| /* Licensed to the Apache Software Foundation (ASF) under one or more |
| * contributor license agreements. See the NOTICE file distributed with |
| * this work for additional information regarding copyright ownership. |
| * The ASF licenses this file to You under the Apache License, Version 2.0 |
| * (the "License"); you may not use this file except in compliance with |
| * the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <ctype.h> |
| #include <stdio.h> |
| |
| #include "apu_config.h" |
| #include "apu.h" |
| #include "apr_pools.h" |
| #include "apr_dso.h" |
| #include "apr_strings.h" |
| #include "apr_hash.h" |
| #include "apr_thread_mutex.h" |
| #include "apr_lib.h" |
| |
| #if APU_HAVE_CRYPTO |
| |
| #include "apu_internal.h" |
| #include "apr_crypto_internal.h" |
| #include "apr_crypto.h" |
| #include "apu_version.h" |
| |
| static apr_hash_t *drivers = NULL; |
| |
| #define ERROR_SIZE 1024 |
| |
| #define APR_TYPEDEF_STRUCT(type, incompletion) \ |
| struct type { \ |
| incompletion \ |
| void *unk[]; \ |
| }; |
| |
| APR_TYPEDEF_STRUCT(apr_crypto_t, |
| apr_pool_t *pool; |
| apr_crypto_driver_t *provider; |
| ) |
| |
| APR_TYPEDEF_STRUCT(apr_crypto_key_t, |
| apr_pool_t *pool; |
| apr_crypto_driver_t *provider; |
| const apr_crypto_t *f; |
| ) |
| |
| APR_TYPEDEF_STRUCT(apr_crypto_block_t, |
| apr_pool_t *pool; |
| apr_crypto_driver_t *provider; |
| const apr_crypto_t *f; |
| ) |
| |
| APR_TYPEDEF_STRUCT(apr_crypto_digest_t, |
| apr_pool_t *pool; |
| apr_crypto_driver_t *provider; |
| const apr_crypto_t *f; |
| ) |
| |
| typedef struct apr_crypto_clear_t { |
| void *buffer; |
| apr_size_t size; |
| } apr_crypto_clear_t; |
| |
| #if !APU_DSO_BUILD |
| #define DRIVER_LOAD(name,driver_name,pool,params,rv,result) \ |
| { \ |
| extern const apr_crypto_driver_t driver_name; \ |
| apr_hash_set(drivers,name,APR_HASH_KEY_STRING,&driver_name); \ |
| if (driver_name.init) { \ |
| rv = driver_name.init(pool, params, result); \ |
| } \ |
| *driver = &driver_name; \ |
| } |
| #endif |
| |
| static apr_status_t apr_crypto_term(void *ptr) |
| { |
| /* set drivers to NULL so init can work again */ |
| drivers = NULL; |
| |
| /* Everything else we need is handled by cleanups registered |
| * when we created mutexes and loaded DSOs |
| */ |
| return APR_SUCCESS; |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool) |
| { |
| apr_pool_t *rootp; |
| |
| if (drivers != NULL) { |
| return APR_SUCCESS; |
| } |
| |
| /* Top level pool scope, for drivers' process-scope lifetime */ |
| rootp = pool; |
| for (;;) { |
| apr_pool_t *p = apr_pool_parent_get(rootp); |
| if (!p || p == rootp) { |
| break; |
| } |
| rootp = p; |
| } |
| #if APU_DSO_BUILD |
| /* deprecate in 2.0 - permit implicit initialization */ |
| apu_dso_init(rootp); |
| #endif |
| drivers = apr_hash_make(rootp); |
| apr_pool_cleanup_register(rootp, NULL, apr_crypto_term, |
| apr_pool_cleanup_null); |
| |
| return APR_SUCCESS; |
| } |
| |
| static apr_status_t crypto_clear(void *ptr) |
| { |
| apr_crypto_clear_t *clear = (apr_crypto_clear_t *)ptr; |
| |
| apr_crypto_memzero(clear->buffer, clear->size); |
| clear->buffer = NULL; |
| clear->size = 0; |
| |
| return APR_SUCCESS; |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool, |
| void *buffer, apr_size_t size) |
| { |
| apr_crypto_clear_t *clear = apr_palloc(pool, sizeof(apr_crypto_clear_t)); |
| |
| clear->buffer = buffer; |
| clear->size = size; |
| |
| apr_pool_cleanup_register(pool, clear, crypto_clear, |
| apr_pool_cleanup_null); |
| |
| return APR_SUCCESS; |
| } |
| |
| #if defined(HAVE_WEAK_SYMBOLS) |
| void apr__memzero_explicit(void *buffer, apr_size_t size); |
| |
| __attribute__ ((weak)) |
| void apr__memzero_explicit(void *buffer, apr_size_t size) |
| { |
| memset(buffer, 0, size); |
| } |
| #endif |
| |
| APU_DECLARE(apr_status_t) apr_crypto_memzero(void *buffer, apr_size_t size) |
| { |
