blob: 2577248c16905b6e7a49804184cf95924cbb1f04 [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef APR_CRYPTO_H
#define APR_CRYPTO_H
#include "apu.h"
#include "apr_pools.h"
#include "apr_tables.h"
#include "apu_errno.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file apr_crypto.h
* @brief APR-UTIL Crypto library
*/
/**
* @defgroup APR_Util_Crypto Crypto routines
* @ingroup APR_Util
* @{
*/
/** CA certificate type unknown */
#define APR_CRYPTO_CA_TYPE_UNKNOWN 0
/** binary DER encoded CA certificate */
#define APR_CRYPTO_CA_TYPE_DER 1
/** PEM encoded CA certificate */
#define APR_CRYPTO_CA_TYPE_BASE64 2
/** Netscape/Mozilla cert7.db CA certificate database */
#define APR_CRYPTO_CA_TYPE_CERT7_DB 3
/** Netscape/Mozilla secmod file */
#define APR_CRYPTO_CA_TYPE_SECMOD 4
/** Client certificate type unknown */
#define APR_CRYPTO_CERT_TYPE_UNKNOWN 5
/** binary DER encoded client certificate */
#define APR_CRYPTO_CERT_TYPE_DER 6
/** PEM encoded client certificate */
#define APR_CRYPTO_CERT_TYPE_BASE64 7
/** Netscape/Mozilla key3.db client certificate database */
#define APR_CRYPTO_CERT_TYPE_KEY3_DB 8
/** Netscape/Mozilla client certificate nickname */
#define APR_CRYPTO_CERT_TYPE_NICKNAME 9
/** Private key type unknown */
#define APR_CRYPTO_KEY_TYPE_UNKNOWN 10
/** binary DER encoded private key */
#define APR_CRYPTO_KEY_TYPE_DER 11
/** PEM encoded private key */
#define APR_CRYPTO_KEY_TYPE_BASE64 12
/** PKCS#12 encoded client certificate */
#define APR_CRYPTO_CERT_TYPE_PFX 13
/** PKCS#12 encoded private key */
#define APR_CRYPTO_KEY_TYPE_PFX 14
/** Openldap directory full of base64-encoded cert
* authorities with hashes in corresponding .0 directory
*/
#define APR_CRYPTO_CA_TYPE_CACERTDIR_BASE64 15
/** CMS Key Database with private key and cert chain */
#define APR_CRYPTO_CA_TYPE_CMS 16
/** Symmetrical key */
#define APR_CRYPTO_KEY_TYPE_SYM 17
/** Netscape/Mozilla certificate database directory */
#define APR_CRYPTO_CA_TYPE_DIR 18
/** Crypto engine */
#define APR_CRYPTO_ENGINE 101
#if APU_HAVE_CRYPTO
#ifndef APU_CRYPTO_RECOMMENDED_DRIVER
#if APU_HAVE_OPENSSL
#define APU_CRYPTO_RECOMMENDED_DRIVER "openssl"
#else
#if APU_HAVE_NSS
#define APU_CRYPTO_RECOMMENDED_DRIVER "nss"
#else
#if APU_HAVE_MSCNG
#define APU_CRYPTO_RECOMMENDED_DRIVER "mscng"
#else
#if APU_HAVE_MSCAPI
#define APU_CRYPTO_RECOMMENDED_DRIVER "mscapi"
#else
#endif
#endif
#endif
#endif
#endif
/**
* Symmetric Key types understood by the library.
*
* NOTE: It is expected that this list will grow over time.
*
* Interoperability Matrix:
*
* The matrix is based on the testcrypto.c unit test, which attempts to
* test whether a simple encrypt/decrypt will succeed, as well as testing
* whether an encrypted string by one library can be decrypted by the
* others.
*
* Some libraries will successfully encrypt and decrypt their own data,
* but won't decrypt data from another library. It is hoped that over
* time these anomalies will be found and fixed, but until then it is
* recommended that ciphers are chosen that interoperate across platform.
