blob: 759f91789476a0a6a15aec38a632411deb3d44fb [file] [log] [blame]
// Copyright 2012 Cloudera Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef IMPALA_RLE_ENCODING_H
#define IMPALA_RLE_ENCODING_H
#include <math.h>
#include "impala/compiler-util.h"
#include "impala/bit-stream-utils.inline.h"
#include "impala/bit-util.h"
#include "impala/logging.h"
namespace impala {
// Utility classes to do run length encoding (RLE) for fixed bit width values. If runs
// are sufficiently long, RLE is used, otherwise, the values are just bit-packed
// (literal encoding).
// For both types of runs, there is a byte-aligned indicator which encodes the length
// of the run and the type of the run.
// This encoding has the benefit that when there aren't any long enough runs, values
// are always decoded at fixed (can be precomputed) bit offsets OR both the value and
// the run length are byte aligned. This allows for very efficient decoding
// implementations.
// The encoding is:
// encoded-block := run*
// run := literal-run | repeated-run
// literal-run := literal-indicator < literal bytes >
// repeated-run := repeated-indicator < repeated value. padded to byte boundary >
// literal-indicator := varint_encode( number_of_groups << 1 | 1)
// repeated-indicator := varint_encode( number_of_repetitions << 1 )
//
// Each run is preceded by a varint. The varint's least significant bit is
// used to indicate whether the run is a literal run or a repeated run. The rest
// of the varint is used to determine the length of the run (eg how many times the
// value repeats).
//
// In the case of literal runs, the run length is always a multiple of 8 (i.e. encode
// in groups of 8), so that no matter the bit-width of the value, the sequence will end
// on a byte boundary without padding.
// Given that we know it is a multiple of 8, we store the number of 8-groups rather than
// the actual number of encoded ints. (This means that the total number of encoded values
// can not be determined from the encoded data, since the number of values in the last
// group may not be a multiple of 8). For the last group of literal runs, we pad
// the group to 8 with zeros. This allows for 8 at a time decoding on the read side
// without the need for additional checks.
//
// There is a break-even point when it is more storage efficient to do run length
// encoding. For 1 bit-width values, that point is 8 values. They require 2 bytes
// for both the repeated encoding or the literal encoding. This value can always
// be computed based on the bit-width.
// TODO: think about how to use this for strings. The bit packing isn't quite the same.
//
// Examples with bit-width 1 (eg encoding booleans):
// ----------------------------------------
// 100 1s followed by 100 0s:
// <varint(100 << 1)> <1, padded to 1 byte>  <varint(100 << 1)> <0, padded to 1 byte>  
// - (total 4 bytes)
//
// alternating 1s and 0s (200 total):
// 200 ints = 25 groups of 8
// <varint((25 << 1) | 1)> <25 bytes of values, bitpacked>  
// (total 26 bytes, 1 byte overhead)
//
// Decoder class for RLE encoded data.
class RleDecoder {
public:
// Create a decoder object. buffer/buffer_len is the decoded data.
// bit_width is the width of each value (before encoding).
RleDecoder(const uint8_t* buffer, int buffer_len, int bit_width)
: bit_reader_(buffer, buffer_len),
bit_width_(bit_width),
current_value_(0),
repeat_count_(0),
literal_count_(0) {
DCHECK_GE(bit_width_, 0);
DCHECK_LE(bit_width_, 64);
}
RleDecoder() {}
// Gets the next value. Returns false if there are no more.
template<typename T>
bool Get(T* val);
private:
BitReader bit_reader_;
int bit_width_;
uint64_t current_value_;
uint32_t repeat_count_;
uint32_t literal_count_;
};
// Class to incrementally build the rle data. This class does not allocate any memory.
// The encoding has two modes: encoding repeated runs and literal runs.
// If the run is sufficiently short, it is more efficient to encode as a literal run.
// This class does so by buffering 8 values at a time. If they are not all the same
// they are added to the literal run. If they are the same, they are added to the
// repeated run. When we switch modes, the previous run is flushed out.
class RleEncoder {
public:
// buffer/buffer_len: preallocated output buffer.
// bit_width: max number of bits for value.
// TODO: consider adding a min_repeated_run_length so the caller can control
// when values should be encoded as repeated runs. Currently this is derived
// based on the bit_width, which can determine a storage optimal choice.
// TODO: allow 0 bit_width (and have dict encoder use it)
RleEncoder(uint8_t* buffer, int buffer_len, int bit_width)
: bit_width_(bit_width),
bit_writer_(buffer, buffer_len) {
DCHECK_GE(bit_width_, 1);
DCHECK_LE(bit_width_, 64);
max_run_byte_size_ = MinBufferSize(bit_width);
DCHECK_GE(buffer_len, max_run_byte_size_) << "Input buffer not big enough.";
Clear();
}
// Returns the minimum buffer size needed to use the encoder for 'bit_width'
// This is the maximum length of a single run for 'bit_width'.
