blob: d4159207aeace20df4a866584ced179e732dfbfb [file] [log] [blame]
# coding: utf-8
"""
Airflow API
Airflow API. All endpoints located under ``/api/v2`` can be used safely, are stable and backward compatible. Endpoints located under ``/ui`` are dedicated to the UI and are subject to breaking change depending on the need of the frontend. Users should not rely on those but use the public ones instead.
The version of the OpenAPI document: 2
Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
""" # noqa: E501
from __future__ import annotations
import pprint
import re # noqa: F401
import json
from pydantic import BaseModel, ConfigDict, Field, StrictBool
from typing import Any, ClassVar, Dict, List, Optional
from typing import Optional, Set
from typing_extensions import Self
class DAGRunClearBody(BaseModel):
"""
DAG Run serializer for clear endpoint body.
""" # noqa: E501
dry_run: Optional[StrictBool] = True
only_failed: Optional[StrictBool] = False
run_on_latest_version: Optional[StrictBool] = Field(default=False, description="(Experimental) Run on the latest bundle version of the Dag after clearing the Dag Run.")
__properties: ClassVar[List[str]] = ["dry_run", "only_failed", "run_on_latest_version"]
model_config = ConfigDict(
populate_by_name=True,
validate_assignment=True,
protected_namespaces=(),
)
def to_str(self) -> str:
"""Returns the string representation of the model using alias"""
return pprint.pformat(self.model_dump(by_alias=True))
def to_json(self) -> str:
"""Returns the JSON representation of the model using alias"""
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
return json.dumps(self.to_dict())
@classmethod
def from_json(cls, json_str: str) -> Optional[Self]:
"""Create an instance of DAGRunClearBody from a JSON string"""
return cls.from_dict(json.loads(json_str))
def to_dict(self) -> Dict[str, Any]:
"""Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
`self.model_dump(by_alias=True)`:
* `None` is only added to the output dict for nullable fields that
were set at model initialization. Other fields with value `None`
are ignored.
"""
excluded_fields: Set[str] = set([
])
_dict = self.model_dump(
by_alias=True,
exclude=excluded_fields,
exclude_none=True,
)
return _dict
@classmethod
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
"""Create an instance of DAGRunClearBody from a dict"""
if obj is None:
return None
if not isinstance(obj, dict):
return cls.model_validate(obj)
_obj = cls.model_validate({
"dry_run": obj.get("dry_run") if obj.get("dry_run") is not None else True,
"only_failed": obj.get("only_failed") if obj.get("only_failed") is not None else False,
"run_on_latest_version": obj.get("run_on_latest_version") if obj.get("run_on_latest_version") is not None else False
})
return _obj