucket *f;
if (!a) {
a = apr_brigade_create(b->p, b->bucket_alloc);
}
else if (!APR_BRIGADE_EMPTY(a)) {
apr_brigade_cleanup(a);
}
/* Return an empty brigade if there is nothing left in
* the first brigade to split off
*/
if (e != APR_BRIGADE_SENTINEL(b)) {
f = APR_RING_LAST(&b->list);
APR_RING_UNSPLICE(e, f, link);
APR_RING_SPLICE_HEAD(&a->list, e, f, apr_bucket, link);
}
APR_BRIGADE_CHECK_CONSISTENCY(a);
APR_BRIGADE_CHECK_CONSISTENCY(b);
return a;
}
APR_DECLARE(apr_bucket_brigade *) apr_brigade_split(apr_bucket_brigade *b,
apr_bucket *e)
{
return apr_brigade_split_ex(b, e, NULL);
}
APR_DECLARE(apr_status_t) apr_brigade_partition(apr_bucket_brigade *b,
apr_off_t point,
apr_bucket **after_point)
{
apr_bucket *e;
const char *s;
apr_size_t len;
apr_uint64_t point64;
apr_status_t rv;
if (point < 0) {
/* this could cause weird (not necessarily SEGV) things to happen */
return APR_EINVAL;
}
if (point == 0) {
*after_point = APR_BRIGADE_FIRST(b);
return APR_SUCCESS;
}
/*
* Try to reduce the following casting mess: We know that point will be
* larger equal 0 now and forever and thus that point (apr_off_t) and
* apr_size_t will fit into apr_uint64_t in any case.
*/
point64 = (apr_uint64_t)point;
APR_BRIGADE_CHECK_CONSISTENCY(b);
for (e = APR_BRIGADE_FIRST(b);
e != APR_BRIGADE_SENTINEL(b);
e = APR_BUCKET_NEXT(e))
{
/* For an unknown length bucket, while 'point64' is beyond the possible
* size contained in apr_size_t, read and continue...
*/
if ((e->length == (apr_size_t)(-1))
&& (point64 > (apr_uint64_t)APR_SIZE_MAX)) {
/* point64 is too far out to simply split this bucket,
* we must fix this bucket's size and keep going... */
rv = apr_bucket_read(e, &s, &len, APR_BLOCK_READ);
if (rv != APR_SUCCESS) {
*after_point = e;
return rv;
}
}
else if ((point64 < (apr_uint64_t)e->length)
|| (e->length == (apr_size_t)(-1))) {
/* We already consumed buckets where point64 is beyond
* our interest ( point64 > APR_SIZE_MAX ), above.
* Here point falls between 0 and APR_SIZE_MAX
* and is within this bucket, or this bucket's len
* is undefined, so now we are ready to split it.
* First try to split the bucket natively... */
if ((rv = apr_bucket_split(e, (apr_size_t)point64))
!= APR_ENOTIMPL) {
*after_point = APR_BUCKET_NEXT(e);
return rv;
}
/* if the bucket cannot be split, we must read from it,
* changing its type to one that can be split */
rv = apr_bucket_read(e, &s, &len, APR_BLOCK_READ);
if (rv != APR_SUCCESS) {
*after_point = e;
return rv;
}
/* this assumes that len == e->length, which is okay because e
* might have been morphed by the apr_bucket_read() above, but
* if it was, the length would have been adjusted appropriately */
if (point64 < (apr_uint64_t)e->length) {
rv = apr_bucket_split(e, (apr_size_t)point64);
*after_point = APR_BUCKET_NEXT(e);
return rv;
}
}
if (point64 == (apr_uint64_t)e->length) {
*after_point = APR_BUCKET_NEXT(e);
return APR_SUCCESS;
}
point64 -= (apr_uint64_t)e->length;
}
*after_point = APR_BRIGADE_SENTINEL(b);
return APR_INCOMPLETE;
}
APR_DECLARE(apr_status_t) apr_brigade_length(apr_bucket_brigade *bb,
int read_all, apr_off_t *length)
{
apr_off_t total = 0;
apr_bucket *bkt;
apr_status_t status = APR_SUCCESS;
for (bkt = APR_BRIGADE_FIRST(bb);
bkt != APR_BRIGADE_SENTINEL(bb);
bkt = APR_BUCKET_NEXT(bkt))
{
if (bkt->length == (apr_size_t)(-1)) {
const char *ignore;
apr_size_t len;
if (!read_all) {
total = -1;
break;
}
if ((status = apr_bucket_read(bkt, &ignore, &len,
APR_BLOCK_READ)) != APR_SUCCESS) {
break;
}
}
total += bkt->length;
}
*length = total;
return status;
}
APR_DECLARE(apr_status_t) apr_brigade_flatten(apr_bucket_brigade *bb,
char *c, apr_size_t *len)
{
apr_size_t actual = 0;
apr_bucket *b;
for (b = APR_BRIGADE_FIRST(bb);
b != APR_BRIGADE_SENTINEL(bb);
b = APR_BUCKET_NEXT(b))
{
const char *str;
apr_size_t str_len;
apr_status_t status;
status = apr_bucket_read(b, &str, &str_len, APR_BLOCK_READ);
if (status != APR_SUCCESS) {
return status;
}
/* If we would overflow. */
if (str_len + actual > *len) {
str_len = *len - actual;
}
/* XXX: It appears that overflow of the final bucket
* is DISCARDED without any warning to the caller.
