blob: bb4152f202b5ccd33f3bb59bd6abf6ec4ada16ba [file] [log] [blame]
/*
* The Apache Software License, Version 1.1
*
*
* Copyright (c) 1999-2001 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Xerces" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation and was
* originally based on software copyright (c) 1999, International
* Business Machines, Inc., http://www.apache.org. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/
package org.apache.xerces.impl.xs.models;
import org.apache.xerces.impl.msg.ImplementationMessages;
import org.apache.xerces.xni.QName;
import org.apache.xerces.impl.dtd.models.CMNode;
import org.apache.xerces.impl.dtd.models.CMStateSet;
import org.apache.xerces.impl.xs.SubstitutionGroupHandler;
import org.apache.xerces.impl.xs.XSElementDecl;
import org.apache.xerces.impl.xs.XSParticleDecl;
import org.apache.xerces.impl.xs.XSWildcardDecl;
import org.apache.xerces.impl.xs.XMLSchemaException;
import org.apache.xerces.impl.xs.XSConstraints;
/**
* DFAContentModel is the implementation of XSCMValidator that does
* all of the non-trivial element content validation. This class does
* the conversion from the regular expression to the DFA that
* it then uses in its validation algorithm.
*
* @author Neil Graham, IBM
* @version $Id$
*/
public class XSDFACM
implements XSCMValidator {
//
// Constants
//
private static final boolean DEBUG = false;
// special strings
// debugging
/** Set to true to debug content model validation. */
private static final boolean DEBUG_VALIDATE_CONTENT = false;
//
// Data
//
/**
* This is the map of unique input symbol elements to indices into
* each state's per-input symbol transition table entry. This is part
* of the built DFA information that must be kept around to do the
* actual validation. Note tat since either XSElementDecl or XSParticleDecl object
* can live here, we've got to use an Object.
*/
private XSParticleDecl fElemMap[] = null;
/**
* This is a map of whether the element map contains information
* related to ANY models.
*/
private int fElemMapType[] = null;
/** The element map size. */
private int fElemMapSize = 0;
/* Used to indicate a mixed model */
private boolean fMixed;
/**
* The string index for the 'end of content' string that we add to
* the string pool. This is used as the special name of an element
* that represents the end of the syntax tree.
*/
private static final XSParticleDecl fEOCParticle = new XSParticleDecl();
static {
fEOCParticle.fType = XSParticleDecl.PARTICLE_ELEMENT;
}
/**
* The NFA position of the special EOC (end of content) node. This
* is saved away since it's used during the DFA build.
*/
private int fEOCPos = 0;
/**
* This is an array of booleans, one per state (there are
* fTransTableSize states in the DFA) that indicates whether that
* state is a final state.
*/
private boolean fFinalStateFlags[] = null;
/**
* The list of follow positions for each NFA position (i.e. for each
* non-epsilon leaf node.) This is only used during the building of
* the DFA, and is let go afterwards.
*/
private CMStateSet fFollowList[] = null;
/**
* This is the head node of our intermediate representation. It is
* only non-null during the building of the DFA (just so that it
* does not have to be passed all around.) Once the DFA is built,
* this is no longer required so its nulled out.
*/
private CMNode fHeadNode = null;
/**
* The count of leaf nodes. This is an important number that set some
* limits on the sizes of data structures in the DFA process.
*/
private int fLeafCount = 0;
/**
* An array of non-epsilon leaf nodes, which is used during the DFA
* build operation, then dropped.
*/
private XSCMLeaf fLeafList[] = null;
/** Array mapping ANY types to the leaf list. */
private int fLeafListType[] = null;
/**
* This is the transition table that is the main by product of all
* of the effort here. It is an array of arrays of ints. The first
* dimension is the number of states we end up with in the DFA. The
* second dimensions is the number of unique elements in the content
* model (fElemMapSize). Each entry in the second dimension indicates
* the new state given that input for the first dimension's start
* state.
* <p>
* The fElemMap array handles mapping from element indexes to
* positions in the second dimension of the transition table.
*/
private int fTransTable[][] = null;
/**
* The number of valid entries in the transition table, and in the other
* related tables such as fFinalStateFlags.