// It is not valid to pass a buffer less than this length.
static int MinBufferSize(int bit_width) {
// 1 indicator byte and MAX_VALUES_PER_LITERAL_RUN 'bit_width' values.
int max_literal_run_size = 1 +
BitUtil::Ceil(MAX_VALUES_PER_LITERAL_RUN * bit_width, 8);
// Up to MAX_VLQ_BYTE_LEN indicator and a single 'bit_width' value.
int max_repeated_run_size = BitReader::MAX_VLQ_BYTE_LEN + BitUtil::Ceil(bit_width, 8);
return std::max(max_literal_run_size, max_repeated_run_size);
}
// Returns the maximum byte size it could take to encode 'num_values'.
static int MaxBufferSize(int bit_width, int num_values) {
int bytes_per_run = BitUtil::Ceil(bit_width * MAX_VALUES_PER_LITERAL_RUN, 8.0);
int num_runs = BitUtil::Ceil(num_values, MAX_VALUES_PER_LITERAL_RUN);
int literal_max_size = num_runs + num_runs * bytes_per_run;
int min_run_size = MinBufferSize(bit_width);
return std::max(min_run_size, literal_max_size) + min_run_size;
}
// Encode value. Returns true if the value fits in buffer, false otherwise.
// This value must be representable with bit_width_ bits.
bool Put(uint64_t value);
// Flushes any pending values to the underlying buffer.
// Returns the total number of bytes written
int Flush();
// Resets all the state in the encoder.
void Clear();
// Returns pointer to underlying buffer
uint8_t* buffer() { return bit_writer_.buffer(); }
int32_t len() { return bit_writer_.bytes_written(); }
private:
// Flushes any buffered values. If this is part of a repeated run, this is largely
// a no-op.
// If it is part of a literal run, this will call FlushLiteralRun, which writes
// out the buffered literal values.
// If 'done' is true, the current run would be written even if it would normally
// have been buffered more. This should only be called at the end, when the
// encoder has received all values even if it would normally continue to be
// buffered.
void FlushBufferedValues(bool done);
// Flushes literal values to the underlying buffer. If update_indicator_byte,
// then the current literal run is complete and the indicator byte is updated.
void FlushLiteralRun(bool update_indicator_byte);
// Flushes a repeated run to the underlying buffer.
void FlushRepeatedRun();
// Checks and sets buffer_full_. This must be called after flushing a run to
// make sure there are enough bytes remaining to encode the next run.
void CheckBufferFull();
// The maximum number of values in a single literal run
// (number of groups encodable by a 1-byte indicator * 8)
static const int MAX_VALUES_PER_LITERAL_RUN = (1 << 6) * 8;
// Number of bits needed to encode the value.
const int bit_width_;
// Underlying buffer.
BitWriter bit_writer_;
// If true, the buffer is full and subsequent Put()'s will fail.
bool buffer_full_;
// The maximum byte size a single run can take.
int max_run_byte_size_;
// We need to buffer at most 8 values for literals. This happens when the
// bit_width is 1 (so 8 values fit in one byte).
// TODO: generalize this to other bit widths
int64_t buffered_values_[8];
// Number of values in buffered_values_
int num_buffered_values_;
// The current (also last) value that was written and the count of how
// many times in a row that value has been seen. This is maintained even
// if we are in a literal run. If the repeat_count_ get high enough, we switch
// to encoding repeated runs.
int64_t current_value_;
int repeat_count_;
// Number of literals in the current run. This does not include the literals
// that might be in buffered_values_. Only after we've got a group big enough
// can we decide if they should part of the literal_count_ or repeat_count_
int literal_count_;
// Pointer to a byte in the underlying buffer that stores the indicator byte.
// This is reserved as soon as we need a literal run but the value is written
// when the literal run is complete.
uint8_t* literal_indicator_byte_;
};
template<typename T>
inline bool RleDecoder::Get(T* val) {
if (UNLIKELY(literal_count_ == 0 && repeat_count_ == 0)) {
// Read the next run's indicator int, it could be a literal or repeated run
// The int is encoded as a vlq-encoded value.
uint64_t indicator_value = 0;
bool result = bit_reader_.GetVlqInt(&indicator_value);
if (!result) return false;
// lsb indicates if it is a literal run or repeated run
bool is_literal = indicator_value & 1;
if (is_literal) {
literal_count_ = (indicator_value >> 1) * 8;
} else {
repeat_count_ = indicator_value >> 1;
bool result = bit_reader_.GetAligned<T>(
BitUtil::Ceil(bit_width_, 8), reinterpret_cast<T*>(&current_value_));
DCHECK(result);
}
}
if (LIKELY(repeat_count_ > 0)) {
*val = current_value_;
--repeat_count_;
} else {
DCHECK(literal_count_ > 0);
bool result = bit_reader_.GetValue(bit_width_, val);
DCHECK(result);
--literal_count_;
}
return true;
}
// This function buffers input values 8 at a time. After seeing all 8 values,
// it decides whether they should be encoded as a literal or repeated run.
inline bool RleEncoder::Put(uint64_t value) {
DCHECK(bit_width_ == 64 || value < (1LL << bit_width_));
if (UNLIKELY(buffer_full_)) return false;
if (LIKELY(current_value_ == value)) {
++repeat_count_;
if (repeat_count_ > 8) {
// This is just a continuation of the current run, no need to buffer the
// values.
