blob: 736ece265bdef9945fd0aadada705118c885c519 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Unit tests for graph partitioning."""
# pylint: disable=not-callable
import os
import sys
import numpy as np
import tvm
from tvm.relay.backend import te_compiler
from tvm.relay.backend.runtime import Runtime
import tvm.relay.testing
import tvm.relay.op as reg
from tvm import relay
from tvm import runtime as tvm_runtime
from tvm.relay import transform
from tvm.relay.testing import byoc
from tvm.contrib import utils
from tvm.relay.expr_functor import ExprMutator
from tvm.relay.op.annotation import compiler_begin, compiler_end
from tvm.relay.op.contrib.register import get_pattern_table
from tvm.relay.build_module import bind_params_by_name
# Leverage the pass manager to write a simple white list based annotator
@transform.function_pass(opt_level=0)
class WhiteListAnnotator:
def __init__(self, op_list, compiler):
assert isinstance(op_list, (list, tuple, set))
self.op_list = op_list
self.compiler = compiler
def transform_function(self, func, mod, dev):
annotator = self
class Annotator(tvm.relay.ExprMutator):
def visit_call(self, call):
op_name = call.op.name
if op_name in annotator.op_list:
new_args = []
for arg in call.args:
ann = compiler_begin(super().visit(arg), annotator.compiler)
new_args.append(ann)
new_call = relay.Call(call.op, new_args, call.attrs, call.type_args)
return compiler_end(new_call, annotator.compiler)
else:
return super().visit_call(call)
return Annotator().visit(func)
class WholeGraphAnnotator(ExprMutator):
"""
An annotator that creates a compiler for an entire graph.
"""
def __init__(self, compiler):
super(WholeGraphAnnotator, self).__init__()
self.compiler = compiler
self.last_call = True
def visit_call(self, call):
curr_last = self.last_call
self.last_call = False
params = []
for arg in call.args:
param = super().visit(arg)
if isinstance(param, relay.expr.Var):
param = compiler_begin(param, self.compiler)
params.append(param)
new_call = relay.Call(call.op, params, call.attrs)
if curr_last:
new_call = compiler_end(new_call, self.compiler)
return new_call
class MobileNetAnnotator(ExprMutator):
"""
Annotate mobilenet until global_avg_pool.
"""
def __init__(self, compiler):
super(MobileNetAnnotator, self).__init__()
self.compiler = compiler
self.compiler_open = False
def visit_call(self, call):
if call.op.name == "nn.global_avg_pool2d":
self.compiler_open = True
compiler_open = self.compiler_open
params = []
for arg in call.args:
param = super().visit(arg)
if call.op.name == "nn.global_avg_pool2d":
param = compiler_end(param, self.compiler)
if compiler_open and isinstance(param, relay.expr.Var):
param = compiler_begin(param, self.compiler)
params.append(param)
new_call = relay.Call(call.op, params, call.attrs)
return new_call
def check_result(
mod,
map_inputs,
out_shape,
result,
tol=1e-5,
target="llvm",
device=tvm.cpu(),
params=None,
runtime=Runtime("cpp"),
):
if sys.platform == "win32":
print("Skip test on Windows for now")
return
def update_lib(lib):
test_dir = os.path.dirname(os.path.realpath(os.path.expanduser(__file__)))
source_dir = os.path.join(test_dir, "..", "..", "..")
contrib_path = os.path.join(source_dir, "src", "runtime", "contrib")
kwargs = {}
kwargs["options"] = ["-O2", "-std=c++14", "-I" + contrib_path]
tmp_path = utils.tempdir()
lib_name = "lib.so"
lib_path = tmp_path.relpath(lib_name)
lib.export_library(lib_path, fcompile=False, **kwargs)
lib = tvm_runtime.load_module(lib_path)
return lib
def check_vm_result():
te_compiler.get().clear()
with tvm.transform.PassContext(opt_level=3):
exe = relay.vm.compile(mod, target=target, params=params)
code, lib = exe.save()
lib = update_lib(lib)
exe = tvm_runtime.vm.Executable.load_exec(code, lib)
vm = tvm_runtime.vm.VirtualMachine(exe, device)
outs = vm.run(**map_inputs)
outs = outs if isinstance(outs, tvm_runtime.container.ADT) else [outs]
results = result if isinstance(result, list) else [result]
for out, ref in zip(outs, results):
tvm.testing.assert_allclose(out.numpy(), ref, rtol=tol, atol=tol)
def check_graph_executor_result():
te_compiler.get().clear()
with tvm.transform.PassContext(opt_level=3):
json, lib, param = relay.build(mod, target=target, params=params, runtime=runtime)
lib = update_lib(lib)
rt_mod = tvm.contrib.graph_executor.create(json, lib, device)
for name, data in map_inputs.items():
rt_mod.set_input(name, data)
rt_mod.set_input(**param)
rt_mod.run()
out_shapes = out_shape if isinstance(out_shape, list) else [out_shape]
results = result if isinstance(result, list) else [result]
for idx, shape in enumerate(out_shapes):
out = tvm.nd.empty(shape, device=device)
out = rt_mod.get_output(idx, out)
tvm.testing.assert_allclose(out.numpy(), results[idx], rtol=tol, atol=tol)
check_vm_result()
check_graph_executor_result()
def test_multi_node_compiler():
x = relay.var("x", shape=(10, 10))
w0 = relay.var("w0", shape=(10, 10))
w1 = relay.var("w1", shape=(10, 10))
w2 = relay.var("w2", shape=(10, 10))
w3 = relay.var("w3", shape=(10, 10))
w4 = relay.var("w4", shape=(10, 10))
w5 = relay.var("w5", shape=(10, 10))
w6 = relay.var("w6", shape=(10, 10))
w7 = relay.var("w7", shape=(10, 10))