| #if defined(WIN32) |
| SecureZeroMemory(buffer, size); |
| #elif defined(HAVE_MEMSET_S) |
| if (size) { |
| return memset_s(buffer, (rsize_t)size, 0, (rsize_t)size); |
| } |
| #elif defined(HAVE_EXPLICIT_BZERO) |
| explicit_bzero(buffer, size); |
| #elif defined(HAVE_WEAK_SYMBOLS) |
| apr__memzero_explicit(buffer, size); |
| #else |
| apr_size_t i; |
| volatile unsigned char *volatile ptr = buffer; |
| for (i = 0; i < size; ++i) { |
| ptr[i] = 0; |
| } |
| #endif |
| return APR_SUCCESS; |
| } |
| |
| APU_DECLARE(int) apr_crypto_equals(const void *buf1, const void *buf2, |
| apr_size_t size) |
| { |
| const unsigned char *p1 = buf1; |
| const unsigned char *p2 = buf2; |
| unsigned char diff = 0; |
| apr_size_t i; |
| |
| for (i = 0; i < size; ++i) { |
| diff |= p1[i] ^ p2[i]; |
| } |
| |
| return 1 & ((diff - 1) >> 8); |
| } |
| |
| APU_DECLARE(apr_crypto_key_rec_t *) apr_crypto_key_rec_make( |
| apr_crypto_key_type ktype, apr_pool_t *p) |
| { |
| apr_crypto_key_rec_t *key = apr_pcalloc(p, sizeof(apr_crypto_key_rec_t)); |
| key->ktype = ktype; |
| return key; |
| } |
| |
| APU_DECLARE(apr_crypto_digest_rec_t *) apr_crypto_digest_rec_make( |
| apr_crypto_digest_type_e dtype, apr_pool_t *p) |
| { |
| apr_crypto_digest_rec_t *rec = apr_pcalloc(p, sizeof(apr_crypto_digest_rec_t)); |
| if (rec) { |
| rec->dtype = dtype; |
| } |
| return rec; |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_get_driver( |
| const apr_crypto_driver_t **driver, const char *name, |
| const char *params, const apu_err_t **result, apr_pool_t *pool) |
| { |
| #if APU_DSO_BUILD |
| char modname[32]; |
| char symname[34]; |
| apr_dso_handle_t *dso; |
| apr_dso_handle_sym_t symbol; |
| #endif |
| apr_pool_t *rootp; |
| apr_status_t rv; |
| |
| if (result) { |
| *result = NULL; /* until further notice */ |
| } |
| |
| #if APU_DSO_BUILD |
| rv = apu_dso_mutex_lock(); |
| if (rv) { |
| return rv; |
| } |
| #endif |
| *driver = apr_hash_get(drivers, name, APR_HASH_KEY_STRING); |
| if (*driver) { |
| #if APU_DSO_BUILD |
| apu_dso_mutex_unlock(); |
| #endif |
| return APR_SUCCESS; |
| } |
| |
| /* The driver must have exactly the same lifetime as the |
| * drivers hash table; ignore the passed-in pool */ |
| rootp = apr_hash_pool_get(drivers); |
| |
| #if APU_DSO_BUILD |
| #if defined(NETWARE) |
| apr_snprintf(modname, sizeof(modname), "crypto%s.nlm", name); |
| #elif defined(WIN32) || defined(__CYGWIN__) |
| apr_snprintf(modname, sizeof(modname), |
| "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".dll", name); |
| #else |
| apr_snprintf(modname, sizeof(modname), |
| "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".so", name); |
| #endif |
| apr_snprintf(symname, sizeof(symname), "apr_crypto_%s_driver", name); |
| rv = apu_dso_load(&dso, &symbol, modname, symname, rootp, NULL); |
| if (rv == APR_SUCCESS || rv == APR_EINIT) { /* previously loaded?!? */ |
| apr_crypto_driver_t *d = symbol; |
| rv = APR_SUCCESS; |
| if (d->init) { |
| rv = d->init(rootp, params, result); |
| if (rv == APR_EREINIT) { |
| rv = APR_SUCCESS; |
| } |
| } |
| if (rv == APR_SUCCESS) { |
| apr_hash_set(drivers, d->name, APR_HASH_KEY_STRING, d); |
| *driver = d; |
| } |
| } |
| apu_dso_mutex_unlock(); |
| |
| if (APR_SUCCESS != rv && result && !*result) { |
| char *buffer = apr_pcalloc(pool, ERROR_SIZE); |
| apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t)); |
| if (err && buffer) { |
| apr_dso_error(dso, buffer, ERROR_SIZE - 1); |
| err->msg = buffer; |
| err->reason = apr_pstrdup(pool, modname); |
| *result = err; |
| } |
| } |
| |
| #else /* not builtin and !APR_HAS_DSO => not implemented */ |
| rv = APR_ENOTIMPL; |
| |
| pool = rootp; /* global lifetime (aligned to hash table) */ |
| |
| /* Load statically-linked drivers: */ |
| #if APU_HAVE_OPENSSL |
| if (!strcmp(name, "openssl")) { |
| DRIVER_LOAD("openssl", apr_crypto_openssl_driver, pool, params, rv, result); |