*
* An X below means the test passes, it does not necessarily mean that
* encryption performed is correct or secure. Applications should stick
* to ciphers that pass the interoperablity tests on the right hand side
* of the table.
*
* Aligned data is data whose length is a multiple of the block size for
* the chosen cipher. Padded data is data that is not aligned by block
* size and must be padded by the crypto library.
*
* OpenSSL NSS Interop
* Align Pad Align Pad Align Pad
* 3DES_192/CBC X X X X X X
* 3DES_192/ECB X X
* AES_256/CBC X X X X X X
* AES_256/ECB X X X X
* AES_192/CBC X X X X
* AES_192/ECB X X X
* AES_128/CBC X X X X
* AES_128/ECB X X X
*
* Conclusion: for padded data, use 3DES_192/CBC or AES_256/CBC. For
* aligned data, use 3DES_192/CBC, AES_256/CBC or AES_256/ECB.
*/
typedef enum {
KEY_NONE, KEY_3DES_192, /** 192 bit (3-Key) 3DES */
KEY_AES_128, /** 128 bit AES */
KEY_AES_192, /** 192 bit AES */
KEY_AES_256
/** 256 bit AES */
} apr_crypto_block_key_type_e;
typedef enum {
MODE_NONE, /** An error condition */
MODE_ECB, /** Electronic Code Book */
MODE_CBC
/** Cipher Block Chaining */
} apr_crypto_block_key_mode_e;
/**
* Certificate and private key structure.
*
* The various crypto backends expect certificates and keys in a wide
* array of formats. This structure is analogous to apr_ldap_opt_tls_cert_t
* from the LDAP interface. Ultimately that interface should be meshed with
* this one.
* @param type Type of certificate APR_CRYPTO_*_TYPE_*
* @param path Path, file or nickname of the certificate
* @param password Optional password, can be NULL
*/
typedef struct apr_crypto_param_t {
int type;
const char *path;
const char *password;
} apr_crypto_param_t;
/* These are opaque structs. Instantiation is up to each backend */
typedef struct apr_crypto_driver_t apr_crypto_driver_t;
typedef struct apr_crypto_config_t apr_crypto_config_t;
typedef struct apr_crypto_key_t apr_crypto_key_t;
typedef struct apr_crypto_block_t apr_crypto_block_t;
/**
* Public factory API, common to all backends.
*/
typedef struct apr_crypto_t {
apr_pool_t *pool;
apu_err_t *result;
apr_array_header_t *keys;
apr_crypto_config_t *config;
} apr_crypto_t;
/**
* @brief Perform once-only initialisation. Call once only.
*
* @param pool - pool to register any shutdown cleanups, etc
* @return APR_NOTIMPL in case of no crypto support.
*/
APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool,
const apr_array_header_t *params);
/**
* @brief Get the driver struct for a name
*
* @param pool - (process) pool to register cleanup
* @param name - driver name
* @param driver - pointer to driver struct.
* @return APR_SUCCESS for success
* @return APR_ENOTIMPL for no driver (when DSO not enabled)
* @return APR_EDSOOPEN if DSO driver file can't be opened
* @return APR_ESYMNOTFOUND if the driver file doesn't contain a driver
*/
APU_DECLARE(apr_status_t) apr_crypto_get_driver(apr_pool_t *pool, const char *name,
const apr_crypto_driver_t **driver, const apr_array_header_t *params,
const apu_err_t **result);
/**
* @brief Return the name of the driver.
*
* @param driver - The driver in use.
* @return The name of the driver.
*/
APU_DECLARE(const char *)apr_crypto_driver_name (const apr_crypto_driver_t *driver);
/**
* @brief Get the result of the last operation on a factory. If the result
* is NULL, the operation was successful.
