blob: 46972ea1870dc44bea073e579f4ab7f5b6d2853b [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr_lib.h"
#include "apu.h"
#include "apr_private.h"
#include "apu_errno.h"
#include <ctype.h>
#include <stdlib.h>
#include "apr_strings.h"
#include "apr_time.h"
#include "apr_buckets.h"
#include "apr_crypto_internal.h"
#if APU_HAVE_CRYPTO
#include <prerror.h>
#ifdef HAVE_NSS_NSS_H
#include <nss/nss.h>
#endif
#ifdef HAVE_NSS_H
#include <nss.h>
#endif
#ifdef HAVE_NSS_PK11PUB_H
#include <nss/pk11pub.h>
#endif
#ifdef HAVE_PK11PUB_H
#include <pk11pub.h>
#endif
struct apr_crypto_t {
apr_pool_t *pool;
const apr_crypto_driver_t *provider;
apu_err_t *result;
apr_crypto_config_t *config;
apr_hash_t *digests;
apr_hash_t *types;
apr_hash_t *modes;
};
struct apr_crypto_config_t {
void *opaque;
};
struct apr_crypto_key_t {
apr_pool_t *pool;
const apr_crypto_driver_t *provider;
const apr_crypto_t *f;
const apr_crypto_key_rec_t *rec;
CK_MECHANISM_TYPE cipherMech;
CK_MECHANISM_TYPE hashMech;
SECOidTag cipherOid;
SECOidTag hashAlg;
PK11SymKey *symKey;
int ivSize;
int keyLength;
};
struct apr_crypto_block_t {
apr_pool_t *pool;
const apr_crypto_driver_t *provider;
const apr_crypto_t *f;
PK11Context *ctx;
const apr_crypto_key_t *key;
SECItem *secParam;
int blockSize;
};
struct apr_crypto_digest_t {
apr_pool_t *pool;
const apr_crypto_driver_t *provider;
const apr_crypto_t *f;
apr_crypto_digest_rec_t *rec;
PK11Context *ctx;
const apr_crypto_key_t *key;
SECItem *secParam;
};
static struct apr_crypto_block_key_digest_t key_digests[] =
{
{ APR_CRYPTO_DIGEST_MD5, 16, 64 },
{ APR_CRYPTO_DIGEST_SHA1, 20, 64 },
{ APR_CRYPTO_DIGEST_SHA224, 28, 64 },
{ APR_CRYPTO_DIGEST_SHA256, 32, 64 },
{ APR_CRYPTO_DIGEST_SHA384, 48, 128 },
{ APR_CRYPTO_DIGEST_SHA512, 64, 128 } };
static struct apr_crypto_block_key_type_t key_types[] =
{
{ APR_KEY_3DES_192, 24, 8, 8 },
{ APR_KEY_AES_128, 16, 16, 16 },
{ APR_KEY_AES_192, 24, 16, 16 },
{ APR_KEY_AES_256, 32, 16, 16 } };
static struct apr_crypto_block_key_mode_t key_modes[] =
{
{ APR_MODE_ECB },
{ APR_MODE_CBC } };
/* sufficient space to wrap a key */
#define BUFFER_SIZE 128
/**
* Fetch the most recent error from this driver.
*/
static apr_status_t crypto_error(const apu_err_t **result,
const apr_crypto_t *f)
{
*result = f->result;
return APR_SUCCESS;
}
/**
* Shutdown the crypto library and release resources.
*
* It is safe to shut down twice.
*/
static apr_status_t crypto_shutdown(void)
{
if (NSS_IsInitialized()) {
SECStatus s = NSS_Shutdown();
if (s != SECSuccess) {
fprintf(stderr, "NSS failed to shutdown, possible leak: %d: %s",
PR_GetError(), PR_ErrorToName(s));
return APR_EINIT;
}
}
return APR_SUCCESS;
}
static apr_status_t crypto_shutdown_helper(void *data)
{
return crypto_shutdown();
}
/**
* Initialise the crypto library and perform one time initialisation.
*/
static apr_status_t crypto_init(apr_pool_t *pool, const char *params,
const apu_err_t **result)
{
SECStatus s;
const char *dir = NULL;
const char *keyPrefix = NULL;
const char *certPrefix = NULL;
const char *secmod = NULL;
int noinit = 0;
PRUint32 flags = 0;
struct {
const char *field;
const char *value;
int set;
} fields[] = {
{ "dir", NULL, 0 },
{ "key3", NULL, 0 },
{ "cert7", NULL, 0 },
{ "secmod", NULL, 0 },
{ "noinit", NULL, 0 },
{ NULL, NULL, 0 }
};
const char *ptr;
size_t klen;
char **elts = NULL;
char *elt;
int i = 0, j;
apr_status_t status;
if (params) {
if (APR_SUCCESS != (status = apr_tokenize_to_argv(params, &elts, pool))) {
return status;
}
while ((elt = elts[i])) {
ptr = strchr(elt, '=');
if (ptr) {
for (klen = ptr - elt; klen && apr_isspace(elt[klen - 1]); --klen)
;
ptr++;
}
else {
for (klen = strlen(elt); klen && apr_isspace(elt[klen - 1]); --klen)
;
}
elt[klen] = 0;
for (j = 0; fields[j].field != NULL; ++j) {
if (klen && !strcasecmp(fields[j].field, elt)) {
fields[j].set = 1;
if (ptr) {
fields[j].value = ptr;
}
break;
}
}
i++;
}
dir = fields[0].value;
keyPrefix = fields[1].value;
certPrefix = fields[2].value;
secmod = fields[3].value;
noinit = fields[4].set;
}
/* if we've been asked to bypass, do so here */
if (noinit) {
return APR_SUCCESS;
}
/* sanity check - we can only initialise NSS once */
if (NSS_IsInitialized()) {
return APR_EREINIT;
}
if (keyPrefix || certPrefix || secmod) {
s = NSS_Initialize(dir, certPrefix, keyPrefix, secmod, flags);
}
else if (dir) {
s = NSS_InitReadWrite(dir);
}
else {
s = NSS_NoDB_Init(NULL);
}
if (s != SECSuccess) {
if (result) {
/* Note: all memory must be owned by the caller, in case we're unloaded */
apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t));
err->rc = PR_GetError();
err->msg = apr_pstrdup(pool, PR_ErrorToName(s));
err->reason = apr_pstrdup(pool, "Error during 'nss' initialisation");
*result = err;
}
return APR_ECRYPT;
}
apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper,
apr_pool_cleanup_null);
return APR_SUCCESS;
}
/**
* @brief Clean encryption / decryption context.