| } |
| else |
| #endif |
| #if APU_HAVE_NSS |
| if (!strcmp(name, "nss")) { |
| DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result); |
| } |
| else |
| #endif |
| #if APU_HAVE_COMMONCRYPTO |
| if (!strcmp(name, "commoncrypto")) { |
| DRIVER_LOAD("commoncrypto", apr_crypto_commoncrypto_driver, pool, params, rv, result); |
| } |
| else |
| #endif |
| #if APU_HAVE_MSCAPI |
| if (!strcmp(name, "mscapi")) { |
| DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result); |
| } |
| else |
| #endif |
| #if APU_HAVE_MSCNG |
| if (!strcmp(name, "mscng")) { |
| DRIVER_LOAD("mscng", apr_crypto_mscng_driver, pool, params, rv, result); |
| } |
| else |
| #endif |
| ; |
| |
| #endif /* !APU_DSO_BUILD */ |
| |
| return rv; |
| } |
| |
| struct crypto_lib { |
| const char *name; |
| apr_pool_t *pool; |
| apr_status_t (*term)(void); |
| struct crypto_lib *next; |
| }; |
| static apr_hash_t *active_libs = NULL; |
| static struct crypto_lib *spare_libs = NULL; |
| |
| static apr_status_t crypto_libs_cleanup(void *nil) |
| { |
| active_libs = NULL; |
| spare_libs = NULL; |
| return APR_SUCCESS; |
| } |
| |
| static void spare_lib_push(struct crypto_lib *lib) |
| { |
| lib->name = NULL; |
| lib->pool = NULL; |
| lib->term = NULL; |
| lib->next = spare_libs; |
| spare_libs = lib; |
| } |
| |
| static struct crypto_lib *spare_lib_pop(void) |
| { |
| struct crypto_lib *lib; |
| lib = spare_libs; |
| if (lib) { |
| spare_libs = lib->next; |
| lib->next = NULL; |
| } |
| return lib; |
| } |
| |
| static apr_status_t crypto_lib_free(struct crypto_lib *lib) |
| { |
| apr_status_t rv; |
| |
| apr_hash_set(active_libs, lib->name, APR_HASH_KEY_STRING, NULL); |
| rv = lib->term(); |
| spare_lib_push(lib); |
| |
| return rv; |
| } |
| |
| static apr_status_t crypto_lib_cleanup(void *arg) |
| { |
| crypto_lib_free(arg); |
| |
| return APR_SUCCESS; |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_lib_version(const char *name, |
| const char **version) |
| { |
| apr_status_t rv = APR_ENOTIMPL; |
| |
| return rv; |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_lib_init(const char *name, |
| const char *params, |
| const apu_err_t **result, |
| apr_pool_t *pool) |
| { |
| apr_status_t rv; |
| apr_pool_t *rootp; |
| struct crypto_lib *lib; |
| |
| if (!name) { |
| return APR_EINVAL; |
| } |
| |
| if (apr_crypto_lib_is_active(name)) { |
| return APR_EREINIT; |
| } |
| |
| rootp = pool; |
| for (;;) { |
| apr_pool_t *p = apr_pool_parent_get(rootp); |
| if (!p || p == rootp) { |
| break; |
| } |
| rootp = p; |
| } |
| |
| if (!active_libs) { |
| active_libs = apr_hash_make(rootp); |
| if (!active_libs) { |
| return APR_ENOMEM; |
| } |
| apr_pool_cleanup_register(rootp, NULL, crypto_libs_cleanup, |
| apr_pool_cleanup_null); |
| } |
| |
| lib = spare_lib_pop(); |
| if (!lib) { |
| lib = apr_pcalloc(rootp, sizeof(*lib)); |
| if (!lib) { |
| return APR_ENOMEM; |
| } |
| } |
| |
| rv = APR_ENOTIMPL; |
| ; |
| if (rv == APR_SUCCESS) { |
| lib->pool = pool; |
| apr_hash_set(active_libs, lib->name, APR_HASH_KEY_STRING, lib); |
| if (apr_pool_parent_get(pool)) { |
| apr_pool_cleanup_register(pool, lib, crypto_lib_cleanup, |
| apr_pool_cleanup_null); |
| } |
| } |
| else { |
| spare_lib_push(lib); |
| } |
| return rv; |
| } |
| |
| static apr_status_t crypto_lib_term(const char *name) |
| { |
| apr_status_t rv; |
| struct crypto_lib *lib; |
| |
| lib = apr_hash_get(active_libs, name, APR_HASH_KEY_STRING); |
| if (!lib) { |
| return APR_EINIT; |
| } |
| if (!apr_pool_parent_get(lib->pool)) { |
| return APR_EBUSY; |
| } |
| |
| rv = APR_ENOTIMPL; |
| ; |
| if (rv == APR_SUCCESS) { |
| apr_pool_cleanup_kill(lib->pool, lib, crypto_lib_cleanup); |
| rv = crypto_lib_free(lib); |
| } |
| return rv; |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_lib_term(const char *name) |
| { |
| if (!active_libs) { |
| return APR_EINIT; |
