blob: ecf2b545ddff6fe00ab5bc5959e0ae9a7f0f8e6c [file] [log] [blame]
# coding: utf-8
"""
Airflow API
Airflow API. All endpoints located under ``/api/v2`` can be used safely, are stable and backward compatible. Endpoints located under ``/ui`` are dedicated to the UI and are subject to breaking change depending on the need of the frontend. Users should not rely on those but use the public ones instead.
The version of the OpenAPI document: 2
Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
""" # noqa: E501
from __future__ import annotations
import pprint
import re # noqa: F401
import json
from datetime import datetime
from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt, StrictStr
from typing import Any, ClassVar, Dict, List, Optional, Union
from airflow_client.client.models.dag_run_state import DagRunState
from airflow_client.client.models.dag_run_triggered_by_type import DagRunTriggeredByType
from airflow_client.client.models.dag_run_type import DagRunType
from airflow_client.client.models.dag_version_response import DagVersionResponse
from typing import Optional, Set
from typing_extensions import Self
class DAGRunResponse(BaseModel):
"""
DAG Run serializer for responses.
""" # noqa: E501
bundle_version: Optional[StrictStr] = None
conf: Optional[Dict[str, Any]] = None
dag_display_name: StrictStr
dag_id: StrictStr
dag_run_id: StrictStr
dag_versions: List[DagVersionResponse]
data_interval_end: Optional[datetime] = None
data_interval_start: Optional[datetime] = None
duration: Optional[Union[StrictFloat, StrictInt]] = None
end_date: Optional[datetime] = None
last_scheduling_decision: Optional[datetime] = None
logical_date: Optional[datetime] = None
note: Optional[StrictStr] = None
queued_at: Optional[datetime] = None
run_after: datetime
run_type: DagRunType
start_date: Optional[datetime] = None
state: DagRunState
triggered_by: Optional[DagRunTriggeredByType] = None
triggering_user_name: Optional[StrictStr] = None
__properties: ClassVar[List[str]] = ["bundle_version", "conf", "dag_display_name", "dag_id", "dag_run_id", "dag_versions", "data_interval_end", "data_interval_start", "duration", "end_date", "last_scheduling_decision", "logical_date", "note", "queued_at", "run_after", "run_type", "start_date", "state", "triggered_by", "triggering_user_name"]
model_config = ConfigDict(
populate_by_name=True,
validate_assignment=True,
protected_namespaces=(),
)
def to_str(self) -> str:
"""Returns the string representation of the model using alias"""
return pprint.pformat(self.model_dump(by_alias=True))
def to_json(self) -> str:
"""Returns the JSON representation of the model using alias"""
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
return json.dumps(self.to_dict())
@classmethod
def from_json(cls, json_str: str) -> Optional[Self]:
"""Create an instance of DAGRunResponse from a JSON string"""
return cls.from_dict(json.loads(json_str))
def to_dict(self) -> Dict[str, Any]:
"""Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
`self.model_dump(by_alias=True)`:
* `None` is only added to the output dict for nullable fields that
were set at model initialization. Other fields with value `None`
are ignored.
"""
excluded_fields: Set[str] = set([
])
_dict = self.model_dump(
by_alias=True,
exclude=excluded_fields,
exclude_none=True,
)
# override the default output from pydantic by calling `to_dict()` of each item in dag_versions (list)
_items = []
if self.dag_versions:
for _item_dag_versions in self.dag_versions:
if _item_dag_versions:
_items.append(_item_dag_versions.to_dict())
_dict['dag_versions'] = _items
return _dict
@classmethod
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
"""Create an instance of DAGRunResponse from a dict"""
if obj is None:
return None
if not isinstance(obj, dict):
return cls.model_validate(obj)
_obj = cls.model_validate({
"bundle_version": obj.get("bundle_version"),
"conf": obj.get("conf"),
"dag_display_name": obj.get("dag_display_name"),
"dag_id": obj.get("dag_id"),
"dag_run_id": obj.get("dag_run_id"),
"dag_versions": [DagVersionResponse.from_dict(_item) for _item in obj["dag_versions"]] if obj.get("dag_versions") is not None else None,
"data_interval_end": obj.get("data_interval_end"),
"data_interval_start": obj.get("data_interval_start"),
"duration": obj.get("duration"),
"end_date": obj.get("end_date"),
"last_scheduling_decision": obj.get("last_scheduling_decision"),
"logical_date": obj.get("logical_date"),
"note": obj.get("note"),
"queued_at": obj.get("queued_at"),
"run_after": obj.get("run_after"),
"run_type": obj.get("run_type"),
"start_date": obj.get("start_date"),
"state": obj.get("state"),
"triggered_by": obj.get("triggered_by"),
"triggering_user_name": obj.get("triggering_user_name")
})
return _obj