* @note After cleanup, a context is free to be reused if necessary.
* @param f The context to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
static apr_status_t crypto_block_cleanup(apr_crypto_block_t *block)
{
if (block->secParam) {
SECITEM_FreeItem(block->secParam, PR_TRUE);
block->secParam = NULL;
}
if (block->ctx) {
PK11_DestroyContext(block->ctx, PR_TRUE);
block->ctx = NULL;
}
return APR_SUCCESS;
}
/**
* @brief Clean sign / verify context.
* @note After cleanup, a context is free to be reused if necessary.
* @param f The context to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
static apr_status_t crypto_digest_cleanup(apr_crypto_digest_t *digest)
{
if (digest->secParam) {
SECITEM_FreeItem(digest->secParam, PR_TRUE);
digest->secParam = NULL;
}
if (digest->ctx) {
PK11_DestroyContext(digest->ctx, PR_TRUE);
digest->ctx = NULL;
}
return APR_SUCCESS;
}
static apr_status_t crypto_block_cleanup_helper(void *data)
{
apr_crypto_block_t *block = (apr_crypto_block_t *) data;
return crypto_block_cleanup(block);
}
static apr_status_t crypto_digest_cleanup_helper(void *data)
{
apr_crypto_digest_t *digest = (apr_crypto_digest_t *) data;
return crypto_digest_cleanup(digest);
}
static apr_status_t crypto_key_cleanup(void *data)
{
apr_crypto_key_t *key = data;
if (key->symKey) {
PK11_FreeSymKey(key->symKey);
key->symKey = NULL;
}
return APR_SUCCESS;
}
/**
* @brief Clean encryption / decryption context.
* @note After cleanup, a context is free to be reused if necessary.
* @param f The context to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
static apr_status_t crypto_cleanup(apr_crypto_t *f)
{
return APR_SUCCESS;
}
static apr_status_t crypto_cleanup_helper(void *data)
{
apr_crypto_t *f = (apr_crypto_t *) data;
return crypto_cleanup(f);
}
/**
* @brief Create a context for supporting encryption. Keys, certificates,
* algorithms and other parameters will be set per context. More than
* one context can be created at one time. A cleanup will be automatically
* registered with the given pool to guarantee a graceful shutdown.
* @param f - context pointer will be written here
* @param provider - provider to use
* @param params - parameter string
* @param pool - process pool
* @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
* if the engine cannot be initialised.
*/
static apr_status_t crypto_make(apr_crypto_t **ff,
const apr_crypto_driver_t *provider, const char *params,
apr_pool_t *pool)
{
apr_crypto_config_t *config = NULL;
apr_crypto_t *f;
int i;
f = apr_pcalloc(pool, sizeof(apr_crypto_t));
if (!f) {
return APR_ENOMEM;
}
*ff = f;
f->pool = pool;
f->provider = provider;
config = f->config = apr_pcalloc(pool, sizeof(apr_crypto_config_t));
if (!config) {
return APR_ENOMEM;
}
f->result = apr_pcalloc(pool, sizeof(apu_err_t));
if (!f->result) {
return APR_ENOMEM;
}
f->digests = apr_hash_make(pool);
if (!f->digests) {
return APR_ENOMEM;
}
apr_hash_set(f->digests, "md5", APR_HASH_KEY_STRING, &(key_digests[i = 0]));
apr_hash_set(f->digests, "sha1", APR_HASH_KEY_STRING, &(key_digests[++i]));
apr_hash_set(f->digests, "sha224", APR_HASH_KEY_STRING, &(key_digests[++i]));
apr_hash_set(f->digests, "sha256", APR_HASH_KEY_STRING, &(key_digests[++i]));
apr_hash_set(f->digests, "sha384", APR_HASH_KEY_STRING, &(key_digests[++i]));
apr_hash_set(f->digests, "sha512", APR_HASH_KEY_STRING, &(key_digests[++i]));
f->types = apr_hash_make(pool);
if (!f->types) {
return APR_ENOMEM;
}
apr_hash_set(f->types, "3des192", APR_HASH_KEY_STRING, &(key_types[i = 0]));
apr_hash_set(f->types, "aes128", APR_HASH_KEY_STRING, &(key_types[++i]));
apr_hash_set(f->types, "aes192", APR_HASH_KEY_STRING, &(key_types[++i]));
apr_hash_set(f->types, "aes256", APR_HASH_KEY_STRING, &(key_types[++i]));
f->modes = apr_hash_make(pool);
if (!f->modes) {
return APR_ENOMEM;
}
apr_hash_set(f->modes, "ecb", APR_HASH_KEY_STRING, &(key_modes[i = 0]));
apr_hash_set(f->modes, "cbc", APR_HASH_KEY_STRING, &(key_modes[++i]));
apr_pool_cleanup_register(pool, f, crypto_cleanup_helper,
apr_pool_cleanup_null);
return APR_SUCCESS;
}
/**
* @brief Get a hash table of key digests, keyed by the name of the digest against
* a pointer to apr_crypto_block_key_digest_t.
*
* @param digests - hashtable of key digests keyed to constants.