| } |
| |
| if (!name) { |
| apr_status_t rv = APR_SUCCESS; |
| apr_hash_index_t *hi = apr_hash_first(NULL, active_libs); |
| for (; hi; hi = apr_hash_next(hi)) { |
| apr_status_t rt = crypto_lib_term(apr_hash_this_key(hi)); |
| if (rt != APR_SUCCESS && (rv == APR_SUCCESS || rv == APR_EBUSY)) { |
| rv = rt; |
| } |
| } |
| return rv; |
| } |
| |
| return crypto_lib_term(name); |
| } |
| |
| APU_DECLARE(int) apr_crypto_lib_is_active(const char *name) |
| { |
| return active_libs && apr_hash_get(active_libs, name, APR_HASH_KEY_STRING); |
| } |
| |
| /** |
| * @brief Return the name of the driver. |
| * |
| * @param driver - The driver in use. |
| * @return The name of the driver. |
| */ |
| APU_DECLARE(const char *)apr_crypto_driver_name ( |
| const apr_crypto_driver_t *driver) |
| { |
| return driver->name; |
| } |
| |
| /** |
| * @brief Get the result of the last operation on a context. If the result |
| * is NULL, the operation was successful. |
| * @param result - the result structure |
| * @param f - context pointer |
| * @return APR_SUCCESS for success |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result, |
| const apr_crypto_t *f) |
| { |
| return f->provider->error(result, f); |
| } |
| |
| /** |
| * @brief Create a context for supporting encryption. Keys, certificates, |
| * algorithms and other parameters will be set per context. More than |
| * one context can be created at one time. A cleanup will be automatically |
| * registered with the given pool to guarantee a graceful shutdown. |
| * @param f - context pointer will be written here |
| * @param driver - driver to use |
| * @param params - array of key parameters |
| * @param pool - process pool |
| * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE |
| * if the engine cannot be initialised. |
| * @remarks NSS: currently no params are supported. |
| * @remarks OpenSSL: the params can have "engine" as a key, followed by an equal |
| * sign and a value. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f, |
| const apr_crypto_driver_t *driver, const char *params, apr_pool_t *pool) |
| { |
| return driver->make(f, driver, params, pool); |
| } |
| |
| /** |
| * @brief Get a hash table of digests, keyed by the name of the digest against |
| * a pointer to apr_crypto_digest_t, which in turn begins with an |
| * integer. |
| * |
| * @param digests - hashtable of digests keyed to constants. |
| * @param f - encryption context |
| * @return APR_SUCCESS for success |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_get_block_key_digests(apr_hash_t **digests, |
| const apr_crypto_t *f) |
| { |
| return f->provider->get_block_key_digests(digests, f); |
| } |
| |
| /** |
| * @brief Get a hash table of key types, keyed by the name of the type against |
| * a pointer to apr_crypto_block_key_type_t, which in turn begins with an |
| * integer. |
| * |
| * @param types - hashtable of key types keyed to constants. |
| * @param f - encryption context |
| * @return APR_SUCCESS for success |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types, |
| const apr_crypto_t *f) |
| { |
| return f->provider->get_block_key_types(types, f); |
| } |
| |
| /** |
| * @brief Get a hash table of key modes, keyed by the name of the mode against |
| * a pointer to apr_crypto_block_key_mode_t, which in turn begins with an |
| * integer. |
| * |
| * @param modes - hashtable of key modes keyed to constants. |
| * @param f - encryption context |
| * @return APR_SUCCESS for success |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes, |
| const apr_crypto_t *f) |
| { |
| return f->provider->get_block_key_modes(modes, f); |
| } |
| |
| /** |
| * @brief Create a key from the provided secret or passphrase. The key is cleaned |
| * up when the context is cleaned, and may be reused with multiple encryption |
| * or decryption operations. |
| * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If |
| * *key is not NULL, *key must point at a previously created structure. |
| * @param key The key returned, see note. |
| * @param rec The key record, from which the key will be derived. |
| * @param f The context to use. |
| * @param p The pool to use. |
| * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend |
| * error occurred while generating the key. APR_ENOCIPHER if the type or mode |
| * is not supported by the particular backend. APR_EKEYTYPE if the key type is |
| * not known. APR_EPADDING if padding was requested but is not supported. |
| * APR_ENOTIMPL if not implemented. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_key(apr_crypto_key_t **key, |
| const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p) |
| { |
| return f->provider->key(key, rec, f, p); |
| } |
| |
| /** |
| * @brief Create a key from the given passphrase. By default, the PBKDF2 |
| * algorithm is used to generate the key from the passphrase. It is expected |
| * that the same pass phrase will generate the same key, regardless of the |
| * backend crypto platform used. The key is cleaned up when the context |
| * is cleaned, and may be reused with multiple encryption or decryption |
| * operations. |
| * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If |
| * *key is not NULL, *key must point at a previously created structure. |
| * @param key The key returned, see note. |
| * @param ivSize The size of the initialisation vector will be returned, based |
| * on whether an IV is relevant for this type of crypto. |
| * @param pass The passphrase to use. |
| * @param passLen The passphrase length in bytes |
| * @param salt The salt to use. |
| * @param saltLen The salt length in bytes |
| * @param type 3DES_192, AES_128, AES_192, AES_256. |
| * @param mode Electronic Code Book / Cipher Block Chaining. |
| * @param doPad Pad if necessary. |
| * @param iterations Number of iterations to use in algorithm |
| * @param f The context to use. |
| * @param p The pool to use. |
| * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend |
| * error occurred while generating the key. APR_ENOCIPHER if the type or mode |
| * is not supported by the particular backend. APR_EKEYTYPE if the key type is |
| * not known. APR_EPADDING if padding was requested but is not supported. |
| * APR_ENOTIMPL if not implemented. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key, |
| apr_size_t *ivSize, const char *pass, apr_size_t passLen, |
| const unsigned char * salt, apr_size_t saltLen, |
| const apr_crypto_block_key_type_e type, |
| const apr_crypto_block_key_mode_e mode, const int doPad, |
| const int iterations, const apr_crypto_t *f, apr_pool_t *p) |
| { |
| return f->provider->passphrase(key, ivSize, pass, passLen, salt, saltLen, |
| type, mode, doPad, iterations, f, p); |
| } |
| |
| /** |
| * @brief Initialise a context for encrypting arbitrary data using the given key. |
| * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If |
| * *ctx is not NULL, *ctx must point at a previously created structure. |
| * @param ctx The block context returned, see note. |
| * @param iv Optional initialisation vector. If the buffer pointed to is NULL, |
| * an IV will be created at random, in space allocated from the pool. |
| * If the buffer pointed to is not NULL, the IV in the buffer will be |
| * used. |
| * @param key The key structure to use. |
| * @param blockSize The block size of the cipher. |
| * @param p The pool to use. |
| * @return Returns APR_ENOIV if an initialisation vector is required but not specified. |
| * Returns APR_EINIT if the backend failed to initialise the context. Returns |
| * APR_ENOTIMPL if not implemented. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init( |
| apr_crypto_block_t **ctx, const unsigned char **iv, |
| const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p) |