*/
private int fTransTableSize = 0;
/**
* Flag that indicates that even though we have a "complicated"
* content model, it is valid to have no content. In other words,
* all parts of the content model are optional. For example:
* <pre>
* &lt;!ELEMENT AllOptional (Optional*,NotRequired?)&gt;
* </pre>
*/
private boolean fEmptyContentIsValid = false;
// temp variables
//
// Constructors
//
/**
* Constructs a DFA content model.
*
* @param symbolTable The symbol table.
* @param syntaxTree The syntax tree of the content model.
* @param leafCount The number of leaves.
*
* @exception RuntimeException Thrown if DFA can't be built.
*/
public XSDFACM(CMNode syntaxTree,
int leafCount) {
this(syntaxTree, leafCount, false);
}
/**
* Constructs a DFA content model.
*
* @param symbolTable The symbol table.
* @param syntaxTree The syntax tree of the content model.
* @param leafCount The number of leaves.
*
* @exception RuntimeException Thrown if DFA can't be built.
*/
public XSDFACM(CMNode syntaxTree,
int leafCount, boolean mixed) {
// Store away our index and pools in members
fLeafCount = leafCount;
//
// Create some string pool indexes that represent the names of some
// magical nodes in the syntax tree.
// (already done in static initialization...
//
fMixed = mixed;
//
// Ok, so lets grind through the building of the DFA. This method
// handles the high level logic of the algorithm, but it uses a
// number of helper classes to do its thing.
//
// In order to avoid having hundreds of references to the error and
// string handlers around, this guy and all of his helper classes
// just throw a simple exception and we then pass it along.
//
if(DEBUG_VALIDATE_CONTENT) {
XSDFACM.time -= System.currentTimeMillis();
}
buildDFA(syntaxTree);
if(DEBUG_VALIDATE_CONTENT) {
XSDFACM.time += System.currentTimeMillis();
System.out.println("DFA build: " + XSDFACM.time + "ms");
}
}
private static long time = 0;
//
// XSCMValidator methods
//
/**
* check whether the given state is one of the final states
*
* @param state the state to check
*
* @return whether it's a final state
*/
public boolean isFinalState (int state) {
return (state < 0)? false :
fFinalStateFlags[state];
}
/**
* one transition only
*
* @param curElem The current element's QName
* @param stateStack stack to store the previous state
* @param curPos the current position of the stack
*
* @return: null if transition is invalid; otherwise the Object corresponding to the
* XSElementDecl or XSWildcardDecl identified. Also, the
* state array will be modified to include the new state; this so that the validator can
* store it away.
*
* @exception RuntimeException thrown on error
*/
public Object oneTransition(QName curElem, int[] state, SubstitutionGroupHandler subGroupHandler) {
int curState = state[0];
if(curState == XSCMValidator.FIRST_ERROR || curState == XSCMValidator.SUBSEQUENT_ERROR) {
// there was an error last time; so just go find correct Object in fElemmMap.
// ... after resetting state[0].
if(curState == XSCMValidator.FIRST_ERROR)
state[0] = XSCMValidator.SUBSEQUENT_ERROR;
return findMatchingDecl(curElem, subGroupHandler);
}
int nextState = 0;
int elemIndex = 0;
Object matchingDecl = null;
for (; elemIndex < fElemMapSize; elemIndex++) {
int type = fElemMapType[elemIndex] ;
if (type == XSParticleDecl.PARTICLE_ELEMENT) {
matchingDecl = subGroupHandler.getMatchingElemDecl(curElem, (XSElementDecl)fElemMap[elemIndex].fValue);
if (matchingDecl != null) {
nextState = fTransTable[curState][elemIndex];
if (nextState != -1)
break;
}
}
else if (type == XSParticleDecl.PARTICLE_WILDCARD) {
if(((XSWildcardDecl)fElemMap[elemIndex].fValue).allowNamespace(curElem.uri)) {
matchingDecl = fElemMap[elemIndex].fValue;
nextState = fTransTable[curState][elemIndex];
if (nextState != -1)
break;
}
}
}
// if we still can't find a match, set the state to first_error
// and return null
if (elemIndex == fElemMapSize) {
state[0] = XSCMValidator.FIRST_ERROR;
return findMatchingDecl(curElem, subGroupHandler);
}
state[0] = nextState;
return matchingDecl;
} // oneTransition(QName, int[], SubstitutionGroupHandler): Object
Object findMatchingDecl(QName curElem, SubstitutionGroupHandler subGroupHandler) {
Object matchingDecl = null;
for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
int type = fElemMapType[elemIndex] ;
if (type == XSParticleDecl.PARTICLE_ELEMENT) {
matchingDecl = subGroupHandler.getMatchingElemDecl(curElem, (XSElementDecl)fElemMap[elemIndex].fValue);
if (matchingDecl != null) {
return matchingDecl;
}
}
else if (type == XSParticleDecl.PARTICLE_WILDCARD) {
if(((XSWildcardDecl)fElemMap[elemIndex].fValue).allowNamespace(curElem.uri))
return fElemMap[elemIndex].fValue;
}
}
return null;
}
// This method returns the start states of the content model.