# C compiler
# FIXME: We generate two compilers for this case but they should be merged to one
# due to the common input (x).
z0 = relay.add(x, w0)
p0 = relay.subtract(z0, w1)
q0 = relay.multiply(p0, w2)
z1 = relay.add(x, w3)
p1 = relay.subtract(z1, w4)
q1 = relay.multiply(p1, w5)
# Other parts on TVM
z2 = relay.add(x, w6)
q2 = relay.subtract(z2, w7)
r = relay.concatenate((q0, q1, q2), axis=0)
f = relay.Function([x, w0, w1, w2, w3, w4, w5, w6, w7], r)
mod = tvm.IRModule()
ann = byoc.CcompilerAnnotator()
mod["main"] = ann.visit(f)
mod = transform.PartitionGraph()(mod)
mod = transform.InferType()(mod)
x_data = np.random.rand(10, 10).astype("float32")
w_data = []
for _ in range(8):
w_data.append(np.random.rand(10, 10).astype("float32"))
map_inputs = {"w{}".format(i): w_data[i] for i in range(8)}
map_inputs["x"] = x_data
targets = [("llvm", Runtime("cpp")), ("c", Runtime("crt", {"system-lib": True}))]
for tgt, rt in targets:
check_result(
mod,
map_inputs,
(30, 10),
np.concatenate(
(
((x_data + w_data[0]) - w_data[1]) * w_data[2],
((x_data + w_data[3]) - w_data[4]) * w_data[5],
x_data + w_data[6] - w_data[7],
),
axis=0,
),
target=tgt,
runtime=rt,
)
def test_extern_ccompiler_single_op():
@transform.function_pass(opt_level=0)
class MyAnnotator:
def transform_function(self, func, mod, dev):
class Annotator(tvm.relay.ExprMutator):
def visit_call(self, call):
new_args = []
for arg in call.args:
ann = compiler_begin(self.visit(arg), "ccompiler")
new_args.append(ann)
new_call = relay.Call(call.op, new_args)
return compiler_end(new_call, "ccompiler")
return Annotator().visit(func)
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
z = x + y
f = relay.Function([x, y], z)
x_data = np.random.rand(8, 8).astype("float32")
y_data = np.random.rand(8, 8).astype("float32")
mod = tvm.IRModule()
mod["main"] = f
mod = MyAnnotator()(mod)
mod = transform.PartitionGraph()(mod)
check_result(mod, {"x": x_data, "y": y_data}, (8, 8), x_data + y_data)
def set_func_attr(func, compile_name, symbol_name):
func = func.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
func = func.with_attr("Inline", tvm.tir.IntImm("int32", 1))
func = func.with_attr("Compiler", compile_name)
func = func.with_attr("global_symbol", symbol_name)
return func
def test_extern_ccompiler_default_ops():
def expected():
mod = tvm.IRModule()
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
x0 = relay.var("x0", shape=(8, 8))
y0 = relay.var("y0", shape=(8, 8))
add = x0 + y0
# Function that uses C compiler
func = relay.Function([x0, y0], add)
func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0")
glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0")
mod[glb_0] = func
add_call = relay.Call(glb_0, [x, y])
# Function that uses default compiler. Ops are fused in this function.
p0 = relay.var("p0", shape=(8, 8))
log = relay.log(p0)
exp = relay.exp(p0)
concat = relay.concatenate([log, exp], axis=0)
fused_func = relay.Function([p0], concat)
fused_func = fused_func.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
fused_call = relay.Call(fused_func, [add_call])
main = relay.Function([x, y], fused_call)
mod["main"] = main
mod = transform.InferType()(mod)
return mod
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
add = x + y
log = relay.log(add)
exp = relay.exp(add)
concat = relay.concatenate([log, exp], axis=0)
f = relay.Function([x, y], concat)
mod = tvm.IRModule()
mod["main"] = f
mod = WhiteListAnnotator(["add", "subtract", "multiply"], "ccompiler")(mod)
mod = transform.PartitionGraph()(mod)
fused_mod = transform.FuseOps(2)(mod)
expected_mod = expected()
assert tvm.ir.structural_equal(fused_mod, expected_mod, map_free_vars=True)
x_data = np.random.rand(8, 8).astype("float32")
y_data = np.random.rand(8, 8).astype("float32")
np_add = x_data + y_data
res = np.concatenate([np.log(np_add), np.exp(np_add)])
check_result(mod, {"x": x_data, "y": y_data}, (16, 8), res)
def test_extern_compiler_sanitized_ops():
def expected():
mod = tvm.IRModule()
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
x0 = relay.var("x0", shape=(8, 8))
y0 = relay.var("y0", shape=(8, 8))
add = x0 + y0
# Function that uses C compiler
func = relay.Function([x0, y0], add)
func = set_func_attr(func, "unsanitary-name++", "tvmgen_default_unsanitary_name___main_0")
glb_0 = relay.GlobalVar("tvmgen_default_unsanitary_name___main_0")
mod[glb_0] = func
add_call = relay.Call(glb_0, [x, y])
