blob: d3bb3f4c053fb754345a0eb4ca5c4cc4ee98696c [file] [log] [blame]
/*
* Copyright 2009-2010 by The Regents of the University of California
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* you may obtain a copy of the License from
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package edu.uci.ics.hyracks.examples.btree.client;
import org.kohsuke.args4j.CmdLineParser;
import org.kohsuke.args4j.Option;
import edu.uci.ics.hyracks.api.client.HyracksConnection;
import edu.uci.ics.hyracks.api.client.IHyracksClientConnection;
import edu.uci.ics.hyracks.api.constraints.PartitionConstraintHelper;
import edu.uci.ics.hyracks.api.dataflow.IConnectorDescriptor;
import edu.uci.ics.hyracks.api.dataflow.value.IBinaryComparatorFactory;
import edu.uci.ics.hyracks.api.dataflow.value.IBinaryHashFunctionFactory;
import edu.uci.ics.hyracks.api.dataflow.value.ISerializerDeserializer;
import edu.uci.ics.hyracks.api.dataflow.value.ITypeTraits;
import edu.uci.ics.hyracks.api.dataflow.value.RecordDescriptor;
import edu.uci.ics.hyracks.api.job.JobId;
import edu.uci.ics.hyracks.api.job.JobSpecification;
import edu.uci.ics.hyracks.data.std.accessors.PointableBinaryComparatorFactory;
import edu.uci.ics.hyracks.data.std.accessors.PointableBinaryHashFunctionFactory;
import edu.uci.ics.hyracks.data.std.primitive.IntegerPointable;
import edu.uci.ics.hyracks.data.std.primitive.UTF8StringPointable;
import edu.uci.ics.hyracks.dataflow.common.data.marshalling.IntegerSerializerDeserializer;
import edu.uci.ics.hyracks.dataflow.common.data.marshalling.UTF8StringSerializerDeserializer;
import edu.uci.ics.hyracks.dataflow.common.data.partition.FieldHashPartitionComputerFactory;
import edu.uci.ics.hyracks.dataflow.std.connectors.MToNPartitioningConnectorDescriptor;
import edu.uci.ics.hyracks.dataflow.std.connectors.OneToOneConnectorDescriptor;
import edu.uci.ics.hyracks.dataflow.std.file.IFileSplitProvider;
import edu.uci.ics.hyracks.dataflow.std.misc.NullSinkOperatorDescriptor;
import edu.uci.ics.hyracks.examples.btree.helper.DataGenOperatorDescriptor;
import edu.uci.ics.hyracks.examples.btree.helper.IndexLifecycleManagerProvider;
import edu.uci.ics.hyracks.examples.btree.helper.StorageManagerInterface;
import edu.uci.ics.hyracks.storage.am.btree.dataflow.BTreeDataflowHelperFactory;
import edu.uci.ics.hyracks.storage.am.common.api.IIndexLifecycleManagerProvider;
import edu.uci.ics.hyracks.storage.am.common.dataflow.IIndexDataflowHelperFactory;
import edu.uci.ics.hyracks.storage.am.common.dataflow.TreeIndexInsertUpdateDeleteOperatorDescriptor;
import edu.uci.ics.hyracks.storage.am.common.impls.NoOpOperationCallbackFactory;
import edu.uci.ics.hyracks.storage.am.common.ophelpers.IndexOperation;
import edu.uci.ics.hyracks.storage.common.IStorageManagerInterface;
// This example will insert tuples into the primary and secondary index using an insert pipeline
public class InsertPipelineExample {
private static class Options {
@Option(name = "-host", usage = "Hyracks Cluster Controller Host name", required = true)
public String host;
@Option(name = "-port", usage = "Hyracks Cluster Controller Port (default: 1098)")
public int port = 1098;
@Option(name = "-app", usage = "Hyracks Application name", required = true)
public String app;
@Option(name = "-target-ncs", usage = "Comma separated list of node-controller names to use", required = true)
public String ncs;
@Option(name = "-num-tuples", usage = "Total number of tuples to to be generated for insertion", required = true)
public int numTuples;
@Option(name = "-primary-btreename", usage = "B-Tree file name of primary index", required = true)
public String primaryBTreeName;
@Option(name = "-secondary-btreename", usage = "B-Tree file name of secondary index", required = true)
public String secondaryBTreeName;
}
public static void main(String[] args) throws Exception {
Options options = new Options();
CmdLineParser parser = new CmdLineParser(options);
parser.parseArgument(args);
IHyracksClientConnection hcc = new HyracksConnection(options.host, options.port);
JobSpecification job = createJob(options);
long start = System.currentTimeMillis();
JobId jobId = hcc.startJob(options.app, job);
hcc.waitForCompletion(jobId);
long end = System.currentTimeMillis();
System.err.println(start + " " + end + " " + (end - start));
}
private static JobSpecification createJob(Options options) {
JobSpecification spec = new JobSpecification();
String[] splitNCs = options.ncs.split(",");
// schema of tuples to be generated: 4 fields with int, string, string,
// string
// we will use field 2 as primary key to fill a clustered index
RecordDescriptor recDesc = new RecordDescriptor(new ISerializerDeserializer[] {