public int[] startContentModel() {
int[] val = new int[1];
val[0]=0;
return val;
} // startContentModel():int[]
// this method returns whether the last state was a valid final state
public boolean endContentModel(int[] state) {
return fFinalStateFlags[state[0]];
} // endContentModel(int[]): boolean
// Killed off whatCanGoHere; we may need it for DOM canInsert(...) etc.,
// but we can put it back later.
//
// Private methods
//
/**
* Builds the internal DFA transition table from the given syntax tree.
*
* @param syntaxTree The syntax tree.
*
* @exception RuntimeException Thrown if DFA cannot be built.
*/
private void buildDFA(CMNode syntaxTree) {
//
// The first step we need to take is to rewrite the content model
// using our CMNode objects, and in the process get rid of any
// repetition short cuts, converting them into '*' style repetitions
// or getting rid of repetitions altogether.
//
// The conversions done are:
//
// x+ -> (x|x*)
// x? -> (x|epsilon)
//
// This is a relatively complex scenario. What is happening is that
// we create a top level binary node of which the special EOC value
// is set as the right side node. The the left side is set to the
// rewritten syntax tree. The source is the original content model
// info from the decl pool. The rewrite is done by buildSyntaxTree()
// which recurses the decl pool's content of the element and builds
// a new tree in the process.
//
// Note that, during this operation, we set each non-epsilon leaf
// node's DFA state position and count the number of such leafs, which
// is left in the fLeafCount member.
//
// The nodeTmp object is passed in just as a temp node to use during
// the recursion. Otherwise, we'd have to create a new node on every
// level of recursion, which would be piggy in Java (as is everything
// for that matter.)
//
/* MODIFIED (Jan, 2001)
*
* Use following rules.
* nullable(x+) := nullable(x), first(x+) := first(x), last(x+) := last(x)
* nullable(x?) := true, first(x?) := first(x), last(x?) := last(x)
*
* The same computation of follow as x* is applied to x+
*
* The modification drastically reduces computation time of
* "(a, (b, a+, (c, (b, a+)+, a+, (d, (c, (b, a+)+, a+)+, (b, a+)+, a+)+)+)+)+"
*/
XSCMLeaf nodeEOC = new XSCMLeaf(fEOCParticle);
fHeadNode = new XSCMBinOp(
XSParticleDecl.PARTICLE_SEQUENCE
, syntaxTree
, nodeEOC
);
//
// And handle specially the EOC node, which also must be numbered
// and counted as a non-epsilon leaf node. It could not be handled
// in the above tree build because it was created before all that
// started. We save the EOC position since its used during the DFA
// building loop.
//
fEOCPos = fLeafCount;
nodeEOC.setPosition(fLeafCount++);
//
// Ok, so now we have to iterate the new tree and do a little more
// work now that we know the leaf count. One thing we need to do is
// to calculate the first and last position sets of each node. This
// is cached away in each of the nodes.
//
// Along the way we also set the leaf count in each node as the
// maximum state count. They must know this in order to create their
// first/last pos sets.
//
// We also need to build an array of references to the non-epsilon
// leaf nodes. Since we iterate it in the same way as before, this
// will put them in the array according to their position values.
//
fLeafList = new XSCMLeaf[fLeafCount];
fLeafListType = new int[fLeafCount];
postTreeBuildInit(fHeadNode, 0);
//
// And, moving onward... We now need to build the follow position
// sets for all the nodes. So we allocate an array of state sets,
// one for each leaf node (i.e. each DFA position.)