// Note that this is the fast path for long repeated runs.
return true;
}
} else {
if (repeat_count_ >= 8) {
// We had a run that was long enough but it has ended. Flush the
// current repeated run.
DCHECK_EQ(literal_count_, 0);
FlushRepeatedRun();
}
repeat_count_ = 1;
current_value_ = value;
}
buffered_values_[num_buffered_values_] = value;
if (++num_buffered_values_ == 8) {
DCHECK_EQ(literal_count_ % 8, 0);
FlushBufferedValues(false);
}
return true;
}
inline void RleEncoder::FlushLiteralRun(bool update_indicator_byte) {
if (literal_indicator_byte_ == NULL) {
// The literal indicator byte has not been reserved yet, get one now.
literal_indicator_byte_ = bit_writer_.GetNextBytePtr();
DCHECK(literal_indicator_byte_ != NULL);
}
// Write all the buffered values as bit packed literals
for (int i = 0; i < num_buffered_values_; ++i) {
bool success = bit_writer_.PutValue(buffered_values_[i], bit_width_);
DCHECK(success) << "There is a bug in using CheckBufferFull()";
}
num_buffered_values_ = 0;
if (update_indicator_byte) {
// At this point we need to write the indicator byte for the literal run.
// We only reserve one byte, to allow for streaming writes of literal values.
// The logic makes sure we flush literal runs often enough to not overrun
// the 1 byte.
DCHECK_EQ(literal_count_ % 8, 0);
int num_groups = literal_count_ / 8;
int32_t indicator_value = (num_groups << 1) | 1;
DCHECK_EQ(indicator_value & 0xFFFFFF00, 0);
*literal_indicator_byte_ = indicator_value;
literal_indicator_byte_ = NULL;
literal_count_ = 0;
CheckBufferFull();
}
}
inline void RleEncoder::FlushRepeatedRun() {
DCHECK_GT(repeat_count_, 0);
bool result = true;
// The lsb of 0 indicates this is a repeated run
int32_t indicator_value = repeat_count_ << 1 | 0;
result &= bit_writer_.PutVlqInt(indicator_value);
result &= bit_writer_.PutAligned(current_value_, BitUtil::Ceil(bit_width_, 8));
DCHECK(result);
num_buffered_values_ = 0;
repeat_count_ = 0;
CheckBufferFull();
}
// Flush the values that have been buffered. At this point we decide whether
// we need to switch between the run types or continue the current one.
inline void RleEncoder::FlushBufferedValues(bool done) {
if (repeat_count_ >= 8) {
// Clear the buffered values. They are part of the repeated run now and we
// don't want to flush them out as literals.
num_buffered_values_ = 0;
if (literal_count_ != 0) {
// There was a current literal run. All the values in it have been flushed
// but we still need to update the indicator byte.
DCHECK_EQ(literal_count_ % 8, 0);
DCHECK_EQ(repeat_count_, 8);
FlushLiteralRun(true);
}
DCHECK_EQ(literal_count_, 0);
return;
}
literal_count_ += num_buffered_values_;
DCHECK_EQ(literal_count_ % 8, 0);
int num_groups = literal_count_ / 8;
if (num_groups + 1 >= (1 << 6)) {
// We need to start a new literal run because the indicator byte we've reserved
// cannot store more values.
DCHECK(literal_indicator_byte_ != NULL);
FlushLiteralRun(true);
} else {
FlushLiteralRun(done);
}
repeat_count_ = 0;
}
inline int RleEncoder::Flush() {
if (literal_count_ > 0 || repeat_count_ > 0 || num_buffered_values_ > 0) {
bool all_repeat = literal_count_ == 0 &&
(repeat_count_ == num_buffered_values_ || num_buffered_values_ == 0);
// There is something pending, figure out if it's a repeated or literal run
if (repeat_count_ > 0 && all_repeat) {
FlushRepeatedRun();
} else {
DCHECK_EQ(literal_count_ % 8, 0);
// Buffer the last group of literals to 8 by padding with 0s.
for (; num_buffered_values_ != 0 && num_buffered_values_ < 8;
++num_buffered_values_) {
buffered_values_[num_buffered_values_] = 0;
}
literal_count_ += num_buffered_values_;
FlushLiteralRun(true);
repeat_count_ = 0;
}
}
bit_writer_.Flush();
DCHECK_EQ(num_buffered_values_, 0);
DCHECK_EQ(literal_count_, 0);
DCHECK_EQ(repeat_count_, 0);
return bit_writer_.bytes_written();
}
inline void RleEncoder::CheckBufferFull() {
int bytes_written = bit_writer_.bytes_written();
if (bytes_written + max_run_byte_size_ > bit_writer_.buffer_len()) {
buffer_full_ = true;
}
}
inline void RleEncoder::Clear() {
buffer_full_ = false;
current_value_ = 0;
repeat_count_ = 0;
num_buffered_values_ = 0;
literal_count_ = 0;
literal_indicator_byte_ = NULL;
bit_writer_.Clear();
}
}
#endif