blob: 14f8942c312f823e3cf358dd0b7e93b5466118b9 [file] [log] [blame]
# coding: utf-8
"""
Airflow API
Airflow API. All endpoints located under ``/api/v2`` can be used safely, are stable and backward compatible. Endpoints located under ``/ui`` are dedicated to the UI and are subject to breaking change depending on the need of the frontend. Users should not rely on those but use the public ones instead.
The version of the OpenAPI document: 2
Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
""" # noqa: E501
from __future__ import annotations
import pprint
import re # noqa: F401
import json
from datetime import datetime
from pydantic import BaseModel, ConfigDict, StrictBool, StrictInt, StrictStr
from typing import Any, ClassVar, Dict, List, Optional
from airflow_client.client.models.reprocess_behavior import ReprocessBehavior
from typing import Optional, Set
from typing_extensions import Self
class BackfillPostBody(BaseModel):
"""
Object used for create backfill request.
""" # noqa: E501
dag_id: StrictStr
dag_run_conf: Optional[Dict[str, Any]] = None
from_date: datetime
max_active_runs: Optional[StrictInt] = 10
reprocess_behavior: Optional[ReprocessBehavior] = None
run_backwards: Optional[StrictBool] = False
to_date: datetime
additional_properties: Dict[str, Any] = {}
__properties: ClassVar[List[str]] = ["dag_id", "dag_run_conf", "from_date", "max_active_runs", "reprocess_behavior", "run_backwards", "to_date"]
model_config = ConfigDict(
populate_by_name=True,
validate_assignment=True,
protected_namespaces=(),
)
def to_str(self) -> str:
"""Returns the string representation of the model using alias"""
return pprint.pformat(self.model_dump(by_alias=True))
def to_json(self) -> str:
"""Returns the JSON representation of the model using alias"""
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
return json.dumps(self.to_dict())
@classmethod
def from_json(cls, json_str: str) -> Optional[Self]:
"""Create an instance of BackfillPostBody from a JSON string"""
return cls.from_dict(json.loads(json_str))
def to_dict(self) -> Dict[str, Any]:
"""Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
`self.model_dump(by_alias=True)`:
* `None` is only added to the output dict for nullable fields that
were set at model initialization. Other fields with value `None`
are ignored.
* Fields in `self.additional_properties` are added to the output dict.
"""
excluded_fields: Set[str] = set([
"additional_properties",
])
_dict = self.model_dump(
by_alias=True,
exclude=excluded_fields,
exclude_none=True,
)
# puts key-value pairs in additional_properties in the top level
if self.additional_properties is not None:
for _key, _value in self.additional_properties.items():
_dict[_key] = _value
return _dict
@classmethod
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
"""Create an instance of BackfillPostBody from a dict"""
if obj is None:
return None
if not isinstance(obj, dict):
return cls.model_validate(obj)
_obj = cls.model_validate({
"dag_id": obj.get("dag_id"),
"dag_run_conf": obj.get("dag_run_conf"),
"from_date": obj.get("from_date"),
"max_active_runs": obj.get("max_active_runs") if obj.get("max_active_runs") is not None else 10,
"reprocess_behavior": obj.get("reprocess_behavior"),
"run_backwards": obj.get("run_backwards") if obj.get("run_backwards") is not None else False,
"to_date": obj.get("to_date")
})
# store additional fields in additional_properties
for _key in obj.keys():
if _key not in cls.__properties:
_obj.additional_properties[_key] = obj.get(_key)
return _obj