//
fFollowList = new CMStateSet[fLeafCount];
for (int index = 0; index < fLeafCount; index++)
fFollowList[index] = new CMStateSet(fLeafCount);
calcFollowList(fHeadNode);
//
// And finally the big push... Now we build the DFA using all the
// states and the tree we've built up. First we set up the various
// data structures we are going to use while we do this.
//
// First of all we need an array of unique element names in our
// content model. For each transition table entry, we need a set of
// contiguous indices to represent the transitions for a particular
// input element. So we need to a zero based range of indexes that
// map to element types. This element map provides that mapping.
//
fElemMap = new XSParticleDecl[fLeafCount];
fElemMapType = new int[fLeafCount];
fElemMapSize = 0;
for (int outIndex = 0; outIndex < fLeafCount; outIndex++) {
// optimization from Henry Zongaro:
//fElemMap[outIndex] = new Object ();
fElemMap[outIndex] = null;
int inIndex = 0;
final XSParticleDecl decl = fLeafList[outIndex].getLeaf();
for (; inIndex < fElemMapSize; inIndex++) {
if (decl == fElemMap[inIndex])
break;
}
// If it was not in the list, then add it, if not the EOC node
if (inIndex == fElemMapSize) {
fElemMap[fElemMapSize] = decl;
fElemMapType[fElemMapSize] = fLeafListType[outIndex];
fElemMapSize++;
}
}
// the last entry in the element map must be the EOC element.
// remove it from the map.
if (DEBUG) {
if (fElemMap[fElemMapSize-1] != fEOCParticle)
System.err.println("interal error in DFA: last element is not EOC.");
}
fElemMapSize--;
/***
* Optimization(Jan, 2001); We sort fLeafList according to
* elemIndex which is *uniquely* associated to each leaf.
* We are *assuming* that each element appears in at least one leaf.
**/
int[] fLeafSorter = new int[fLeafCount + fElemMapSize];
int fSortCount = 0;
for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
final XSParticleDecl decl = fElemMap[elemIndex];
for (int leafIndex = 0; leafIndex < fLeafCount; leafIndex++) {
if (decl == fLeafList[leafIndex].getLeaf())
fLeafSorter[fSortCount++] = leafIndex;
}
fLeafSorter[fSortCount++] = -1;
}
/* Optimization(Jan, 2001) */
//
// Next lets create some arrays, some that hold transient
// information during the DFA build and some that are permament.
// These are kind of sticky since we cannot know how big they will
// get, but we don't want to use any Java collections because of
// performance.
//
// Basically they will probably be about fLeafCount*2 on average,
// but can be as large as 2^(fLeafCount*2), worst case. So we start
// with fLeafCount*4 as a middle ground. This will be very unlikely
// to ever have to expand, though it if does, the overhead will be
// somewhat ugly.
//
int curArraySize = fLeafCount * 4;
CMStateSet[] statesToDo = new CMStateSet[curArraySize];
fFinalStateFlags = new boolean[curArraySize];
fTransTable = new int[curArraySize][];
//
// Ok we start with the initial set as the first pos set of the
// head node (which is the seq node that holds the content model
// and the EOC node.)
//
CMStateSet setT = fHeadNode.firstPos();
//
// Init our two state flags. Basically the unmarked state counter
// is always chasing the current state counter. When it catches up,
// that means we made a pass through that did not add any new states
// to the lists, at which time we are done. We could have used a
// expanding array of flags which we used to mark off states as we
// complete them, but this is easier though less readable maybe.
//
int unmarkedState = 0;
int curState = 0;
//
// Init the first transition table entry, and put the initial state
// into the states to do list, then bump the current state.
//
fTransTable[curState] = makeDefStateList();
statesToDo[curState] = setT;
curState++;
/* Optimization(Jan, 2001); This is faster for
* a large content model such as, "(t001+|t002+|.... |t500+)".
*/
java.util.Hashtable stateTable = new java.util.Hashtable();
/* Optimization(Jan, 2001) */
//
// Ok, almost done with the algorithm... We now enter the
// loop where we go until the states done counter catches up with
// the states to do counter.
//
while (unmarkedState < curState) {
//
// Get the first unmarked state out of the list of states to do.