*
* No, we only copy the data up to their requested size. -- jre
*/
memcpy(c, str, str_len);
c += str_len;
actual += str_len;
/* This could probably be actual == *len, but be safe from stray
* photons. */
if (actual >= *len) {
break;
}
}
*len = actual;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_brigade_pflatten(apr_bucket_brigade *bb,
char **c,
apr_size_t *len,
apr_pool_t *pool)
{
apr_off_t actual;
apr_size_t total;
apr_status_t rv;
apr_brigade_length(bb, 1, &actual);
/* XXX: This is dangerous beyond belief. At least in the
* apr_brigade_flatten case, the user explicitly stated their
* buffer length - so we don't up and palloc 4GB for a single
* file bucket. This API must grow a useful max boundry,
* either compiled-in or preset via the *len value.
*
* Shouldn't both fn's grow an additional return value for
* the case that the brigade couldn't be flattened into the
* provided or allocated buffer (such as APR_EMOREDATA?)
* Not a failure, simply an advisory result.
*/
total = (apr_size_t)actual;
*c = apr_palloc(pool, total);
rv = apr_brigade_flatten(bb, *c, &total);
if (rv != APR_SUCCESS) {
return rv;
}
*len = total;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_brigade_split_line(apr_bucket_brigade *bbOut,
apr_bucket_brigade *bbIn,
apr_read_type_e block,
apr_off_t maxbytes)
{
apr_off_t readbytes = 0;
apr_bucket *prev = NULL;
while (!APR_BRIGADE_EMPTY(bbIn)) {
const char *pos;
const char *str;
apr_size_t len;
apr_status_t rv;
apr_bucket *e;
e = APR_BRIGADE_FIRST(bbIn);
if (e == prev) { /* PR#51062: prevent infinite loop on a corrupt brigade */
return APR_EGENERAL; /* FIXME: this should definitely be a "can't happen"! */
}
prev = e;
rv = apr_bucket_read(e, &str, &len, block);
if (rv != APR_SUCCESS) {
return rv;
}
pos = memchr(str, APR_ASCII_LF, len);
/* We found a match. */
if (pos != NULL) {
apr_bucket_split(e, pos - str + 1);
APR_BUCKET_REMOVE(e);
APR_BRIGADE_INSERT_TAIL(bbOut, e);
return APR_SUCCESS;
}
APR_BUCKET_REMOVE(e);
if (APR_BUCKET_IS_METADATA(e) || len > APR_BUCKET_BUFF_SIZE/4) {
APR_BRIGADE_INSERT_TAIL(bbOut, e);
}
else {
if (len > 0) {
rv = apr_brigade_write(bbOut, NULL, NULL, str, len);
if (rv != APR_SUCCESS) {
return rv;
}
}
apr_bucket_destroy(e);
}
readbytes += len;
/* We didn't find an APR_ASCII_LF within the maximum line length. */
if (readbytes >= maxbytes) {
break;
}
}
return APR_SUCCESS;
}
#if !APR_HAVE_MEMMEM
static const void *
memmem(const void *_hay, size_t hay_len, const void *needle, size_t needle_len)
{
if (hay_len < needle_len || !needle_len || !hay_len) {
return NULL;
}
else {
apr_size_t len = hay_len - needle_len + 1;
const apr_byte_t *hay = (apr_byte_t *)_hay;
const apr_byte_t *end = hay + hay_len;
while ((hay = memchr(hay, *(char *)needle, len))) {
len = (apr_size_t)(end - hay) - needle_len + 1;
if (memcmp(hay, needle, needle_len) == 0 ) {
break;
}
--len;
++hay;
}
return hay;
}
}
#endif
APR_DECLARE(apr_status_t) apr_brigade_split_boundary(apr_bucket_brigade *bbOut,
apr_bucket_brigade *bbIn,
apr_read_type_e block,
const char *boundary,
apr_size_t boundary_len,
apr_off_t maxbytes)
{
apr_off_t outbytes = 0;
apr_size_t ignore = 0;
if (!boundary || !boundary[0]) {
return APR_EINVAL;
}
if (APR_BUCKETS_STRING == boundary_len) {
boundary_len = strlen(boundary);
}
/*
* While the call describes itself as searching for a boundary string,
* what we actually do is search for anything that is definitely not
* a boundary string, and allow that not-boundary data to pass through.