# Function that uses default compiler. Ops are fused in this function.
p0 = relay.var("p0", shape=(8, 8))
log = relay.log(p0)
exp = relay.exp(p0)
concat = relay.concatenate([log, exp], axis=0)
fused_func = relay.Function([p0], concat)
fused_func = fused_func.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
fused_call = relay.Call(fused_func, [add_call])
main = relay.Function([x, y], fused_call)
mod["main"] = main
mod = transform.InferType()(mod)
return mod
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
add = x + y
log = relay.log(add)
exp = relay.exp(add)
concat = relay.concatenate([log, exp], axis=0)
f = relay.Function([x, y], concat)
mod = tvm.IRModule()
mod["main"] = f
mod = WhiteListAnnotator(["add", "subtract", "multiply"], "unsanitary-name++")(mod)
mod = transform.PartitionGraph()(mod)
fused_mod = transform.FuseOps(2)(mod)
expected_mod = expected()
assert tvm.ir.structural_equal(fused_mod, expected_mod, map_free_vars=True)
def test_extern_ccompiler_multiple_functions():
def expected():
mod = tvm.IRModule()
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
x0 = relay.var("x0", shape=(8, 8))
y0 = relay.var("y0", shape=(8, 8))
add = x0 + y0
# Function that uses C compiler
func = relay.Function([x0, y0], add)
func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0")
glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0")
mod[glb_0] = func
add_call = relay.Call(glb_0, [x, y])
# Function that uses default compiler. Ops are fused in this function.
p0 = relay.var("p0", shape=(8, 8))
log = relay.log(p0)
exp = relay.exp(p0)
concat = relay.concatenate([log, exp], axis=0)
fused_func = relay.Function([p0], concat)
fused_func = fused_func.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
fused_call = relay.Call(fused_func, [add_call])
main = relay.Function([x, y], fused_call)
mod["main"] = main
# define the second one
a = relay.var("a", shape=(16, 16))
b = relay.var("b", shape=(16, 16))
a0 = relay.var("a0", shape=(16, 16))
b0 = relay.var("b0", shape=(16, 16))
add = a0 + b0
# Function that uses C compiler
func = relay.Function([a0, b0], add)
func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_subfunction_0")
glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_subfunction_0")
mod[glb_0] = func
add_call = relay.Call(glb_0, [a, b])
# Function that uses default compiler. Ops are fused in this function.
p0 = relay.var("p0", shape=(16, 16))
log = relay.log(p0)
exp = relay.exp(p0)
concat = relay.concatenate([log, exp], axis=0)
fused_func = relay.Function([p0], concat)
fused_func = fused_func.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
fused_call = relay.Call(fused_func, [add_call])
sunfunction = relay.Function([a, b], fused_call)
mod["subfunction"] = sunfunction
mod = transform.InferType()(mod)
return mod
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
add = x + y
log = relay.log(add)
exp = relay.exp(add)
concat = relay.concatenate([log, exp], axis=0)
f = relay.Function([x, y], concat)
mod = tvm.IRModule()
mod["main"] = f
# define second function
a = relay.var("a", shape=(16, 16))
b = relay.var("b", shape=(16, 16))
add = a + b
log = relay.log(add)
exp = relay.exp(add)
concat = relay.concatenate([log, exp], axis=0)
f2 = relay.Function([a, b], concat)
mod["subfunction"] = f2
mod = WhiteListAnnotator(["add", "subtract", "multiply"], "ccompiler")(mod)
mod = transform.PartitionGraph()(mod)
fused_mod = transform.FuseOps(2)(mod)
expected_mod = expected()
assert tvm.ir.structural_equal(fused_mod, expected_mod, map_free_vars=True)
x_data = np.random.rand(8, 8).astype("float32")
y_data = np.random.rand(8, 8).astype("float32")
np_add = x_data + y_data
res = np.concatenate([np.log(np_add), np.exp(np_add)])
check_result(mod, {"x": x_data, "y": y_data}, (16, 8), res)
def test_extern_ccompiler():
x = relay.var("x", shape=(2, 2))
y = relay.var("y", shape=(2, 2))
z = x + x
p = y * y
f = relay.Function([x, y], p - z)
x_data = np.random.rand(2, 2).astype("float32")
y_data = np.random.rand(2, 2).astype("float32")
mod = tvm.IRModule()
mod["main"] = f
mod = WhiteListAnnotator(["add", "subtract", "multiply"], "ccompiler")(mod)
mod = transform.PartitionGraph()(mod)
check_result(mod, {"x": x_data, "y": y_data}, (2, 2), (y_data * y_data) - (x_data + x_data))