* @param f - encryption context
* @return APR_SUCCESS for success
*/
static apr_status_t crypto_get_block_key_digests(apr_hash_t **digests,
const apr_crypto_t *f)
{
*digests = f->digests;
return APR_SUCCESS;
}
/**
* @brief Get a hash table of key types, keyed by the name of the type against
* a pointer to apr_crypto_block_key_type_t.
*
* @param types - hashtable of key types keyed to constants.
* @param f - encryption context
* @return APR_SUCCESS for success
*/
static apr_status_t crypto_get_block_key_types(apr_hash_t **types,
const apr_crypto_t *f)
{
*types = f->types;
return APR_SUCCESS;
}
/**
* @brief Get a hash table of key modes, keyed by the name of the mode against
* a pointer to apr_crypto_block_key_mode_t.
*
* @param modes - hashtable of key modes keyed to constants.
* @param f - encryption context
* @return APR_SUCCESS for success
*/
static apr_status_t crypto_get_block_key_modes(apr_hash_t **modes,
const apr_crypto_t *f)
{
*modes = f->modes;
return APR_SUCCESS;
}
/*
* Work out which mechanism to use.
*/
static apr_status_t crypto_cipher_mechanism(apr_crypto_key_t *key,
const apr_crypto_block_key_type_e type,
const apr_crypto_block_key_mode_e mode, const int doPad)
{
/* decide on what cipher mechanism we will be using */
switch (type) {
case (APR_KEY_3DES_192):
if (APR_MODE_CBC == mode) {
key->cipherOid = SEC_OID_DES_EDE3_CBC;
}
else if (APR_MODE_ECB == mode) {
return APR_ENOCIPHER;
/* No OID for CKM_DES3_ECB; */
}
key->keyLength = 24;
break;
case (APR_KEY_AES_128):
if (APR_MODE_CBC == mode) {
key->cipherOid = SEC_OID_AES_128_CBC;
}
else {
key->cipherOid = SEC_OID_AES_128_ECB;
}
key->keyLength = 16;
break;
case (APR_KEY_AES_192):
if (APR_MODE_CBC == mode) {
key->cipherOid = SEC_OID_AES_192_CBC;
}
else {
key->cipherOid = SEC_OID_AES_192_ECB;
}
key->keyLength = 24;
break;
case (APR_KEY_AES_256):
if (APR_MODE_CBC == mode) {
key->cipherOid = SEC_OID_AES_256_CBC;
}
else {
key->cipherOid = SEC_OID_AES_256_ECB;
}
key->keyLength = 32;
break;
default:
/* unknown key type, give up */
return APR_EKEYTYPE;
}
/* AES_128_CBC --> CKM_AES_CBC --> CKM_AES_CBC_PAD */
key->cipherMech = PK11_AlgtagToMechanism(key->cipherOid);
if (key->cipherMech == CKM_INVALID_MECHANISM) {
return APR_ENOCIPHER;
}
if (doPad) {
CK_MECHANISM_TYPE paddedMech;
paddedMech = PK11_GetPadMechanism(key->cipherMech);
if (CKM_INVALID_MECHANISM == paddedMech
|| key->cipherMech == paddedMech) {
return APR_EPADDING;
}
key->cipherMech = paddedMech;
}
key->ivSize = PK11_GetIVLength(key->cipherMech);
return APR_SUCCESS;
}
/**
* @brief Create a key from the provided secret or passphrase. The key is cleaned
* up when the context is cleaned, and may be reused with multiple encryption
* or decryption operations.
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
* *key is not NULL, *key must point at a previously created structure.
* @param key The key returned, see note.
* @param rec The key record, from which the key will be derived.
* @param f The context to use.
* @param p The pool to use.
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
* not known. APR_EPADDING if padding was requested but is not supported.
* APR_ENOTIMPL if not implemented.
*/
static apr_status_t crypto_key(apr_crypto_key_t **k,
const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p)
{
apr_status_t rv = APR_SUCCESS;
PK11SlotInfo *slot, *tslot;
PK11SymKey *tkey;
SECItem secretItem;
SECItem wrappedItem;
SECItem *secParam;
PK11Context *ctx;
SECStatus s;
SECItem passItem;
SECItem saltItem;
SECAlgorithmID *algid;
void *wincx = NULL; /* what is wincx? */
apr_crypto_key_t *key;
int blockSize;
int remainder;
key = *k;
if (!key) {
*k = key = apr_pcalloc(p, sizeof *key);
if (!key) {
return APR_ENOMEM;
}
apr_pool_cleanup_register(p, key, crypto_key_cleanup,
apr_pool_cleanup_null);
}
key->pool = p;
key->f = f;
key->provider = f->provider;
key->rec = rec;
switch (rec->ktype) {
case APR_CRYPTO_KTYPE_PASSPHRASE: {
/* decide on what cipher mechanism we will be using */
rv = crypto_cipher_mechanism(key, rec->type, rec->mode, rec->pad);
if (APR_SUCCESS != rv) {
return rv;
}
/* Turn the raw passphrase and salt into SECItems */
passItem.data = (unsigned char*) rec->k.passphrase.pass;
passItem.len = rec->k.passphrase.passLen;
saltItem.data = (unsigned char*) rec->k.passphrase.salt;
saltItem.len = rec->k.passphrase.saltLen;
/* generate the key */
/* pbeAlg and cipherAlg are the same. */
algid = PK11_CreatePBEV2AlgorithmID(key->cipherOid, key->cipherOid,
SEC_OID_HMAC_SHA1, key->keyLength,
rec->k.passphrase.iterations, &saltItem);
if (algid) {
slot = PK11_GetBestSlot(key->cipherMech, wincx);
if (slot) {
key->symKey = PK11_PBEKeyGen(slot, algid, &passItem, PR_FALSE,
wincx);
PK11_FreeSlot(slot);
}
SECOID_DestroyAlgorithmID(algid, PR_TRUE);
}
/* sanity check? */
if (!key->symKey) {
PRErrorCode perr = PORT_GetError();
if (perr) {
f->result->rc = perr;
f->result->msg = PR_ErrorToName(perr);
rv = APR_ENOKEY;
}
}
break;
}
case APR_CRYPTO_KTYPE_SECRET: {
/* decide on what cipher mechanism we will be using */
rv = crypto_cipher_mechanism(key, rec->type, rec->mode, rec->pad);
if (APR_SUCCESS != rv) {
return rv;
}
/*
* NSS is by default in FIPS mode, which disallows the use of unencrypted
* symmetrical keys. As per http://permalink.gmane.org/gmane.comp.mozilla.crypto/7947
* we do the following:
*
* 1. Generate a (temporary) symmetric key in NSS.