| { |
| return key->provider->block_encrypt_init(ctx, iv, key, blockSize, p); |
| } |
| |
| /** |
| * @brief Encrypt data provided by in, write it to out. |
| * @note The number of bytes written will be written to outlen. If |
| * out is NULL, outlen will contain the maximum size of the |
| * buffer needed to hold the data, including any data |
| * generated by apr_crypto_block_encrypt_finish below. If *out points |
| * to NULL, a buffer sufficiently large will be created from |
| * the pool provided. If *out points to a not-NULL value, this |
| * value will be used as a buffer instead. |
| * @param out Address of a buffer to which data will be written, |
| * see note. |
| * @param outlen Length of the output will be written here. |
| * @param in Address of the buffer to read. |
| * @param inlen Length of the buffer to read. |
| * @param ctx The block context to use. |
| * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if |
| * not implemented. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out, |
| apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, |
| apr_crypto_block_t *ctx) |
| { |
| return ctx->provider->block_encrypt(out, outlen, in, inlen, ctx); |
| } |
| |
| /** |
| * @brief Encrypt final data block, write it to out. |
| * @note If necessary the final block will be written out after being |
| * padded. Typically the final block will be written to the |
| * same buffer used by apr_crypto_block_encrypt, offset by the |
| * number of bytes returned as actually written by the |
| * apr_crypto_block_encrypt() call. After this call, the context |
| * is cleaned and can be reused by apr_crypto_block_encrypt_init(). |
| * @param out Address of a buffer to which data will be written. This |
| * buffer must already exist, and is usually the same |
| * buffer used by apr_evp_crypt(). See note. |
| * @param outlen Length of the output will be written here. |
| * @param ctx The block context to use. |
| * @return APR_ECRYPT if an error occurred. |
| * @return APR_EPADDING if padding was enabled and the block was incorrectly |
| * formatted. |
| * @return APR_ENOTIMPL if not implemented. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out, |
| apr_size_t *outlen, apr_crypto_block_t *ctx) |
| { |
| return ctx->provider->block_encrypt_finish(out, outlen, ctx); |
| } |
| |
| /** |
| * @brief Initialise a context for decrypting arbitrary data using the given key. |
| * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If |
| * *ctx is not NULL, *ctx must point at a previously created structure. |
| * @param ctx The block context returned, see note. |
| * @param blockSize The block size of the cipher. |
| * @param iv Optional initialisation vector. |
| * @param key The key structure to use. |
| * @param p The pool to use. |
| * @return Returns APR_ENOIV if an initialisation vector is required but not specified. |
| * Returns APR_EINIT if the backend failed to initialise the context. Returns |
| * APR_ENOTIMPL if not implemented. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init( |
| apr_crypto_block_t **ctx, apr_size_t *blockSize, |
| const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p) |
| { |
| return key->provider->block_decrypt_init(ctx, blockSize, iv, key, p); |
| } |
| |
| /** |
| * @brief Decrypt data provided by in, write it to out. |
| * @note The number of bytes written will be written to outlen. If |
| * out is NULL, outlen will contain the maximum size of the |
| * buffer needed to hold the data, including any data |
| * generated by apr_crypto_block_decrypt_finish below. If *out points |
| * to NULL, a buffer sufficiently large will be created from |
| * the pool provided. If *out points to a not-NULL value, this |
| * value will be used as a buffer instead. |
| * @param out Address of a buffer to which data will be written, |
| * see note. |