// And get the associated transition table entry.
//
setT = statesToDo[unmarkedState];
int[] transEntry = fTransTable[unmarkedState];
// Mark this one final if it contains the EOC state
fFinalStateFlags[unmarkedState] = setT.getBit(fEOCPos);
// Bump up the unmarked state count, marking this state done
unmarkedState++;
// Loop through each possible input symbol in the element map
CMStateSet newSet = null;
/* Optimization(Jan, 2001) */
int sorterIndex = 0;
/* Optimization(Jan, 2001) */
for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
//
// Build up a set of states which is the union of all of
// the follow sets of DFA positions that are in the current
// state. If we gave away the new set last time through then
// create a new one. Otherwise, zero out the existing one.
//
if (newSet == null)
newSet = new CMStateSet(fLeafCount);
else
newSet.zeroBits();
/* Optimization(Jan, 2001) */
int leafIndex = fLeafSorter[sorterIndex++];
while (leafIndex != -1) {
// If this leaf index (DFA position) is in the current set...
if (setT.getBit(leafIndex)) {
//
// If this leaf is the current input symbol, then we
// want to add its follow list to the set of states to
// transition to from the current state.
//
newSet.union(fFollowList[leafIndex]);
}
leafIndex = fLeafSorter[sorterIndex++];
}
/* Optimization(Jan, 2001) */
//
// If this new set is not empty, then see if its in the list
// of states to do. If not, then add it.
//
if (!newSet.isEmpty()) {
//
// Search the 'states to do' list to see if this new
// state set is already in there.
//
/* Optimization(Jan, 2001) */
Integer stateObj = (Integer)stateTable.get(newSet);
int stateIndex = (stateObj == null ? curState : stateObj.intValue());
/* Optimization(Jan, 2001) */
// If we did not find it, then add it
if (stateIndex == curState) {
//
// Put this new state into the states to do and init
// a new entry at the same index in the transition
// table.
//
statesToDo[curState] = newSet;
fTransTable[curState] = makeDefStateList();
/* Optimization(Jan, 2001) */
stateTable.put(newSet, new Integer(curState));
/* Optimization(Jan, 2001) */
// We now have a new state to do so bump the count
curState++;
//
// Null out the new set to indicate we adopted it.
// This will cause the creation of a new set on the
// next time around the loop.
//
newSet = null;
}
//
// Now set this state in the transition table's entry
// for this element (using its index), with the DFA
// state we will move to from the current state when we
// see this input element.
//
transEntry[elemIndex] = stateIndex;
// Expand the arrays if we're full
if (curState == curArraySize) {
//
// Yikes, we overflowed the initial array size, so
// we've got to expand all of these arrays. So adjust
// up the size by 50% and allocate new arrays.
//
final int newSize = (int)(curArraySize * 1.5);
CMStateSet[] newToDo = new CMStateSet[newSize];
boolean[] newFinalFlags = new boolean[newSize];
int[][] newTransTable = new int[newSize][];
// Copy over all of the existing content
for (int expIndex = 0; expIndex < curArraySize; expIndex++) {
newToDo[expIndex] = statesToDo[expIndex];
newFinalFlags[expIndex] = fFinalStateFlags[expIndex];
newTransTable[expIndex] = fTransTable[expIndex];
}
// Store the new array size
curArraySize = newSize;
statesToDo = newToDo;
fFinalStateFlags = newFinalFlags;
fTransTable = newTransTable;
}
}
}
}
// Check to see if we can set the fEmptyContentIsValid flag.
fEmptyContentIsValid = ((XSCMBinOp)fHeadNode).getLeft().isNullable();
//
// And now we can say bye bye to the temp representation since we've
// built the DFA.
//
if (DEBUG_VALIDATE_CONTENT)
dumpTree(fHeadNode, 0);
fHeadNode = null;
fLeafList = null;
fFollowList = null;
}
/**
* Calculates the follow list of the current node.
*
* @param nodeCur The curent node.
*
* @exception RuntimeException Thrown if follow list cannot be calculated.