*
* If we find data that might be a boundary, we try read more data in
* until we know for sure.
*/
while (!APR_BRIGADE_EMPTY(bbIn)) {
const char *pos;
const char *str;
apr_bucket *e, *next, *prev;
apr_size_t inbytes = 0;
apr_size_t len;
apr_status_t rv;
/* We didn't find a boundary within the maximum line length. */
if (outbytes >= maxbytes) {
return APR_INCOMPLETE;
}
e = APR_BRIGADE_FIRST(bbIn);
/* We hit a metadata bucket, stop and let the caller handle it */
if (APR_BUCKET_IS_METADATA(e)) {
return APR_INCOMPLETE;
}
rv = apr_bucket_read(e, &str, &len, block);
if (rv != APR_SUCCESS) {
return rv;
}
inbytes += len;
/*
* Fast path.
*
* If we have at least one boundary worth of data, do an optimised
* substring search for the boundary, and split quickly if found.
*/
if ((len - ignore) >= boundary_len) {
apr_size_t off;
apr_size_t leftover;
pos = memmem(str + ignore, len - ignore, boundary, boundary_len);
/* definitely found it, we leave */
if (pos != NULL) {
off = pos - str;
/* everything up to the boundary */
if (off) {
apr_bucket_split(e, off);
APR_BUCKET_REMOVE(e);
APR_BRIGADE_INSERT_TAIL(bbOut, e);
e = APR_BRIGADE_FIRST(bbIn);
}
/* cut out the boundary */
apr_bucket_split(e, boundary_len);
apr_bucket_delete(e);
return APR_SUCCESS;
}
/* any partial matches at the end? */
leftover = boundary_len - 1;
off = (len - leftover);
while (leftover) {
if (!memcmp(str + off, boundary, leftover)) {
if (off) {
apr_bucket_split(e, off);
APR_BUCKET_REMOVE(e);
APR_BRIGADE_INSERT_TAIL(bbOut, e);
ignore = 0;
e = APR_BRIGADE_FIRST(bbIn);
}
outbytes += off;
inbytes -= off;
goto skip;
}
off++;
leftover--;
}
APR_BUCKET_REMOVE(e);
APR_BRIGADE_INSERT_TAIL(bbOut, e);
ignore = 0;
outbytes += len;
continue;
}
/*
* Slow path.
*
* We need to read ahead at least one boundary worth of data so
* we can search across the bucket edges.
*/
else {
apr_size_t off = ignore;
len -= ignore;
/* find all definite non matches */
while (len) {
if (!memcmp(str + off, boundary, len)) {
if (off) {
apr_bucket_split(e, off);
APR_BUCKET_REMOVE(e);
APR_BRIGADE_INSERT_TAIL(bbOut, e);
ignore = 0;
outbytes += off;
e = APR_BRIGADE_FIRST(bbIn);
}
inbytes -= off;
goto skip;
}
off++;
len--;
}
APR_BUCKET_REMOVE(e);
APR_BRIGADE_INSERT_TAIL(bbOut, e);
ignore = 0;
outbytes += off;
continue;
}
/*
* If we reach skip, it means the bucket in e is:
*
* - shorter than the boundary
* - matches the boundary up to the bucket length
* - might match more buckets
*
* Read further buckets and check whether the boundary matches all
* the way to the end. If so, we have a match. If no match, shave off
* one byte and continue round to try again.