| * @param outlen Length of the output will be written here. |
| * @param in Address of the buffer to read. |
| * @param inlen Length of the buffer to read. |
| * @param ctx The block context to use. |
| * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if |
| * not implemented. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out, |
| apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, |
| apr_crypto_block_t *ctx) |
| { |
| return ctx->provider->block_decrypt(out, outlen, in, inlen, ctx); |
| } |
| |
| /** |
| * @brief Decrypt final data block, write it to out. |
| * @note If necessary the final block will be written out after being |
| * padded. Typically the final block will be written to the |
| * same buffer used by apr_crypto_block_decrypt, offset by the |
| * number of bytes returned as actually written by the |
| * apr_crypto_block_decrypt() call. After this call, the context |
| * is cleaned and can be reused by apr_crypto_block_decrypt_init(). |
| * @param out Address of a buffer to which data will be written. This |
| * buffer must already exist, and is usually the same |
| * buffer used by apr_evp_crypt(). See note. |
| * @param outlen Length of the output will be written here. |
| * @param ctx The block context to use. |
| * @return APR_ECRYPT if an error occurred. |
| * @return APR_EPADDING if padding was enabled and the block was incorrectly |
| * formatted. |
| * @return APR_ENOTIMPL if not implemented. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out, |
| apr_size_t *outlen, apr_crypto_block_t *ctx) |
| { |
| return ctx->provider->block_decrypt_finish(out, outlen, ctx); |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_digest_init(apr_crypto_digest_t **d, |
| const apr_crypto_key_t *key, apr_crypto_digest_rec_t *rec, apr_pool_t *p) |
| { |
| return key->provider->digest_init(d, key, rec, p); |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_digest_update(apr_crypto_digest_t *digest, |
| const unsigned char *in, apr_size_t inlen) |
| { |
| return digest->provider->digest_update(digest, in, inlen); |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_digest_final(apr_crypto_digest_t *digest) |
| { |
| return digest->provider->digest_final(digest); |
| } |
| |
| APU_DECLARE(apr_status_t) apr_crypto_digest(const apr_crypto_key_t *key, |
| apr_crypto_digest_rec_t *rec, const unsigned char *in, apr_size_t inlen, |
| apr_pool_t *p) |
| { |
| return key->provider->digest(key, rec, in, inlen, p); |
| } |
| |
| /** |
| * @brief Clean encryption / decryption context. |
| * @note After cleanup, a context is free to be reused if necessary. |
| * @param ctx The block context to use. |
| * @return Returns APR_ENOTIMPL if not supported. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx) |
| { |
| return ctx->provider->block_cleanup(ctx); |
| } |
| |
| /** |
| * @brief Clean sign / verify context. |
| * @note After cleanup, a context is free to be reused if necessary. |
| * @param ctx The digest context to use. |
| * @return Returns APR_ENOTIMPL if not supported. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_digest_cleanup(apr_crypto_digest_t *ctx) |
| { |
| return ctx->provider->digest_cleanup(ctx); |
| } |
| |
| /** |
| * @brief Clean encryption / decryption context. |
| * @note After cleanup, a context is free to be reused if necessary. |
| * @param f The context to use. |
| * @return Returns APR_ENOTIMPL if not supported. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f) |
| { |
| return f->provider->cleanup(f); |
| } |
| |
| /** |
| * @brief Shutdown the crypto library. |
| * @note After shutdown, it is expected that the init function can be called again. |
| * @param driver - driver to use |
| * @return Returns APR_ENOTIMPL if not supported. |
| */ |
| APU_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver) |
| { |
| return driver->shutdown(); |
| } |
| |
| #endif /* APU_HAVE_CRYPTO */ |