*/
private void calcFollowList(CMNode nodeCur) {
// Recurse as required
if (nodeCur.type() == XSParticleDecl.PARTICLE_CHOICE) {
// Recurse only
calcFollowList(((XSCMBinOp)nodeCur).getLeft());
calcFollowList(((XSCMBinOp)nodeCur).getRight());
}
else if (nodeCur.type() == XSParticleDecl.PARTICLE_SEQUENCE) {
// Recurse first
calcFollowList(((XSCMBinOp)nodeCur).getLeft());
calcFollowList(((XSCMBinOp)nodeCur).getRight());
//
// Now handle our level. We use our left child's last pos
// set and our right child's first pos set, so go ahead and
// get them ahead of time.
//
final CMStateSet last = ((XSCMBinOp)nodeCur).getLeft().lastPos();
final CMStateSet first = ((XSCMBinOp)nodeCur).getRight().firstPos();
//
// Now, for every position which is in our left child's last set
// add all of the states in our right child's first set to the
// follow set for that position.
//
for (int index = 0; index < fLeafCount; index++) {
if (last.getBit(index))
fFollowList[index].union(first);
}
}
else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_MORE
|| nodeCur.type() == XSParticleDecl.PARTICLE_ONE_OR_MORE) {
// Recurse first
calcFollowList(((XSCMUniOp)nodeCur).getChild());
//
// Now handle our level. We use our own first and last position
// sets, so get them up front.
//
final CMStateSet first = nodeCur.firstPos();
final CMStateSet last = nodeCur.lastPos();
//
// For every position which is in our last position set, add all
// of our first position states to the follow set for that
// position.
//
for (int index = 0; index < fLeafCount; index++) {
if (last.getBit(index))
fFollowList[index].union(first);
}
}
else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_ONE) {
// Recurse only
calcFollowList(((XSCMUniOp)nodeCur).getChild());
}
}
/**
* Dumps the tree of the current node to standard output.
*
* @param nodeCur The current node.
* @param level The maximum levels to output.
*
* @exception RuntimeException Thrown on error.
*/
private void dumpTree(CMNode nodeCur, int level) {
for (int index = 0; index < level; index++)
System.out.print(" ");
int type = nodeCur.type();
switch(type ) {
case XSParticleDecl.PARTICLE_CHOICE:
case XSParticleDecl.PARTICLE_SEQUENCE: {
if (type == XSParticleDecl.PARTICLE_CHOICE)
System.out.print("Choice Node ");
else
System.out.print("Seq Node ");
if (nodeCur.isNullable())
System.out.print("Nullable ");
System.out.print("firstPos=");
System.out.print(nodeCur.firstPos().toString());
System.out.print(" lastPos=");
System.out.println(nodeCur.lastPos().toString());
dumpTree(((XSCMBinOp)nodeCur).getLeft(), level+1);
dumpTree(((XSCMBinOp)nodeCur).getRight(), level+1);
break;
}
case XSParticleDecl.PARTICLE_ZERO_OR_MORE:
case XSParticleDecl.PARTICLE_ONE_OR_MORE:
case XSParticleDecl.PARTICLE_ZERO_OR_ONE: {
System.out.print("Rep Node ");
if (nodeCur.isNullable())
System.out.print("Nullable ");
System.out.print("firstPos=");
System.out.print(nodeCur.firstPos().toString());
System.out.print(" lastPos=");
System.out.println(nodeCur.lastPos().toString());
dumpTree(((XSCMUniOp)nodeCur).getChild(), level+1);
break;
}
case XSParticleDecl.PARTICLE_ELEMENT: {
System.out.print
(
"Leaf: (pos="
+ ((XSCMLeaf)nodeCur).getPosition()
+ "), "
+ ((XSCMLeaf)nodeCur).getLeaf().fValue
+ "(elemIndex="
+ ((XSCMLeaf)nodeCur).getLeaf().fValue
+ ") "
);
if (nodeCur.isNullable())
System.out.print(" Nullable ");
System.out.print("firstPos=");
System.out.print(nodeCur.firstPos().toString());
System.out.print(" lastPos=");
System.out.println(nodeCur.lastPos().toString());
break;
}
case XSParticleDecl.PARTICLE_WILDCARD:
System.out.print("Any Node: ");
System.out.print("firstPos=");
System.out.print(nodeCur.firstPos().toString());
System.out.print(" lastPos=");
System.out.println(nodeCur.lastPos().toString());
break;
default: {
throw new RuntimeException("ImplementationMessages.VAL_NIICM");
}
}
}
/**
* -1 is used to represent bad transitions in the transition table
* entry for each state. So each entry is initialized to an all -1
* array. This method creates a new entry and initializes it.