* 2. Use that symmetric key to encrypt your symmetric key as data.
* 3. Unwrap your wrapped symmetric key, using the symmetric key
* you generated in Step 1 as the unwrapping key.
*
* http://permalink.gmane.org/gmane.comp.mozilla.crypto/7947
*/
/* generate the key */
slot = PK11_GetBestSlot(key->cipherMech, NULL);
if (slot) {
unsigned char data[BUFFER_SIZE];
/* sanity check - key correct size? */
if (rec->k.secret.secretLen != key->keyLength) {
PK11_FreeSlot(slot);
return APR_EKEYLENGTH;
}
tslot = PK11_GetBestSlot(CKM_AES_ECB, NULL);
if (tslot) {
/* generate a temporary wrapping key */
tkey = PK11_KeyGen(tslot, CKM_AES_ECB, 0, PK11_GetBestKeyLength(tslot, CKM_AES_ECB), 0);
/* prepare the key to wrap */
secretItem.data = (unsigned char *) rec->k.secret.secret;
secretItem.len = rec->k.secret.secretLen;
/* ensure our key matches the blocksize */
secParam = PK11_GenerateNewParam(CKM_AES_ECB, tkey);
blockSize = PK11_GetBlockSize(CKM_AES_ECB, secParam);
remainder = rec->k.secret.secretLen % blockSize;
if (remainder) {
secretItem.data =
apr_pcalloc(p, rec->k.secret.secretLen + remainder);
apr_crypto_clear(p, secretItem.data,
rec->k.secret.secretLen);
memcpy(secretItem.data, rec->k.secret.secret,
rec->k.secret.secretLen);
secretItem.len += remainder;
}
/* prepare a space for the wrapped key */
wrappedItem.data = data;
/* wrap the key */
ctx = PK11_CreateContextBySymKey(CKM_AES_ECB, CKA_ENCRYPT, tkey,
secParam);
if (ctx) {
s = PK11_CipherOp(ctx, wrappedItem.data,
(int *) (&wrappedItem.len), BUFFER_SIZE,
secretItem.data, secretItem.len);
if (s == SECSuccess) {
/* unwrap the key again */
key->symKey = PK11_UnwrapSymKeyWithFlags(tkey,
CKM_AES_ECB, NULL, &wrappedItem,
key->cipherMech, CKA_ENCRYPT,
rec->k.secret.secretLen, 0);
}
PK11_DestroyContext(ctx, PR_TRUE);
}
/* clean up */
SECITEM_FreeItem(secParam, PR_TRUE);
PK11_FreeSymKey(tkey);
PK11_FreeSlot(tslot);
}
PK11_FreeSlot(slot);
}
/* sanity check? */
if (!key->symKey) {
PRErrorCode perr = PORT_GetError();
if (perr) {
f->result->rc = perr;
f->result->msg = PR_ErrorToName(perr);
rv = APR_ENOKEY;
}
}
break;
}
case APR_CRYPTO_KTYPE_HASH: {
switch (rec->k.hash.digest) {
case APR_CRYPTO_DIGEST_MD5:
key->hashAlg = SEC_OID_MD5;
break;
case APR_CRYPTO_DIGEST_SHA1:
key->hashAlg = SEC_OID_SHA1;
break;
case APR_CRYPTO_DIGEST_SHA224:
key->hashAlg = SEC_OID_SHA224;
break;
case APR_CRYPTO_DIGEST_SHA256:
key->hashAlg = SEC_OID_SHA256;
break;
case APR_CRYPTO_DIGEST_SHA384:
key->hashAlg = SEC_OID_SHA384;
break;
case APR_CRYPTO_DIGEST_SHA512:
key->hashAlg = SEC_OID_SHA512;
break;
default:
return APR_ENODIGEST;
}
break;
}
case APR_CRYPTO_KTYPE_HMAC: {
switch (rec->k.hmac.digest) {
case APR_CRYPTO_DIGEST_MD5:
key->hashMech = CKM_MD5_HMAC;
break;
case APR_CRYPTO_DIGEST_SHA1:
key->hashMech = CKM_SHA_1_HMAC;
break;
case APR_CRYPTO_DIGEST_SHA224:
key->hashMech = CKM_SHA224_HMAC;
break;
case APR_CRYPTO_DIGEST_SHA256:
key->hashMech = CKM_SHA256_HMAC;
break;
case APR_CRYPTO_DIGEST_SHA384:
key->hashMech = CKM_SHA384_HMAC;
break;
case APR_CRYPTO_DIGEST_SHA512:
key->hashMech = CKM_SHA512_HMAC;
break;
default:
return APR_ENODIGEST;
}
/* generate the key */
slot = PK11_GetBestSlot(key->hashMech, NULL);
if (slot) {
/* prepare the key to wrap */
secretItem.data = (unsigned char *) rec->k.hmac.secret;
secretItem.len = rec->k.hmac.secretLen;
key->symKey = PK11_ImportSymKey(slot, key->hashMech, PK11_OriginDerive,
CKA_SIGN, &secretItem, NULL);
/* sanity check? */
if (!key->symKey) {
PRErrorCode perr = PORT_GetError();
if (perr) {
f->result->rc = perr;
f->result->msg = PR_ErrorToName(perr);
rv = APR_ENOKEY;
}
}
PK11_FreeSlot(slot);
}
break;
}
case APR_CRYPTO_KTYPE_CMAC: {
return APR_ENOTIMPL;
}
default: {
return APR_ENOKEY;
}
}
return rv;
}
/**
* @brief Create a key from the given passphrase. By default, the PBKDF2
* algorithm is used to generate the key from the passphrase. It is expected
* that the same pass phrase will generate the same key, regardless of the
* backend crypto platform used. The key is cleaned up when the context
* is cleaned, and may be reused with multiple encryption or decryption
* operations.