*/
skip:
for (next = APR_BUCKET_NEXT(e);
inbytes < boundary_len && next != APR_BRIGADE_SENTINEL(bbIn);
next = APR_BUCKET_NEXT(next)) {
const char *str;
apr_size_t off;
apr_size_t len;
rv = apr_bucket_read(next, &str, &len, block);
if (rv != APR_SUCCESS) {
return rv;
}
off = boundary_len - inbytes;
if (len > off) {
/* not a match, bail out */
if (memcmp(str, boundary + inbytes, off)) {
break;
}
/* a match! remove the boundary and return */
apr_bucket_split(next, off);
e = APR_BUCKET_NEXT(next);
for (prev = APR_BRIGADE_FIRST(bbIn);
prev != e;
prev = APR_BRIGADE_FIRST(bbIn)) {
apr_bucket_delete(prev);
}
return APR_SUCCESS;
}
if (len == off) {
/* not a match, bail out */
if (memcmp(str, boundary + inbytes, off)) {
break;
}
/* a match! remove the boundary and return */
e = APR_BUCKET_NEXT(next);
for (prev = APR_BRIGADE_FIRST(bbIn);
prev != e;
prev = APR_BRIGADE_FIRST(bbIn)) {
apr_bucket_delete(prev);
}
return APR_SUCCESS;
}
else if (len) {
/* not a match, bail out */
if (memcmp(str, boundary + inbytes, len)) {
break;
}
/* still hope for a match */
inbytes += len;
}
}
/*
* If we reach this point, the bucket e did not match the boundary
* in the subsequent buckets.
*
* Bump one byte off, and loop round to search again.
*/
ignore++;
}
return APR_INCOMPLETE;
}
APR_DECLARE(apr_status_t) apr_brigade_to_iovec(apr_bucket_brigade *b,
struct iovec *vec, int *nvec)
{
int left = *nvec;
apr_bucket *e;
struct iovec *orig;
apr_size_t iov_len;
const char *iov_base;
apr_status_t rv;
orig = vec;
for (e = APR_BRIGADE_FIRST(b);
e != APR_BRIGADE_SENTINEL(b);
e = APR_BUCKET_NEXT(e))
{
if (left-- == 0)
break;
rv = apr_bucket_read(e, &iov_base, &iov_len, APR_NONBLOCK_READ);
if (rv != APR_SUCCESS)
return rv;
/* Set indirectly since types differ: */
vec->iov_len = iov_len;
vec->iov_base = (void *)iov_base;
++vec;
}
*nvec = (int)(vec - orig);
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_brigade_vputstrs(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx,
va_list va)
{
#define MAX_VECS 8
struct iovec vec[MAX_VECS];
apr_size_t i = 0;
for (;;) {
char *str = va_arg(va, char *);
apr_status_t rv;
if (str == NULL)
break;
vec[i].iov_base = str;
vec[i].iov_len = strlen(str);
i++;
if (i == MAX_VECS) {
rv = apr_brigade_writev(b, flush, ctx, vec, i);
if (rv != APR_SUCCESS)
return rv;
i = 0;
}
}
if (i != 0)
return apr_brigade_writev(b, flush, ctx, vec, i);
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_brigade_putc(apr_bucket_brigade *b,
apr_brigade_flush flush, void *ctx,
const char c)
{
return apr_brigade_write(b, flush, ctx, &c, 1);
}
APR_DECLARE(apr_status_t) apr_brigade_write(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx,
const char *str, apr_size_t nbyte)
{
apr_bucket *e = APR_BRIGADE_LAST(b);
apr_size_t remaining = APR_BUCKET_BUFF_SIZE;
char *buf = NULL;
/*
* If the last bucket is a heap bucket and its buffer is not shared with
* another bucket, we may write into that bucket.