def test_extern_dnnl():
if not tvm.get_global_func("relay.ext.dnnl", True):
print("skip because DNNL codegen is not available")
return
dtype = "float32"
ishape = (1, 32, 14, 14)
w1shape = (32, 1, 3, 3)
def expected():
data0 = relay.var("data", shape=(ishape), dtype=dtype)
input0 = relay.var("input", shape=(w1shape), dtype=dtype)
depthwise_conv2d_1 = relay.nn.conv2d(
data0, input0, kernel_size=(3, 3), padding=(1, 1), groups=32
)
depthwise_conv2d_2 = relay.nn.conv2d(
depthwise_conv2d_1, input0, kernel_size=(3, 3), padding=(1, 1), groups=32
)
out = relay.add(depthwise_conv2d_1, depthwise_conv2d_2)
func = relay.Function([data0, input0], out)
func = set_func_attr(func, "dnnl", "tvmgen_default_dnnl_main_0")
glb_var = relay.GlobalVar("tvmgen_default_dnnl_main_0")
mod = tvm.IRModule()
mod[glb_var] = func
mod = transform.InferType()(mod)
data = relay.var("data", shape=(ishape), dtype=dtype)
weight = relay.var("input", shape=(w1shape), dtype=dtype)
main_f = relay.Function([data, weight], glb_var(data, weight))
mod["main"] = main_f
mod = transform.InferType()(mod)
return mod
def get_func():
data = relay.var("data", shape=(ishape), dtype=dtype)
weight1 = relay.var("weight1", shape=(w1shape), dtype=dtype)
depthwise_conv2d_1 = relay.nn.conv2d(
data, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32
)
depthwise_conv2d_2 = relay.nn.conv2d(
depthwise_conv2d_1, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32
)
out = relay.add(depthwise_conv2d_1, depthwise_conv2d_2)
return relay.Function([data, weight1], out)
mod = tvm.IRModule()
mod["main"] = WholeGraphAnnotator("dnnl").visit(get_func())
mod = transform.PartitionGraph()(mod)
mod = transform.InferType()(mod)
assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True)
ref_mod = tvm.IRModule()
ref_mod["main"] = get_func()
i_data = np.random.uniform(0, 1, ishape).astype(dtype)
w1_data = np.random.uniform(0, 1, w1shape).astype(dtype)
ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu()).evaluate()(
i_data, w1_data
)
check_result(
mod, {"data": i_data, "weight1": w1_data}, (1, 32, 14, 14), ref_res.numpy(), tol=1e-5
)
def test_extern_dnnl_mobilenet():
if not tvm.get_global_func("relay.ext.dnnl", True):
print("skip because DNNL codegen is not available")
return
dtype = "float32"
ishape = (1, 3, 224, 224)
ref_mod, params = relay.testing.mobilenet.get_workload(batch_size=1, dtype="float32")
mod = transform.AnnotateTarget(["dnnl"])(ref_mod)
mod = transform.MergeCompilerRegions()(mod)
mod = transform.PartitionGraph()(mod)
i_data = np.random.uniform(0, 1, ishape).astype(dtype)
ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu(0)).evaluate()(
i_data, **params
)
te_compiler.get().clear()
check_result(mod, {"data": i_data}, (1, 1000), ref_res.numpy(), tol=1e-5, params=params)
def test_function_lifting():
def partition():
data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32"))
bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32"))
bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32"))
bn_mmean = relay.var("bn_mean", relay.TensorType((16,), "float32"))
bn_mvar = relay.var("bn_var", relay.TensorType((16,), "float32"))
conv = relay.nn.conv2d(
data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1)
)
bn_output = relay.nn.batch_norm(conv, bn_gamma, bn_beta, bn_mmean, bn_mvar)
func = relay.Function(
[data, weight, bn_gamma, bn_beta, bn_mmean, bn_mvar], bn_output.astuple()
)
mod = tvm.IRModule()
mod["main"] = func
mod = relay.transform.InferType()(mod)
op_list = ["nn.batch_norm", "nn.conv2d"]
mod = WhiteListAnnotator(op_list, "test_compiler")(mod)
opt_pass = tvm.transform.Sequential(
[
transform.InferType(),
transform.PartitionGraph(),
transform.SimplifyInference(),
transform.FoldConstant(),
transform.AlterOpLayout(),
]
)
with tvm.transform.PassContext(opt_level=3):
mod = opt_pass(mod)
return mod
def expected():
# function for batch_norm
data0 = relay.var("data0", relay.TensorType((1, 16, 224, 224), "float32"))
mod = tvm.IRModule()
bn_gamma = relay.var("bn_gamma1", relay.TensorType((16,), "float32"))
bn_beta = relay.var("bn_beta1", relay.TensorType((16,), "float32"))
bn_mmean = relay.var("bn_mean1", relay.TensorType((16,), "float32"))
bn_mvar = relay.var("bn_var1", relay.TensorType((16,), "float32"))
