blob: 4822273fa96c3f94e4015b3baa925b2ba048680e [file] [log] [blame]
/*
* The Apache Software License, Version 1.1
*
* Copyright (c) 2000 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution, if
* any, must include the following acknowlegement:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowlegement may appear in the software itself,
* if and wherever such third-party acknowlegements normally appear.
*
* 4. The names "The Jakarta Project", "Ant", and "Apache Software
* Foundation" must not be used to endorse or promote products derived
* from this software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache"
* nor may "Apache" appear in their names without prior written
* permission of the Apache Group.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/
/*
* This package is based on the work done by Timothy Gerard Endres
* (time@ice.com) to whom the Ant project is very grateful for his great code.
*/
package org.apache.tools.tar;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
/**
* The TarBuffer class implements the tar archive concept
* of a buffered input stream. This concept goes back to the
* days of blocked tape drives and special io devices. In the
* Java universe, the only real function that this class
* performs is to ensure that files have the correct "block"
* size, or other tars will complain.
* <p>
* You should never have a need to access this class directly.
* TarBuffers are created by Tar IO Streams.
*
* @author Timothy Gerard Endres <a href="mailto:time@ice.com">time@ice.com</a>
*/
public class TarBuffer {
public final static int DEFAULT_RCDSIZE = (512);
public final static int DEFAULT_BLKSIZE = (DEFAULT_RCDSIZE * 20);
private InputStream inStream;
private OutputStream outStream;
private byte[] blockBuffer;
private int currBlkIdx;
private int currRecIdx;
private int blockSize;
private int recordSize;
private int recsPerBlock;
private boolean debug;
public TarBuffer(InputStream inStream) {
this(inStream, TarBuffer.DEFAULT_BLKSIZE);
}
public TarBuffer(InputStream inStream, int blockSize) {
this(inStream, blockSize, TarBuffer.DEFAULT_RCDSIZE);
}
public TarBuffer(InputStream inStream, int blockSize, int recordSize) {
this.inStream = inStream;
this.outStream = null;
this.initialize(blockSize, recordSize);
}
public TarBuffer(OutputStream outStream) {
this(outStream, TarBuffer.DEFAULT_BLKSIZE);
}
public TarBuffer(OutputStream outStream, int blockSize) {
this(outStream, blockSize, TarBuffer.DEFAULT_RCDSIZE);
}
public TarBuffer(OutputStream outStream, int blockSize, int recordSize) {
this.inStream = null;
this.outStream = outStream;
this.initialize(blockSize, recordSize);
}
/**
* Initialization common to all constructors.
*/
private void initialize(int blockSize, int recordSize) {
this.debug = false;
this.blockSize = blockSize;
this.recordSize = recordSize;
this.recsPerBlock = (this.blockSize / this.recordSize);
this.blockBuffer = new byte[this.blockSize];
if (this.inStream != null) {
this.currBlkIdx = -1;
this.currRecIdx = this.recsPerBlock;
} else {
this.currBlkIdx = 0;
this.currRecIdx = 0;
}
}
/**
* Get the TAR Buffer's block size. Blocks consist of multiple records.
*/
public int getBlockSize() {
return this.blockSize;
}
/**
* Get the TAR Buffer's record size.
*/
public int getRecordSize() {
return this.recordSize;
}
/**
* Set the debugging flag for the buffer.
*
* @param debug If true, print debugging output.
*/
public void setDebug(boolean debug) {
this.debug = debug;
}
/**
* Determine if an archive record indicate End of Archive. End of
* archive is indicated by a record that consists entirely of null bytes.
*
* @param record The record data to check.
*/
public boolean isEOFRecord(byte[] record) {
for (int i = 0, sz = this.getRecordSize(); i < sz; ++i) {
if (record[i] != 0) {
return false;
}
}
return true;
}
/**
* Skip over a record on the input stream.
*/
public void skipRecord() throws IOException {
if (this.debug) {
System.err.println("SkipRecord: recIdx = " + this.currRecIdx
+ " blkIdx = " + this.currBlkIdx);
}
if (this.inStream == null) {
throw new IOException("reading (via skip) from an output buffer");
}
if (this.currRecIdx >= this.recsPerBlock) {
if (!this.readBlock()) {
return; // UNDONE
}
}
this.currRecIdx++;
}
/**
* Read a record from the input stream and return the data.
*
* @return The record data.