*/
if (!APR_BRIGADE_EMPTY(b) && APR_BUCKET_IS_HEAP(e)
&& ((apr_bucket_heap *)(e->data))->refcount.refcount == 1) {
apr_bucket_heap *h = e->data;
/* HEAP bucket start offsets are always in-memory, safe to cast */
remaining = h->alloc_len - (e->length + (apr_size_t)e->start);
buf = h->base + e->start + e->length;
}
if (nbyte > remaining) {
/* either a buffer bucket exists but is full,
* or no buffer bucket exists and the data is too big
* to buffer. In either case, we should flush. */
if (flush) {
e = apr_bucket_transient_create(str, nbyte, b->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(b, e);
return flush(b, ctx);
}
else {
e = apr_bucket_heap_create(str, nbyte, NULL, b->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(b, e);
return APR_SUCCESS;
}
}
else if (!buf) {
/* we don't have a buffer, but the data is small enough
* that we don't mind making a new buffer */
buf = apr_bucket_alloc(APR_BUCKET_BUFF_SIZE, b->bucket_alloc);
e = apr_bucket_heap_create(buf, APR_BUCKET_BUFF_SIZE,
apr_bucket_free, b->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(b, e);
e->length = 0; /* We are writing into the brigade, and
* allocating more memory than we need. This
* ensures that the bucket thinks it is empty just
* after we create it. We'll fix the length
* once we put data in it below.
*/
}
/* there is a sufficiently big buffer bucket available now */
memcpy(buf, str, nbyte);
e->length += nbyte;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_brigade_writev(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx,
const struct iovec *vec,
apr_size_t nvec)
{
apr_bucket *e;
apr_size_t total_len;
apr_size_t i;
char *buf;
/* Compute the total length of the data to be written.
*/
total_len = 0;
for (i = 0; i < nvec; i++) {
total_len += vec[i].iov_len;
}
/* If the data to be written is very large, try to convert
* the iovec to transient buckets rather than copying.
*/
if (total_len > APR_BUCKET_BUFF_SIZE) {
if (flush) {
for (i = 0; i < nvec; i++) {
e = apr_bucket_transient_create(vec[i].iov_base,
vec[i].iov_len,
b->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(b, e);
}
return flush(b, ctx);
}
else {
for (i = 0; i < nvec; i++) {
e = apr_bucket_heap_create((const char *) vec[i].iov_base,
vec[i].iov_len, NULL,
b->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(b, e);
}
return APR_SUCCESS;
}
}
i = 0;
/* If there is a heap bucket at the end of the brigade
* already, and its refcount is 1, copy into the existing bucket.
*/
e = APR_BRIGADE_LAST(b);
if (!APR_BRIGADE_EMPTY(b) && APR_BUCKET_IS_HEAP(e)
&& ((apr_bucket_heap *)(e->data))->refcount.refcount == 1) {
apr_bucket_heap *h = e->data;
apr_size_t remaining = h->alloc_len -
(e->length + (apr_size_t)e->start);
buf = h->base + e->start + e->length;
if (remaining >= total_len) {
/* Simple case: all the data will fit in the
* existing heap bucket
*/
for (; i < nvec; i++) {
apr_size_t len = vec[i].iov_len;
memcpy(buf, (const void *) vec[i].iov_base, len);
buf += len;
}
e->length += total_len;
return APR_SUCCESS;
}
else {
/* More complicated case: not all of the data
* will fit in the existing heap bucket. The
* total data size is <= APR_BUCKET_BUFF_SIZE,
* so we'll need only one additional bucket.
*/
const char *start_buf = buf;
for (; i < nvec; i++) {
apr_size_t len = vec[i].iov_len;
if (len > remaining) {
break;
}
memcpy(buf, (const void *) vec[i].iov_base, len);
buf += len;
remaining -= len;
}
e->length += (buf - start_buf);
total_len -= (buf - start_buf);
if (flush) {
apr_status_t rv = flush(b, ctx);
if (rv != APR_SUCCESS) {
return rv;
}
}
/* Now fall through into the case below to
* allocate another heap bucket and copy the
* rest of the array. (Note that i is not
* reset to zero here; it holds the index
* of the first vector element to be
* written to the new bucket.)
*/
}
}
/* Allocate a new heap bucket, and copy the data into it.
* The checks above ensure that the amount of data to be
* written here is no larger than APR_BUCKET_BUFF_SIZE.