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
* *key is not NULL, *key must point at a previously created structure.
* @param key The key returned, see note.
* @param ivSize The size of the initialisation vector will be returned, based
* on whether an IV is relevant for this type of crypto.
* @param pass The passphrase to use.
* @param passLen The passphrase length in bytes
* @param salt The salt to use.
* @param saltLen The salt length in bytes
* @param type 3DES_192, AES_128, AES_192, AES_256.
* @param mode Electronic Code Book / Cipher Block Chaining.
* @param doPad Pad if necessary.
* @param iterations Iteration count
* @param f The context to use.
* @param p The pool to use.
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
* not known. APR_EPADDING if padding was requested but is not supported.
* APR_ENOTIMPL if not implemented.
*/
static apr_status_t crypto_passphrase(apr_crypto_key_t **k, apr_size_t *ivSize,
const char *pass, apr_size_t passLen, const unsigned char * salt,
apr_size_t saltLen, const apr_crypto_block_key_type_e type,
const apr_crypto_block_key_mode_e mode, const int doPad,
const int iterations, const apr_crypto_t *f, apr_pool_t *p)
{
apr_status_t rv = APR_SUCCESS;
PK11SlotInfo * slot;
SECItem passItem;
SECItem saltItem;
SECAlgorithmID *algid;
void *wincx = NULL; /* what is wincx? */
apr_crypto_key_t *key = *k;
apr_crypto_key_rec_t *rec;
if (!key) {
*k = key = apr_pcalloc(p, sizeof *key);
if (!key) {
return APR_ENOMEM;
}
apr_pool_cleanup_register(p, key, crypto_key_cleanup,
apr_pool_cleanup_null);
}
key->f = f;
key->provider = f->provider;
key->rec = rec = apr_pcalloc(p, sizeof(apr_crypto_key_rec_t));
if (!key->rec) {
return APR_ENOMEM;
}
rec->ktype = APR_CRYPTO_KTYPE_PASSPHRASE;
/* decide on what cipher mechanism we will be using */
rv = crypto_cipher_mechanism(key, type, mode, doPad);
if (APR_SUCCESS != rv) {
return rv;
}
/* Turn the raw passphrase and salt into SECItems */
passItem.data = (unsigned char*) pass;
passItem.len = passLen;
saltItem.data = (unsigned char*) salt;
saltItem.len = saltLen;
/* generate the key */
/* pbeAlg and cipherAlg are the same. */
algid = PK11_CreatePBEV2AlgorithmID(key->cipherOid, key->cipherOid,
SEC_OID_HMAC_SHA1, key->keyLength, iterations, &saltItem);
if (algid) {
slot = PK11_GetBestSlot(key->cipherMech, wincx);
if (slot) {
key->symKey = PK11_PBEKeyGen(slot, algid, &passItem, PR_FALSE,
wincx);
PK11_FreeSlot(slot);
}
SECOID_DestroyAlgorithmID(algid, PR_TRUE);
}
/* sanity check? */
if (!key->symKey) {
PRErrorCode perr = PORT_GetError();
if (perr) {
f->result->rc = perr;
f->result->msg = PR_ErrorToName(perr);
rv = APR_ENOKEY;
}
}
if (ivSize) {
*ivSize = key->ivSize;
}
return rv;
}
/**
* @brief Initialise a context for encrypting arbitrary data using the given key.
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
* *ctx is not NULL, *ctx must point at a previously created structure.
* @param ctx The block context returned, see note.
* @param iv Optional initialisation vector. If the buffer pointed to is NULL,
* an IV will be created at random, in space allocated from the pool.
* If the buffer pointed to is not NULL, the IV in the buffer will be
* used.
* @param key The key structure.
* @param blockSize The block size of the cipher.
* @param p The pool to use.
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
* Returns APR_EINIT if the backend failed to initialise the context. Returns
* APR_ENOTIMPL if not implemented.
*/
static apr_status_t crypto_block_encrypt_init(apr_crypto_block_t **ctx,
const unsigned char **iv, const apr_crypto_key_t *key,
apr_size_t *blockSize, apr_pool_t *p)
{
PRErrorCode perr;
SECItem ivItem;
unsigned char * usedIv;
apr_crypto_block_t *block = *ctx;
if (!block) {
*ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
}
if (!block) {
return APR_ENOMEM;
}
block->f = key->f;
block->pool = p;
block->provider = key->provider;
block->key = key;
apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
apr_pool_cleanup_null);
switch (key->rec->ktype) {
case APR_CRYPTO_KTYPE_PASSPHRASE:
case APR_CRYPTO_KTYPE_SECRET: {
if (key->ivSize) {
if (iv == NULL) {
return APR_ENOIV;
}
if (*iv == NULL) {
SECStatus s;
usedIv = apr_pcalloc(p, key->ivSize);
if (!usedIv) {
return APR_ENOMEM;
}
apr_crypto_clear(p, usedIv, key->ivSize);
s = PK11_GenerateRandom(usedIv, key->ivSize);
if (s != SECSuccess) {
return APR_ENOIV;
}
*iv = usedIv;
}
else {
usedIv = (unsigned char *) *iv;
}
ivItem.data = usedIv;
ivItem.len = key->ivSize;
block->secParam = PK11_ParamFromIV(key->cipherMech, &ivItem);
}
else {
block->secParam = PK11_GenerateNewParam(key->cipherMech, key->symKey);
}
block->blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
block->ctx = PK11_CreateContextBySymKey(key->cipherMech, CKA_ENCRYPT,
key->symKey, block->secParam);
/* did an error occur? */
perr = PORT_GetError();
if (perr || !block->ctx) {
key->f->result->rc = perr;
key->f->result->msg = PR_ErrorToName(perr);
return APR_EINIT;
}
if (blockSize) {
*blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
}
return APR_SUCCESS;
}
default: {
return APR_EINVAL;
}
}
}
/**
* @brief Encrypt data provided by in, write it to out.