UTF8StringSerializerDeserializer.INSTANCE, // this field will
// not go into B-Tree
UTF8StringSerializerDeserializer.INSTANCE, // we will use this
// as payload
IntegerSerializerDeserializer.INSTANCE, // we will use this
// field as key
IntegerSerializerDeserializer.INSTANCE, // we will use this as
// payload
UTF8StringSerializerDeserializer.INSTANCE // we will use this as
// payload
});
// generate numRecords records with field 2 being unique, integer values
// in [0, 100000], and strings with max length of 10 characters, and
// random seed 100
DataGenOperatorDescriptor dataGen = new DataGenOperatorDescriptor(spec, recDesc, options.numTuples, 2, 0,
100000, 10, 100);
// run data generator on first nodecontroller given
PartitionConstraintHelper.addAbsoluteLocationConstraint(spec, dataGen, splitNCs[0]);
IIndexLifecycleManagerProvider lcManagerProvider = IndexLifecycleManagerProvider.INSTANCE;
IStorageManagerInterface storageManager = StorageManagerInterface.INSTANCE;
// prepare insertion into primary index
// tuples to be put into B-Tree shall have 4 fields
int primaryFieldCount = 4;
ITypeTraits[] primaryTypeTraits = new ITypeTraits[primaryFieldCount];
primaryTypeTraits[0] = IntegerPointable.TYPE_TRAITS;
primaryTypeTraits[1] = UTF8StringPointable.TYPE_TRAITS;
primaryTypeTraits[2] = IntegerPointable.TYPE_TRAITS;
primaryTypeTraits[3] = UTF8StringPointable.TYPE_TRAITS;
// comparator factories for primary index
IBinaryComparatorFactory[] primaryComparatorFactories = new IBinaryComparatorFactory[1];
primaryComparatorFactories[0] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
// the B-Tree expects its keyfields to be at the front of its input
// tuple
int[] primaryFieldPermutation = { 2, 1, 3, 4 }; // map field 2 of input
// tuple to field 0 of
// B-Tree tuple, etc.
IFileSplitProvider primarySplitProvider = JobHelper.createFileSplitProvider(splitNCs, options.primaryBTreeName);
IIndexDataflowHelperFactory dataflowHelperFactory = new BTreeDataflowHelperFactory();
// create operator descriptor
TreeIndexInsertUpdateDeleteOperatorDescriptor primaryInsert = new TreeIndexInsertUpdateDeleteOperatorDescriptor(
spec, recDesc, storageManager, lcManagerProvider, primarySplitProvider, primaryTypeTraits,
primaryComparatorFactories, primaryFieldPermutation, IndexOperation.INSERT, dataflowHelperFactory, null,
NoOpOperationCallbackFactory.INSTANCE);
JobHelper.createPartitionConstraint(spec, primaryInsert, splitNCs);
// prepare insertion into secondary index
// tuples to be put into B-Tree shall have 2 fields
int secondaryFieldCount = 2;
ITypeTraits[] secondaryTypeTraits = new ITypeTraits[secondaryFieldCount];
secondaryTypeTraits[0] = UTF8StringPointable.TYPE_TRAITS;
secondaryTypeTraits[1] = IntegerPointable.TYPE_TRAITS;
// comparator factories for secondary index
IBinaryComparatorFactory[] secondaryComparatorFactories = new IBinaryComparatorFactory[2];
secondaryComparatorFactories[0] = PointableBinaryComparatorFactory.of(UTF8StringPointable.FACTORY);
secondaryComparatorFactories[1] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
// the B-Tree expects its keyfields to be at the front of its input
// tuple
int[] secondaryFieldPermutation = { 1, 2 };
IFileSplitProvider secondarySplitProvider = JobHelper.createFileSplitProvider(splitNCs,
options.secondaryBTreeName);
// create operator descriptor
TreeIndexInsertUpdateDeleteOperatorDescriptor secondaryInsert = new TreeIndexInsertUpdateDeleteOperatorDescriptor(
spec, recDesc, storageManager, lcManagerProvider, secondarySplitProvider, secondaryTypeTraits,
secondaryComparatorFactories, secondaryFieldPermutation, IndexOperation.INSERT, dataflowHelperFactory, null,
NoOpOperationCallbackFactory.INSTANCE);
JobHelper.createPartitionConstraint(spec, secondaryInsert, splitNCs);
// end the insert pipeline at this sink operator
NullSinkOperatorDescriptor nullSink = new NullSinkOperatorDescriptor(spec);
JobHelper.createPartitionConstraint(spec, nullSink, splitNCs);
// distribute the records from the datagen via hashing to the bulk load
// ops
IBinaryHashFunctionFactory[] hashFactories = new IBinaryHashFunctionFactory[1];
hashFactories[0] = PointableBinaryHashFunctionFactory.of(UTF8StringPointable.FACTORY);
IConnectorDescriptor hashConn = new MToNPartitioningConnectorDescriptor(spec,
new FieldHashPartitionComputerFactory(new int[] { 0 }, hashFactories));
// connect the ops
spec.connect(hashConn, dataGen, 0, primaryInsert, 0);
spec.connect(new OneToOneConnectorDescriptor(spec), primaryInsert, 0, secondaryInsert, 0);
spec.connect(new OneToOneConnectorDescriptor(spec), secondaryInsert, 0, nullSink, 0);
spec.addRoot(nullSink);
return spec;
}
}