bn = relay.nn.batch_norm(data0, bn_gamma, bn_beta, bn_mmean, bn_mvar)
func0 = relay.Function([data0, bn_gamma, bn_beta, bn_mmean, bn_mvar], bn.astuple())
func0 = set_func_attr(func0, "test_compiler", "tvmgen_default_test_compiler_main_2")
gv0 = relay.GlobalVar("tvmgen_default_test_compiler_main_2")
mod[gv0] = func0
mod = transform.InferType()(mod)
# function for conv2d
data1 = relay.var("data1", relay.TensorType((1, 3, 224, 224), "float32"))
weight1 = relay.var("weight1", relay.TensorType((16, 3, 3, 3), "float32"))
conv = relay.nn.conv2d(
data=data1, weight=weight1, kernel_size=(3, 3), channels=16, padding=(1, 1)
)
func1 = relay.Function([data1, weight1], conv)
func1 = set_func_attr(func1, "test_compiler", "tvmgen_default_test_compiler_main_0")
gv1 = relay.GlobalVar("tvmgen_default_test_compiler_main_0")
mod[gv1] = func1
mod = transform.InferType()(mod)
# main function
data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32"))
bn_gamma0 = relay.var("bn_gamma", relay.TensorType((16,), "float32"))
bn_beta0 = relay.var("bn_beta", relay.TensorType((16,), "float32"))
bn_mmean0 = relay.var("bn_mean", relay.TensorType((16,), "float32"))
bn_mvar0 = relay.var("bn_var", relay.TensorType((16,), "float32"))
call1 = gv1(data, weight)
call0 = gv0(call1, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0)
mod["main"] = relay.Function(
[data, weight, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0], call0
)
mod = transform.InferType()(mod)
return mod
partitioned = partition()
ref_mod = expected()
assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True)
def test_function_lifting_inline():
def partition():
data = relay.var("data", relay.TensorType((1, 16, 224, 224), "float32"))
bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32"))
bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32"))
bn_mmean = relay.var("bn_mean", relay.TensorType((16,), "float32"))
bn_mvar = relay.var("bn_var", relay.TensorType((16,), "float32"))
bn_output = relay.nn.batch_norm(data, bn_gamma, bn_beta, bn_mmean, bn_mvar)
func = relay.Function([data, bn_gamma, bn_beta, bn_mmean, bn_mvar], bn_output.astuple())
mod = tvm.IRModule()
mod["main"] = func
op_list = ["nn.batch_norm", "nn.conv2d"]
mod = WhiteListAnnotator(op_list, "test_compiler")(mod)
opt_pass = tvm.transform.Sequential(
[
transform.InferType(),
transform.PartitionGraph(),
transform.SimplifyInference(),
transform.FoldConstant(),
transform.AlterOpLayout(),
transform.Inline(),
]
)
with tvm.transform.PassContext(opt_level=3):
mod = opt_pass(mod)
return mod
def expected():
# function for batch_norm
data0 = relay.var("data0", relay.TensorType((1, 16, 224, 224), "float32"))
mod = tvm.IRModule()
bn_gamma = relay.var("bn_gamma1", relay.TensorType((16,), "float32"))
bn_beta = relay.var("bn_beta1", relay.TensorType((16,), "float32"))
bn_mmean = relay.var("bn_mean1", relay.TensorType((16,), "float32"))
bn_mvar = relay.var("bn_var1", relay.TensorType((16,), "float32"))
bn = relay.nn.batch_norm(data0, bn_gamma, bn_beta, bn_mmean, bn_mvar)
func0 = relay.Function([data0, bn_gamma, bn_beta, bn_mmean, bn_mvar], bn.astuple())
func0 = set_func_attr(func0, "test_compiler", "tvmgen_default_test_compiler_main_0")
# main function
data = relay.var("data", relay.TensorType((1, 16, 224, 224), "float32"))
bn_gamma0 = relay.var("bn_gamma", relay.TensorType((16,), "float32"))
bn_beta0 = relay.var("bn_beta", relay.TensorType((16,), "float32"))
bn_mmean0 = relay.var("bn_mean", relay.TensorType((16,), "float32"))
bn_mvar0 = relay.var("bn_var", relay.TensorType((16,), "float32"))
call0 = func0(data, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0)
mod["main"] = relay.Function([data, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0], call0)
mod = transform.InferType()(mod)
return mod
partitioned = partition()
ref_mod = expected()
assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True)
def test_constant_propagation():
ones = np.ones(shape=(8, 8), dtype="float32")
def expected():
mod = tvm.IRModule()
y = relay.var("y", shape=(8, 8))
x0 = relay.const(ones)
y0 = relay.var("y0", shape=(8, 8))
add = x0 + y0
# Function that uses C compiler
func = relay.Function([y0], add)