*/
public byte[] readRecord() throws IOException {
if (this.debug) {
System.err.println("ReadRecord: recIdx = " + this.currRecIdx
+ " blkIdx = " + this.currBlkIdx);
}
if (this.inStream == null) {
throw new IOException("reading from an output buffer");
}
if (this.currRecIdx >= this.recsPerBlock) {
if (!this.readBlock()) {
return null;
}
}
byte[] result = new byte[this.recordSize];
System.arraycopy(this.blockBuffer,
(this.currRecIdx * this.recordSize), result, 0,
this.recordSize);
this.currRecIdx++;
return result;
}
/**
* @return false if End-Of-File, else true
*/
private boolean readBlock() throws IOException {
if (this.debug) {
System.err.println("ReadBlock: blkIdx = " + this.currBlkIdx);
}
if (this.inStream == null) {
throw new IOException("reading from an output buffer");
}
this.currRecIdx = 0;
int offset = 0;
int bytesNeeded = this.blockSize;
while (bytesNeeded > 0) {
long numBytes = this.inStream.read(this.blockBuffer, offset,
bytesNeeded);
//
// NOTE
// We have fit EOF, and the block is not full!
//
// This is a broken archive. It does not follow the standard
// blocking algorithm. However, because we are generous, and
// it requires little effort, we will simply ignore the error
// and continue as if the entire block were read. This does
// not appear to break anything upstream. We used to return
// false in this case.
//
// Thanks to 'Yohann.Roussel@alcatel.fr' for this fix.
//
if (numBytes == -1) {
break;
}
offset += numBytes;
bytesNeeded -= numBytes;
if (numBytes != this.blockSize) {
if (this.debug) {
System.err.println("ReadBlock: INCOMPLETE READ "
+ numBytes + " of " + this.blockSize
+ " bytes read.");
}
}
}
this.currBlkIdx++;
return true;
}
/**
* Get the current block number, zero based.
*
* @return The current zero based block number.
*/
public int getCurrentBlockNum() {
return this.currBlkIdx;
}
/**
* Get the current record number, within the current block, zero based.
* Thus, current offset = (currentBlockNum * recsPerBlk) + currentRecNum.
*
* @return The current zero based record number.
*/
public int getCurrentRecordNum() {
return this.currRecIdx - 1;
}
/**
* Write an archive record to the archive.
*
* @param record The record data to write to the archive.
*/
public void writeRecord(byte[] record) throws IOException {
if (this.debug) {
System.err.println("WriteRecord: recIdx = " + this.currRecIdx
+ " blkIdx = " + this.currBlkIdx);
}
if (this.outStream == null) {
throw new IOException("writing to an input buffer");
}
if (record.length != this.recordSize) {
throw new IOException("record to write has length '"
+ record.length
+ "' which is not the record size of '"
+ this.recordSize + "'");
}
if (this.currRecIdx >= this.recsPerBlock) {
this.writeBlock();
}
System.arraycopy(record, 0, this.blockBuffer,
(this.currRecIdx * this.recordSize),
this.recordSize);
this.currRecIdx++;
}
/**
* Write an archive record to the archive, where the record may be
* inside of a larger array buffer. The buffer must be "offset plus
* record size" long.
*
* @param buf The buffer containing the record data to write.
* @param offset The offset of the record data within buf.
*/
public void writeRecord(byte[] buf, int offset) throws IOException {
if (this.debug) {
System.err.println("WriteRecord: recIdx = " + this.currRecIdx
+ " blkIdx = " + this.currBlkIdx);
}
if (this.outStream == null) {
throw new IOException("writing to an input buffer");
}
if ((offset + this.recordSize) > buf.length) {
throw new IOException("record has length '" + buf.length
+ "' with offset '" + offset
+ "' which is less than the record size of '"
+ this.recordSize + "'");
}
if (this.currRecIdx >= this.recsPerBlock) {
this.writeBlock();
}
System.arraycopy(buf, offset, this.blockBuffer,
(this.currRecIdx * this.recordSize),
this.recordSize);
this.currRecIdx++;
}
/**
* Write a TarBuffer block to the archive.
*/
private void writeBlock() throws IOException {
if (this.debug) {
System.err.println("WriteBlock: blkIdx = " + this.currBlkIdx);
}
if (this.outStream == null) {
throw new IOException("writing to an input buffer");
}
this.outStream.write(this.blockBuffer, 0, this.blockSize);
this.outStream.flush();
this.currRecIdx = 0;
this.currBlkIdx++;
}
/**
* Flush the current data block if it has any data in it.
*/
private void flushBlock() throws IOException {
if (this.debug) {
System.err.println("TarBuffer.flushBlock() called.");
}
if (this.outStream == null) {
throw new IOException("writing to an input buffer");
}
if (this.currRecIdx > 0) {
this.writeBlock();
}
}
/**
* Close the TarBuffer. If this is an output buffer, also flush the
* current block before closing.
*/
public void close() throws IOException {
if (this.debug) {
System.err.println("TarBuffer.closeBuffer().");
}
if (this.outStream != null) {
this.flushBlock();
if (this.outStream != System.out
&& this.outStream != System.err) {
this.outStream.close();
this.outStream = null;
}
} else if (this.inStream != null) {
if (this.inStream != System.in) {
this.inStream.close();
this.inStream = null;
}
}
}
}