* @param driver - driver to use
* @param factory - factory pointer will be written here
* @param result - the result structure
* @return APR_SUCCESS for success
*/
APU_DECLARE(apr_status_t) apr_crypto_error(const apr_crypto_t *f,
const apu_err_t **result);
/**
* @brief Create a context for supporting encryption. Keys, certificates,
* algorithms and other parameters will be set per context. More than
* one context can be created at one time. A cleanup will be automatically
* registered with the given pool to guarantee a graceful shutdown.
* @param driver - driver to use
* @param pool - process pool
* @param params - array of key parameters
* @param factory - factory pointer will be written here
* @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
* if the engine cannot be initialised.
*/
APU_DECLARE(apr_status_t) apr_crypto_factory(const apr_crypto_driver_t *driver,
apr_pool_t *pool, const apr_array_header_t *params, apr_crypto_t **f);
/**
* @brief Create a key from the given passphrase. By default, the PBKDF2
* algorithm is used to generate the key from the passphrase. It is expected
* that the same pass phrase will generate the same key, regardless of the
* backend crypto platform used. The key is cleaned up when the context
* is cleaned, and may be reused with multiple encryption or decryption
* operations.
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
* *key is not NULL, *key must point at a previously created structure.
* @param driver - driver to use
* @param p The pool to use.
* @param f The context to use.
* @param pass The passphrase to use.
* @param passLen The passphrase length in bytes
* @param salt The salt to use.
* @param saltLen The salt length in bytes
* @param type 3DES_192, AES_128, AES_192, AES_256.
* @param mode Electronic Code Book / Cipher Block Chaining.
* @param doPad Pad if necessary.
* @param key The key returned, see note.
* @param ivSize The size of the initialisation vector will be returned, based
* on whether an IV is relevant for this type of crypto.
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
* not known. APR_EPADDING if padding was requested but is not supported.
* APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_passphrase(const apr_crypto_driver_t *driver,
apr_pool_t *p, const apr_crypto_t *f, const char *pass,
apr_size_t passLen, const unsigned char * salt, apr_size_t saltLen,
const apr_crypto_block_key_type_e type,
const apr_crypto_block_key_mode_e mode, const int doPad,
const int iterations, apr_crypto_key_t **key, apr_size_t *ivSize);
/**
* @brief Initialise a context for encrypting arbitrary data using the given key.
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
* *ctx is not NULL, *ctx must point at a previously created structure.
* @param driver - driver to use
* @param p The pool to use.
* @param f The block factory to use.
* @param key The key structure to use.
* @param iv Optional initialisation vector. If the buffer pointed to is NULL,
* an IV will be created at random, in space allocated from the pool.
* If the buffer pointed to is not NULL, the IV in the buffer will be
* used.
* @param ctx The block context returned, see note.
* @param blockSize The block size of the cipher.
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
* Returns APR_EINIT if the backend failed to initialise the context. Returns
* APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init(
const apr_crypto_driver_t *driver, apr_pool_t *p,
const apr_crypto_t *f, const apr_crypto_key_t *key,
const unsigned char **iv, apr_crypto_block_t **ctx,
apr_size_t *blockSize);
/**
* @brief Encrypt data provided by in, write it to out.
* @note The number of bytes written will be written to outlen. If
* out is NULL, outlen will contain the maximum size of the
* buffer needed to hold the data, including any data
* generated by apr_crypto_block_encrypt_finish below. If *out points
* to NULL, a buffer sufficiently large will be created from
* the pool provided. If *out points to a not-NULL value, this
* value will be used as a buffer instead.
* @param driver - driver to use
* @param ctx The block context to use.
* @param out Address of a buffer to which data will be written,
* see note.
* @param outlen Length of the output will be written here.
* @param in Address of the buffer to read.
* @param inlen Length of the buffer to read.
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
* not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(
const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx,
unsigned char **out, apr_size_t *outlen, const unsigned char *in,
apr_size_t inlen);
/**
* @brief Encrypt final data block, write it to out.