func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0")
glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0")
mod[glb_0] = func
mod = relay.transform.InferType()(mod)
add_call = relay.Call(glb_0, [y])
log = relay.log(add_call)
main = relay.Function([y], log)
mod["main"] = main
mod = relay.transform.InferType()(mod)
return mod
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
add = x + y
log = relay.log(add)
f = relay.Function([x, y], log)
f = bind_params_by_name(f, {"x": tvm.nd.array(ones)})
mod = tvm.IRModule()
mod["main"] = f
mod = WhiteListAnnotator(["add"], "ccompiler")(mod)
mod = transform.PartitionGraph()(mod)
mod = relay.transform.InferType()(mod)
expected_mod = expected()
expected_mod = relay.transform.InferType()(expected_mod)
assert tvm.ir.structural_equal(mod, expected_mod, map_free_vars=True)
y_data = np.random.rand(8, 8).astype("float32")
np_add = ones + y_data
check_result(mod, {"y": y_data}, (8, 8), np.log(np_add))
def test_multiple_outputs():
def create_graph():
data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32"))
bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32"))
bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32"))
bn_mean = relay.var("bn_mean", relay.TensorType((16,), "float32"))
bn_var = relay.var("bn_var", relay.TensorType((16,), "float32"))
data_cb = compiler_begin(data, "test_target")
weight_cb = compiler_begin(weight, "test_target")
bn_gamma_cb = compiler_begin(bn_gamma, "test_target")
bn_beta_cb = compiler_begin(bn_beta, "test_target")
bn_mean_cb = compiler_begin(bn_mean, "test_target")
bn_var_cb = compiler_begin(bn_var, "test_target")
conv_o = relay.nn.conv2d(
data=data_cb, weight=weight_cb, kernel_size=(3, 3), channels=16, padding=(1, 1)
)
bn_o = relay.nn.batch_norm(conv_o, bn_gamma_cb, bn_beta_cb, bn_mean_cb, bn_var_cb)
relu_o = relay.nn.relu(bn_o[0])
relu_o_ce = compiler_end(relu_o, "test_target")
bn_omean = bn_o[1]
rebn_omean_ce = compiler_end(bn_omean, "test_target")
bn_ovar = bn_o[2]
bn_ovar_ce = compiler_end(bn_ovar, "test_target")
dummy_mean_abs = relay.abs(rebn_omean_ce)
dummy_ovar_abs = relay.abs(bn_ovar_ce)
dummy_tuple = relay.Tuple((relu_o_ce, dummy_mean_abs, dummy_ovar_abs))
func = relay.Function([data, weight, bn_gamma, bn_beta, bn_mean, bn_var], dummy_tuple)
return func
def expected():
mod = tvm.IRModule()
# function 0
data = relay.var("test_target_0_i0", relay.TensorType((1, 3, 224, 224), "float32"))
weight = relay.var("test_target_0_i1", relay.TensorType((16, 3, 3, 3), "float32"))
bn_gamma = relay.var("test_target_0_i2", relay.TensorType((16,), "float32"))
bn_beta = relay.var("test_target_0_i3", relay.TensorType((16,), "float32"))
bn_mean = relay.var("test_target_0_i4", relay.TensorType((16,), "float32"))
bn_var = relay.var("test_target_0_i5", relay.TensorType((16,), "float32"))
conv_o = relay.nn.conv2d(
data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1)
)
bn_o = relay.nn.batch_norm(conv_o, bn_gamma, bn_beta, bn_mean, bn_var)
relu_o = relay.nn.relu(bn_o[0])
tuple_o = relay.Tuple((relu_o, bn_o[1], bn_o[2]))
func0 = relay.Function([data, weight, bn_gamma, bn_beta, bn_mean, bn_var], tuple_o)
func0 = set_func_attr(func0, "test_target", "tvmgen_default_test_target_main_0")
gv0 = relay.GlobalVar("tvmgen_default_test_target_main_0")
mod[gv0] = func0
mod = relay.transform.InferType()(mod)
# body
data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32"))
bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32"))
bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32"))
bn_mean = relay.var("bn_mean", relay.TensorType((16,), "float32"))
bn_var = relay.var("bn_var", relay.TensorType((16,), "float32"))
f0_o = gv0(data, weight, bn_gamma, bn_beta, bn_mean, bn_var)
f0_relu_o = relay.TupleGetItem(f0_o, 0)
f0_mean_o = relay.TupleGetItem(f0_o, 1)
f0_var_o = relay.TupleGetItem(f0_o, 2)
f0_mean_abs = relay.abs(f0_mean_o)
f0_var_abs = relay.abs(f0_var_o)
main_tuple = relay.Tuple((f0_relu_o, f0_mean_abs, f0_var_abs))
func = relay.Function([data, weight, bn_gamma, bn_beta, bn_mean, bn_var], main_tuple)
mod["main"] = func
mod = relay.transform.InferType()(mod)
return mod
mod = tvm.IRModule()
mod["main"] = create_graph()
ref_mod = expected()
partitioned = transform.PartitionGraph()(mod)
assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True)
def test_mixed_single_multiple_outputs():
def create_graph():
data = relay.var("data", shape=(10, 10))
cb_1 = compiler_begin(data, "test_target")
O_1 = relay.abs(cb_1)
ce_2 = compiler_end(O_1, "test_target")
O_2 = relay.nn.relu(O_1)
ce_3 = compiler_end(O_2, "test_target")
X = relay.tanh(ce_2)
cb_3 = compiler_begin(ce_3, "test_target")
cb_4 = compiler_begin(X, "test_target")
O_3 = relay.add(cb_3, cb_4)
ce_4 = compiler_end(O_3, "test_target")
func = relay.Function([data], ce_4)
return func
def expected():
mod = tvm.IRModule()
# function 1
f1_cb1 = relay.var("test_target_0_i0", shape=(10, 10))
f1_O_1 = relay.abs(f1_cb1)
f1_O_2 = relay.nn.relu(f1_O_1)
f1_out = relay.Tuple((f1_O_2, f1_O_1))
func1 = relay.Function([f1_cb1], f1_out)
func1 = set_func_attr(func1, "test_target", "tvmgen_default_test_target_main_0")
gv1 = relay.GlobalVar("tvmgen_default_test_target_main_0")
mod[gv1] = func1
mod = relay.transform.InferType()(mod)
# function 0
f2_cb3 = relay.var("test_target_1_i0", shape=(10, 10))
f2_cb4 = relay.var("test_target_1_i1", shape=(10, 10))
f2_O_3 = relay.add(f2_cb3, f2_cb4)
func0 = relay.Function([f2_cb3, f2_cb4], f2_O_3)
func0 = set_func_attr(func0, "test_target", "tvmgen_default_test_target_main_1")
gv0 = relay.GlobalVar("tvmgen_default_test_target_main_1")
mod[gv0] = func0
mod = relay.transform.InferType()(mod)
# body
data = relay.var("data", shape=(10, 10))
tuple_out = gv1(data)
ce_2 = relay.TupleGetItem(tuple_out, 1)
ce_3 = relay.TupleGetItem(tuple_out, 0)
X = relay.tanh(ce_2)
ce_4 = gv0(ce_3, X)
func = relay.Function([data], ce_4)
mod["main"] = func
mod = relay.transform.InferType()(mod)
return mod
mod = tvm.IRModule()
mod["main"] = create_graph()
mod = transform.InferType()(mod)
ref_mod = expected()
partitioned = transform.PartitionGraph()(mod)
assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True)
def test_dnnl_fuse():
dnnl_patterns = get_pattern_table("dnnl")
(
conv2d_bias_relu_pat,
conv2d_bias_sigmoid_pat,
conv2d_bias_pat,
conv2d_relu_pat,
conv2d_sigmoid_pat,
) = (dnnl_patterns[0], dnnl_patterns[4], dnnl_patterns[6], dnnl_patterns[8], dnnl_patterns[12])
def get_blocks(
prefix,
data,
in_channel,
out_channel,
include_bias_add=True,
include_bn=True,
include_sigmoid=False,
):
weight = relay.var(prefix + "weight")
bias = relay.var(prefix + "bias")
bn_gamma = relay.var(prefix + "bn_gamma")
bn_beta = relay.var(prefix + "bn_beta")
bn_mmean = relay.var(prefix + "bn_mean")
bn_mvar = relay.var(prefix + "bn_var")
layer = relay.nn.conv2d(
data=data, weight=weight, kernel_size=(3, 3), channels=out_channel, padding=(1, 1)
)
if include_bias_add:
layer = relay.nn.bias_add(layer, bias)
if include_bn:
bn_output = relay.nn.batch_norm(layer, bn_gamma, bn_beta, bn_mmean, bn_mvar)
layer = bn_output[0]
if include_sigmoid:
# dummy layer to prevent pattern detection
layer = relay.sigmoid(layer)
layer = relay.nn.relu(layer)
return layer
def get_net(include_bias_add=True, include_bn=True, include_sigmoid=False):
data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
block1 = get_blocks("block1_", data, 3, 8, include_bias_add, include_bn, include_sigmoid)
# The second block is always conv + relu, to make it more interesting
block2 = get_blocks("block2_", block1, 8, 8, False, False, include_sigmoid)
return relay.Function(relay.analysis.free_vars(block2), block2)
def get_partitoned_mod(mod, params, pattern_table):
# This is required for constant folding
mod["main"] = bind_params_by_name(mod["main"], params)
remove_bn_pass = tvm.transform.Sequential(
[
transform.InferType(),
transform.SimplifyInference(),
transform.FoldConstant(),
transform.FoldScaleAxis(),
]
)
# fold consecutive add ops to simplify pattern `conv2d-bias_add-bn-relu`
remove_linear_pass = tvm.transform.Sequential(
[
transform.SimplifyExpr(),
transform.FoldConstant(),
]
)
composite_partition = tvm.transform.Sequential(
[
transform.CanonicalizeOps(),
remove_bn_pass,
remove_linear_pass,
transform.MergeComposite(pattern_table),
transform.AnnotateTarget("dnnl"),
transform.PartitionGraph(),
]
)
with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]):
return composite_partition(mod)
def test_detect_pattern(
pattern_table, include_bias_add, include_bn, include_sigmoid, num_expected_partition