* @note The number of bytes written will be written to outlen. If
* out is NULL, outlen will contain the maximum size of the
* buffer needed to hold the data, including any data
* generated by apr_crypto_block_encrypt_finish below. If *out points
* to NULL, a buffer sufficiently large will be created from
* the pool provided. If *out points to a not-NULL value, this
* value will be used as a buffer instead.
* @param out Address of a buffer to which data will be written,
* see note.
* @param outlen Length of the output will be written here.
* @param in Address of the buffer to read.
* @param inlen Length of the buffer to read.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
* not implemented.
*/
static apr_status_t crypto_block_encrypt(unsigned char **out,
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
apr_crypto_block_t *block)
{
switch (block->key->rec->ktype) {
case APR_CRYPTO_KTYPE_PASSPHRASE:
case APR_CRYPTO_KTYPE_SECRET: {
unsigned char *buffer;
int outl = (int) *outlen;
SECStatus s;
if (!out) {
*outlen = inlen + block->blockSize;
return APR_SUCCESS;
}
if (!*out) {
buffer = apr_palloc(block->pool, inlen + block->blockSize);
if (!buffer) {
return APR_ENOMEM;
}
apr_crypto_clear(block->pool, buffer, inlen + block->blockSize);
*out = buffer;
}
s = PK11_CipherOp(block->ctx, *out, &outl, inlen, (unsigned char*) in,
inlen);
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
block->f->result->rc = perr;
block->f->result->msg = PR_ErrorToName(perr);
}
return APR_ECRYPT;
}
*outlen = outl;
return APR_SUCCESS;
}
default: {
return APR_EINVAL;
}
}
}
/**
* @brief Encrypt final data block, write it to out.
* @note If necessary the final block will be written out after being
* padded. Typically the final block will be written to the
* same buffer used by apr_crypto_block_encrypt, offset by the
* number of bytes returned as actually written by the
* apr_crypto_block_encrypt() call. After this call, the context
* is cleaned and can be reused by apr_crypto_block_encrypt_init().
* @param out Address of a buffer to which data will be written. This
* buffer must already exist, and is usually the same
* buffer used by apr_evp_crypt(). See note.
* @param outlen Length of the output will be written here.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred.
* @return APR_EPADDING if padding was enabled and the block was incorrectly
* formatted.
* @return APR_ENOTIMPL if not implemented.
*/
static apr_status_t crypto_block_encrypt_finish(unsigned char *out,
apr_size_t *outlen, apr_crypto_block_t *block)
{
switch (block->key->rec->ktype) {
case APR_CRYPTO_KTYPE_PASSPHRASE:
case APR_CRYPTO_KTYPE_SECRET: {
apr_status_t rv = APR_SUCCESS;
unsigned int outl = *outlen;
SECStatus s = PK11_DigestFinal(block->ctx, out, &outl, block->blockSize);
*outlen = outl;
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
block->f->result->rc = perr;
block->f->result->msg = PR_ErrorToName(perr);
}
rv = APR_ECRYPT;
}
crypto_block_cleanup(block);
return rv;
}
default: {
return APR_EINVAL;
}
}
}
/**
* @brief Initialise a context for decrypting arbitrary data using the given key.
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
* *ctx is not NULL, *ctx must point at a previously created structure.
* @param ctx The block context returned, see note.
* @param blockSize The block size of the cipher.
* @param iv Optional initialisation vector. If the buffer pointed to is NULL,
* an IV will be created at random, in space allocated from the pool.
* If the buffer is not NULL, the IV in the buffer will be used.
* @param key The key structure.
* @param p The pool to use.
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
* Returns APR_EINIT if the backend failed to initialise the context. Returns
* APR_ENOTIMPL if not implemented.
*/
static apr_status_t crypto_block_decrypt_init(apr_crypto_block_t **ctx,
apr_size_t *blockSize, const unsigned char *iv,
const apr_crypto_key_t *key, apr_pool_t *p)
{
switch (key->rec->ktype) {
case APR_CRYPTO_KTYPE_PASSPHRASE:
case APR_CRYPTO_KTYPE_SECRET: {
PRErrorCode perr;
apr_crypto_block_t *block = *ctx;
if (!block) {
*ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
}
if (!block) {
return APR_ENOMEM;
}
block->f = key->f;
block->pool = p;
block->provider = key->provider;
block->key = key;
apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
apr_pool_cleanup_null);
if (key->ivSize) {
SECItem ivItem;
if (iv == NULL) {
return APR_ENOIV; /* Cannot initialise without an IV */
}
ivItem.data = (unsigned char*) iv;
ivItem.len = key->ivSize;
block->secParam = PK11_ParamFromIV(key->cipherMech, &ivItem);
}
else {
block->secParam = PK11_GenerateNewParam(key->cipherMech, key->symKey);
}
block->blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
block->ctx = PK11_CreateContextBySymKey(key->cipherMech, CKA_DECRYPT,
key->symKey, block->secParam);
/* did an error occur? */
perr = PORT_GetError();
if (perr || !block->ctx) {
key->f->result->rc = perr;
key->f->result->msg = PR_ErrorToName(perr);
return APR_EINIT;
}
if (blockSize) {
*blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
}
return APR_SUCCESS;
}
default: {
return APR_EINVAL;
}
}
}
/**
* @brief Decrypt data provided by in, write it to out.