*/
buf = apr_bucket_alloc(APR_BUCKET_BUFF_SIZE, b->bucket_alloc);
e = apr_bucket_heap_create(buf, APR_BUCKET_BUFF_SIZE,
apr_bucket_free, b->bucket_alloc);
for (; i < nvec; i++) {
apr_size_t len = vec[i].iov_len;
memcpy(buf, (const void *) vec[i].iov_base, len);
buf += len;
}
e->length = total_len;
APR_BRIGADE_INSERT_TAIL(b, e);
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_brigade_puts(apr_bucket_brigade *bb,
apr_brigade_flush flush, void *ctx,
const char *str)
{
return apr_brigade_write(bb, flush, ctx, str, strlen(str));
}
APR_DECLARE_NONSTD(apr_status_t) apr_brigade_putstrs(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx, ...)
{
va_list va;
apr_status_t rv;
va_start(va, ctx);
rv = apr_brigade_vputstrs(b, flush, ctx, va);
va_end(va);
return rv;
}
APR_DECLARE_NONSTD(apr_status_t) apr_brigade_printf(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx,
const char *fmt, ...)
{
va_list ap;
apr_status_t rv;
va_start(ap, fmt);
rv = apr_brigade_vprintf(b, flush, ctx, fmt, ap);
va_end(ap);
return rv;
}
struct brigade_vprintf_data_t {
apr_vformatter_buff_t vbuff;
apr_bucket_brigade *b; /* associated brigade */
apr_brigade_flush *flusher; /* flushing function */
void *ctx;
char *cbuff; /* buffer to flush from */
};
static apr_status_t brigade_flush(apr_vformatter_buff_t *buff)
{
/* callback function passed to ap_vformatter to be
* called when vformatter needs to buff and
* buff.curpos > buff.endpos
*/
/* "downcast," have really passed a brigade_vprintf_data_t* */
struct brigade_vprintf_data_t *vd = (struct brigade_vprintf_data_t*)buff;
apr_status_t res = APR_SUCCESS;
res = apr_brigade_write(vd->b, *vd->flusher, vd->ctx, vd->cbuff,
APR_BUCKET_BUFF_SIZE);
if(res != APR_SUCCESS) {
return -1;
}
vd->vbuff.curpos = vd->cbuff;
vd->vbuff.endpos = vd->cbuff + APR_BUCKET_BUFF_SIZE;
return res;
}
APR_DECLARE(apr_status_t) apr_brigade_vprintf(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx,
const char *fmt, va_list va)
{
/* the cast, in order of appearance */
struct brigade_vprintf_data_t vd;
char buf[APR_BUCKET_BUFF_SIZE];
int written;
vd.vbuff.curpos = buf;
vd.vbuff.endpos = buf + APR_BUCKET_BUFF_SIZE;
vd.b = b;
vd.flusher = &flush;
vd.ctx = ctx;
vd.cbuff = buf;
written = apr_vformatter(brigade_flush, &vd.vbuff, fmt, va);
if (written == -1) {
return -1;
}
/* write out what remains in the buffer */
return apr_brigade_write(b, flush, ctx, buf, vd.vbuff.curpos - buf);
}
/* A "safe" maximum bucket size, 1Gb */
#define MAX_BUCKET_SIZE (0x40000000)
APR_DECLARE(apr_bucket *) apr_brigade_insert_file(apr_bucket_brigade *bb,
apr_file_t *f,
apr_off_t start,
apr_off_t length,
apr_pool_t *p)
{
apr_bucket *e;
if (sizeof(apr_off_t) == sizeof(apr_size_t) || length < MAX_BUCKET_SIZE) {
e = apr_bucket_file_create(f, start, (apr_size_t)length, p,
bb->bucket_alloc);
}
else {
/* Several buckets are needed. */
e = apr_bucket_file_create(f, start, MAX_BUCKET_SIZE, p,
bb->bucket_alloc);
while (length > MAX_BUCKET_SIZE) {
apr_bucket *ce;
apr_bucket_copy(e, &ce);
APR_BRIGADE_INSERT_TAIL(bb, ce);
e->start += MAX_BUCKET_SIZE;
length -= MAX_BUCKET_SIZE;
}
e->length = (apr_size_t)length; /* Resize just the last bucket */
}
APR_BRIGADE_INSERT_TAIL(bb, e);
return e;
}