*/
private int[] makeDefStateList()
{
int[] retArray = new int[fElemMapSize];
for (int index = 0; index < fElemMapSize; index++)
retArray[index] = -1;
return retArray;
}
/** Post tree build initialization. */
private int postTreeBuildInit(CMNode nodeCur, int curIndex) throws RuntimeException {
// Set the maximum states on this node
nodeCur.setMaxStates(fLeafCount);
// Recurse as required
if (nodeCur.type() == XSParticleDecl.PARTICLE_WILDCARD) {
fLeafList[curIndex] = (XSCMLeaf)nodeCur;
fLeafListType[curIndex] = XSParticleDecl.PARTICLE_WILDCARD;
curIndex++;
}
else if ((nodeCur.type() == XSParticleDecl.PARTICLE_CHOICE)
|| (nodeCur.type() == XSParticleDecl.PARTICLE_SEQUENCE))
{
curIndex = postTreeBuildInit(((XSCMBinOp)nodeCur).getLeft(), curIndex);
curIndex = postTreeBuildInit(((XSCMBinOp)nodeCur).getRight(), curIndex);
}
else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_MORE
|| nodeCur.type() == XSParticleDecl.PARTICLE_ONE_OR_MORE
|| nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_ONE)
{
curIndex = postTreeBuildInit(((XSCMUniOp)nodeCur).getChild(), curIndex);
}
else if (nodeCur.type() == XSParticleDecl.PARTICLE_ELEMENT) {
//
// Put this node in the leaf list at the current index if its
// a non-epsilon leaf.
//
fLeafList[curIndex] = (XSCMLeaf)nodeCur;
fLeafListType[curIndex] = XSParticleDecl.PARTICLE_ELEMENT;
curIndex++;
}
else
{
throw new RuntimeException("ImplementationMessages.VAL_NIICM");
}
return curIndex;
}
/**
* check whether this content violates UPA constraint.
*
* @param errors to hold the UPA errors
* @return true if this content model contains other or list wildcard
*/
public boolean checkUniqueParticleAttribution(SubstitutionGroupHandler subGroupHandler) throws XMLSchemaException {
// Unique Particle Attribution
// store the conflict results between any two elements in fElemMap
// 0: not compared; -1: no conflict; 1: conflict
// initialize the conflict table (all 0 initially)
byte conflictTable[][] = new byte[fElemMapSize][fElemMapSize];
// for each state, check whether it has overlap transitions
for (int i = 0; i < fTransTable.length && fTransTable[i] != null; i++) {
for (int j = 0; j < fElemMapSize; j++) {
for (int k = j+1; k < fElemMapSize; k++) {
if (fTransTable[i][j] != -1 &&
fTransTable[i][k] != -1) {
if (conflictTable[j][k] == 0) {
conflictTable[j][k] = XSConstraints.overlapUPA
(fElemMap[j].fValue,fElemMap[k].fValue,
subGroupHandler) ?
(byte)1 : (byte)-1;
}
}
}
}
}
// report all errors
for (int i = 0; i < fElemMapSize; i++) {
for (int j = 0; j < fElemMapSize; j++) {
if (conflictTable[i][j] == 1) {
//errors.newError("cos-nonambig", new Object[]{fElemMap[i].toString(),
// fElemMap[j].toString()});
// REVISIT: do we want to report all errors? or just one?
throw new XMLSchemaException("cos-nonambig", new Object[]{fElemMap[i].toString(),
fElemMap[j].toString()});
}
}
}
// if there is a other or list wildcard, we need to check this CM
// again, if this grammar is cached.
for (int i = 0; i < fElemMapSize; i++) {
if (fElemMapType[i] == XSParticleDecl.PARTICLE_WILDCARD) {
XSWildcardDecl wildcard = (XSWildcardDecl)fElemMap[i].fValue;
if (wildcard.fType == XSWildcardDecl.WILDCARD_LIST ||
wildcard.fType == XSWildcardDecl.WILDCARD_OTHER) {
return true;
}
}
}
return false;
}
} // class DFAContentModel