* @note The number of bytes written will be written to outlen. If
* out is NULL, outlen will contain the maximum size of the
* buffer needed to hold the data, including any data
* generated by apr_crypto_block_decrypt_finish below. If *out points
* to NULL, a buffer sufficiently large will be created from
* the pool provided. If *out points to a not-NULL value, this
* value will be used as a buffer instead.
* @param out Address of a buffer to which data will be written,
* see note.
* @param outlen Length of the output will be written here.
* @param in Address of the buffer to read.
* @param inlen Length of the buffer to read.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
* not implemented.
*/
static apr_status_t crypto_block_decrypt(unsigned char **out,
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
apr_crypto_block_t *block)
{
switch (block->key->rec->ktype) {
case APR_CRYPTO_KTYPE_PASSPHRASE:
case APR_CRYPTO_KTYPE_SECRET: {
unsigned char *buffer;
int outl = (int) *outlen;
SECStatus s;
if (!out) {
*outlen = inlen + block->blockSize;
return APR_SUCCESS;
}
if (!*out) {
buffer = apr_palloc(block->pool, inlen + block->blockSize);
if (!buffer) {
return APR_ENOMEM;
}
apr_crypto_clear(block->pool, buffer, inlen + block->blockSize);
*out = buffer;
}
s = PK11_CipherOp(block->ctx, *out, &outl, inlen, (unsigned char*) in,
inlen);
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
block->f->result->rc = perr;
block->f->result->msg = PR_ErrorToName(perr);
}
return APR_ECRYPT;
}
*outlen = outl;
return APR_SUCCESS;
}
default: {
return APR_EINVAL;
}
}
}
/**
* @brief Decrypt final data block, write it to out.
* @note If necessary the final block will be written out after being
* padded. Typically the final block will be written to the
* same buffer used by apr_crypto_block_decrypt, offset by the
* number of bytes returned as actually written by the
* apr_crypto_block_decrypt() call. After this call, the context
* is cleaned and can be reused by apr_crypto_block_decrypt_init().
* @param out Address of a buffer to which data will be written. This
* buffer must already exist, and is usually the same
* buffer used by apr_evp_crypt(). See note.
* @param outlen Length of the output will be written here.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred.
* @return APR_EPADDING if padding was enabled and the block was incorrectly
* formatted.
* @return APR_ENOTIMPL if not implemented.
*/
static apr_status_t crypto_block_decrypt_finish(unsigned char *out,
apr_size_t *outlen, apr_crypto_block_t *block)
{
switch (block->key->rec->ktype) {
case APR_CRYPTO_KTYPE_PASSPHRASE:
case APR_CRYPTO_KTYPE_SECRET: {
apr_status_t rv = APR_SUCCESS;
unsigned int outl = *outlen;
SECStatus s = PK11_DigestFinal(block->ctx, out, &outl, block->blockSize);
*outlen = outl;
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
block->f->result->rc = perr;
block->f->result->msg = PR_ErrorToName(perr);
}
rv = APR_ECRYPT;
}
crypto_block_cleanup(block);
return rv;
}
default: {
return APR_EINVAL;
}
}
}
static apr_status_t crypto_digest_init(apr_crypto_digest_t **d,
const apr_crypto_key_t *key, apr_crypto_digest_rec_t *rec, apr_pool_t *p)
{
PRErrorCode perr;
SECStatus s;
apr_crypto_digest_t *digest = *d;
if (!digest) {
*d = digest = apr_pcalloc(p, sizeof(apr_crypto_digest_t));
}
if (!digest) {
return APR_ENOMEM;
}
digest->f = key->f;
digest->pool = p;
digest->provider = key->provider;
digest->key = key;
digest->rec = rec;
apr_pool_cleanup_register(p, digest, crypto_digest_cleanup_helper,
apr_pool_cleanup_null);
switch (key->rec->ktype) {
case APR_CRYPTO_KTYPE_HASH: {
digest->ctx = PK11_CreateDigestContext(key->hashAlg);
s = PK11_DigestBegin(digest->ctx);
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
digest->f->result->rc = perr;
digest->f->result->msg = PR_ErrorToName(perr);
}
return APR_ECRYPT;
}
return APR_SUCCESS;
}
case APR_CRYPTO_KTYPE_HMAC: {
digest->secParam = PK11_GenerateNewParam(key->cipherMech, key->symKey);
digest->ctx = PK11_CreateContextBySymKey(key->hashMech, CKA_SIGN,
key->symKey, digest->secParam);
/* did an error occur? */
perr = PORT_GetError();
if (perr || !digest->ctx) {
key->f->result->rc = perr;
key->f->result->msg = PR_ErrorToName(perr);
return APR_EINIT;
}
s = PK11_DigestBegin(digest->ctx);
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
digest->f->result->rc = perr;
digest->f->result->msg = PR_ErrorToName(perr);
}
return APR_ECRYPT;
}
return APR_SUCCESS;
}
case APR_CRYPTO_KTYPE_CMAC: {
return APR_ENOTIMPL;
}
default: {
return APR_EINVAL;
}
}
}
static apr_status_t crypto_digest_update(apr_crypto_digest_t *digest,
const unsigned char *in, apr_size_t inlen)
{
switch (digest->key->rec->ktype) {
case APR_CRYPTO_KTYPE_HASH:
case APR_CRYPTO_KTYPE_HMAC: {