* @note If necessary the final block will be written out after being
* padded. Typically the final block will be written to the
* same buffer used by apr_crypto_block_encrypt, offset by the
* number of bytes returned as actually written by the
* apr_crypto_block_encrypt() call. After this call, the context
* is cleaned and can be reused by apr_crypto_block_encrypt_init().
* @param driver - driver to use
* @param ctx The block context to use.
* @param out Address of a buffer to which data will be written. This
* buffer must already exist, and is usually the same
* buffer used by apr_evp_crypt(). See note.
* @param outlen Length of the output will be written here.
* @return APR_ECRYPT if an error occurred.
* @return APR_EPADDING if padding was enabled and the block was incorrectly
* formatted.
* @return APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(
const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx,
unsigned char *out, apr_size_t *outlen);
/**
* @brief Initialise a context for decrypting arbitrary data using the given key.
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
* *ctx is not NULL, *ctx must point at a previously created structure.
* @param driver - driver to use
* @param p The pool to use.
* @param f The block factory to use.
* @param key The key structure to use.
* @param iv Optional initialisation vector.
* @param ctx The block context returned, see note.
* @param blockSize The block size of the cipher.
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
* Returns APR_EINIT if the backend failed to initialise the context. Returns
* APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init(
const apr_crypto_driver_t *driver, apr_pool_t *p,
const apr_crypto_t *f, const apr_crypto_key_t *key,
const unsigned char *iv, apr_crypto_block_t **ctx,
apr_size_t *blockSize);
/**
* @brief Decrypt data provided by in, write it to out.
* @note The number of bytes written will be written to outlen. If
* out is NULL, outlen will contain the maximum size of the
* buffer needed to hold the data, including any data
* generated by apr_crypto_block_decrypt_finish below. If *out points
* to NULL, a buffer sufficiently large will be created from
* the pool provided. If *out points to a not-NULL value, this
* value will be used as a buffer instead.
* @param driver - driver to use
* @param ctx The block context to use.
* @param out Address of a buffer to which data will be written,
* see note.
* @param outlen Length of the output will be written here.
* @param in Address of the buffer to read.
* @param inlen Length of the buffer to read.
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
* not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(
const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx,
unsigned char **out, apr_size_t *outlen, const unsigned char *in,
apr_size_t inlen);
/**
* @brief Decrypt final data block, write it to out.
* @note If necessary the final block will be written out after being
* padded. Typically the final block will be written to the
* same buffer used by apr_crypto_block_decrypt, offset by the
* number of bytes returned as actually written by the
* apr_crypto_block_decrypt() call. After this call, the context
* is cleaned and can be reused by apr_crypto_block_decrypt_init().
* @param driver - driver to use
* @param ctx The block context to use.
* @param out Address of a buffer to which data will be written. This
* buffer must already exist, and is usually the same
* buffer used by apr_evp_crypt(). See note.
* @param outlen Length of the output will be written here.
* @return APR_ECRYPT if an error occurred.
* @return APR_EPADDING if padding was enabled and the block was incorrectly
* formatted.
* @return APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(
const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx,
unsigned char *out, apr_size_t *outlen);
/**
* @brief Clean encryption / decryption context.
* @note After cleanup, a context is free to be reused if necessary.
* @param driver - driver to use
* @param ctx The block context to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(
const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx);
/**
* @brief Clean encryption / decryption factory.
* @note After cleanup, a factory is free to be reused if necessary.
* @param driver - driver to use
* @param f The factory to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_cleanup(const apr_crypto_driver_t *driver,
apr_crypto_t *f);
/**
* @brief Shutdown the crypto library.
* @note After shutdown, it is expected that the init function can be called again.
* @param driver - driver to use
* @param p The pool to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver,
apr_pool_t *p);
#endif /* APU_HAVE_CRYPTO */
/** @} */
#ifdef __cplusplus
}
#endif
#endif