SECStatus s;
s = PK11_DigestOp(digest->ctx, (unsigned char*) in,
inlen);
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
digest->f->result->rc = perr;
digest->f->result->msg = PR_ErrorToName(perr);
}
return APR_ECRYPT;
}
return APR_SUCCESS;
}
case APR_CRYPTO_KTYPE_CMAC: {
return APR_ENOTIMPL;
}
default: {
return APR_EINVAL;
}
}
}
static apr_status_t crypto_digest_final(apr_crypto_digest_t *digest)
{
switch (digest->key->rec->ktype) {
case APR_CRYPTO_KTYPE_HASH:
case APR_CRYPTO_KTYPE_HMAC: {
apr_status_t status = APR_SUCCESS;
unsigned int len;
/* first, determine the signature length */
SECStatus s = PK11_DigestFinal(digest->ctx, NULL, &len, 0);
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
digest->f->result->rc = perr;
digest->f->result->msg = PR_ErrorToName(perr);
}
status = APR_ECRYPT;
}
else {
switch (digest->rec->dtype) {
case APR_CRYPTO_DTYPE_HASH: {
/* must we allocate the output buffer from a pool? */
if (!digest->rec->d.hash.s || digest->rec->d.hash.slen != len) {
digest->rec->d.hash.slen = len;
digest->rec->d.hash.s = apr_palloc(digest->pool, len);
if (!digest->rec->d.hash.s) {
return APR_ENOMEM;
}
apr_crypto_clear(digest->pool, digest->rec->d.hash.s, len);
}
/* then, determine the signature */
SECStatus s = PK11_DigestFinal(digest->ctx,
digest->rec->d.hash.s, &len, digest->rec->d.hash.slen);
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
digest->f->result->rc = perr;
digest->f->result->msg = PR_ErrorToName(perr);
}
status = APR_ECRYPT;
}
break;
}
case APR_CRYPTO_DTYPE_SIGN: {
/* must we allocate the output buffer from a pool? */
if (!digest->rec->d.sign.s || digest->rec->d.sign.slen != len) {
digest->rec->d.sign.slen = len;
digest->rec->d.sign.s = apr_palloc(digest->pool, len);
if (!digest->rec->d.sign.s) {
return APR_ENOMEM;
}
apr_crypto_clear(digest->pool, digest->rec->d.sign.s, len);
}
/* then, determine the signature */
SECStatus s = PK11_DigestFinal(digest->ctx,
digest->rec->d.sign.s, &len, digest->rec->d.sign.slen);
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
digest->f->result->rc = perr;
digest->f->result->msg = PR_ErrorToName(perr);
}
status = APR_ECRYPT;
}
break;
}
case APR_CRYPTO_DTYPE_VERIFY: {
/* must we allocate the output buffer from a pool? */
if (!digest->rec->d.verify.s
|| digest->rec->d.verify.slen != len) {
digest->rec->d.verify.slen = len;
digest->rec->d.verify.s = apr_palloc(digest->pool, len);
if (!digest->rec->d.verify.s) {
return APR_ENOMEM;
}
apr_crypto_clear(digest->pool, digest->rec->d.verify.s,
len);
}
/* then, determine the signature */
SECStatus s = PK11_DigestFinal(digest->ctx,
digest->rec->d.verify.s, &len,
digest->rec->d.verify.slen);
if (s != SECSuccess) {
PRErrorCode perr = PORT_GetError();
if (perr) {
digest->f->result->rc = perr;
digest->f->result->msg = PR_ErrorToName(perr);
}
status = APR_ECRYPT;
} else if (digest->rec->d.verify.slen
== digest->rec->d.verify.vlen) {
status =
apr_crypto_equals(digest->rec->d.verify.s,
digest->rec->d.verify.v,
digest->rec->d.verify.slen) ?
APR_SUCCESS : APR_ENOVERIFY;
} else {
status = APR_ENOVERIFY;
}
break;
}
default: {
status = APR_ENODIGEST;
}
}
}
crypto_digest_cleanup(digest);
return status;
}
case APR_CRYPTO_KTYPE_CMAC: {
return APR_ENOTIMPL;
}
default: {
return APR_EINVAL;
}
}
}
static apr_status_t crypto_digest(
const apr_crypto_key_t *key, apr_crypto_digest_rec_t *rec, const unsigned char *in,
apr_size_t inlen, apr_pool_t *p)
{
apr_crypto_digest_t *digest = NULL;
apr_status_t status = APR_SUCCESS;
status = crypto_digest_init(&digest, key, rec, p);
if (APR_SUCCESS == status) {
status = crypto_digest_update(digest, in, inlen);
if (APR_SUCCESS == status) {
status = crypto_digest_final(digest);
}
}
return status;
}
static apr_status_t cprng_stream_ctx_make(cprng_stream_ctx_t **psctx,
apr_crypto_t *f, apr_crypto_cipher_e cipher, apr_pool_t *pool)
{
return APR_ENOTIMPL;
}
void cprng_stream_ctx_free(cprng_stream_ctx_t *sctx)
{
}
static apr_status_t cprng_stream_ctx_bytes(cprng_stream_ctx_t **pctx,
unsigned char *key, unsigned char *to, apr_size_t n, const unsigned char *z)
{
return APR_ENOTIMPL;
}
/**
* NSS module.
*/
APR_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_nss_driver = {
"nss", crypto_init, crypto_make, crypto_get_block_key_digests, crypto_get_block_key_types,
crypto_get_block_key_modes, crypto_passphrase,
crypto_block_encrypt_init, crypto_block_encrypt,
crypto_block_encrypt_finish, crypto_block_decrypt_init,
crypto_block_decrypt, crypto_block_decrypt_finish,
crypto_digest_init, crypto_digest_update, crypto_digest_final, crypto_digest,
crypto_block_cleanup, crypto_digest_cleanup, crypto_cleanup, crypto_shutdown, crypto_error,
crypto_key, cprng_stream_ctx_make, cprng_stream_ctx_free, cprng_stream_ctx_bytes
};
#endif