):
net = get_net(include_bias_add, include_bn, include_sigmoid)
mod, params = tvm.relay.testing.create_workload(net)
mod = get_partitoned_mod(mod, params, pattern_table)
assert len(mod.functions) - 1 == num_expected_partition # -1 for main
def test_partition():
# conv + bn + relu, conv + relu -> fused conv_bias_relu, conv, and relu
test_detect_pattern([conv2d_bias_relu_pat], False, True, False, 3)
# conv + bn + relu, conv + relu -> conv, bias, relu, and fused conv_relu
test_detect_pattern([conv2d_relu_pat], False, True, False, 4)
# conv + bn + relu, conv + relu -> fused conv_bias_relu, and fused conv_relu
test_detect_pattern([conv2d_bias_relu_pat, conv2d_relu_pat], False, True, False, 2)
# conv + bias_add + bn + relu, conv + relu -> fused conv_bias_relu, and fused conv_relu
test_detect_pattern([conv2d_bias_relu_pat, conv2d_relu_pat], True, True, False, 2)
# conv + relu, conv + relu -> two fused conv_relu
test_detect_pattern([conv2d_relu_pat], False, False, False, 2)
# conv + relu, conv + relu -> no fusion, 4 partition each with a single op
test_detect_pattern([conv2d_bias_relu_pat], False, False, False, 4)
# conv + bn + sigmoid + relu, conv + sigmoid + relu -> no fusion
test_detect_pattern([conv2d_bias_relu_pat, conv2d_relu_pat], False, True, True, 7)
# conv + bias_add + bn + sigmoid + relu, conv + sigmoid + relu -> fused conv_bias
# and single op sigmoid, relu, conv, sigmoid, relu
test_detect_pattern([conv2d_bias_pat, conv2d_relu_pat], True, True, True, 6)
# conv + bias_add + bn + sigmoid + relu, conv + sigmoid + relu -> fused conv_bias_sigmoid
# and single op relu, conv, sigmoid, relu
test_detect_pattern([conv2d_bias_sigmoid_pat, conv2d_relu_pat], True, True, True, 5)
# conv + bias_add + bn + sigmoid + relu, conv + sigmoid + relu -> fused conv_bias_sigmoid,
# fused conv_sigmoid and single op relu, relu
test_detect_pattern([conv2d_bias_sigmoid_pat, conv2d_sigmoid_pat], True, True, True, 4)
def test_partition_mobilenet():
mod, params = relay.testing.mobilenet.get_workload()
mod = get_partitoned_mod(mod, params, dnnl_patterns)
# 27 fused conv + bn + relu and one dense
assert len(mod.functions) - 1 == 28 # -1 for main
def test_exec(mod, params, ref_mod, ref_params, out_shape):
ishape = (1, 3, 224, 224)
i_data = np.random.randn(*ishape).astype(np.float32)
ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu(0)).evaluate()(
i_data, **ref_params
)
te_compiler.get().clear()
mod = get_partitoned_mod(mod, params, dnnl_patterns)
check_result(mod, {"data": i_data}, out_shape, ref_res.numpy(), tol=1e-5, params=params)
test_partition()
test_partition_mobilenet()
if not tvm.get_global_func("relay.ext.dnnl", True):
print("skip because DNNL codegen is not available")
return
net = get_net()
mod, params = tvm.relay.testing.create_workload(net)
ref_mod, ref_params = tvm.relay.testing.create_workload(net)
test_exec(mod, params, ref_mod, ref_params, (1, 8, 224, 224))
mod, params = relay.testing.mobilenet.get_workload()
ref_mod, ref_params = relay.testing.mobilenet.get_workload()
test_exec(mod, params, ref_mod, ref_params, (1, 1000))
def test_multiple_use_of_an_output():
def expected_same_output_region():
mod = tvm.IRModule()
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
z = relay.var("z", shape=(8, 8))
x0 = relay.var("x0", shape=(8, 8))
y0 = relay.var("y0", shape=(8, 8))
log = relay.log(x0)
sub = x0 - y0
mul = log * sub
# The partitioned graph contains log, subtract, and multiply
func = relay.Function([x0, y0], mul)
func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0")
glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0")
mod[glb_0] = func
mod = transform.InferType()(mod)
add = x + y
call = relay.Call(glb_0, [add, z])
main = relay.Function([x, y, z], call)
mod["main"] = main
mod = transform.InferType()(mod)
return mod
def expected_different_output_region():
mod = tvm.IRModule()
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
z = relay.var("z", shape=(8, 8))
# The partitioned graph contains log
i0 = relay.var("i0", shape=(8, 8))
log = relay.log(i0)
func = relay.Function([i0], log)
func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0")
glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0")
mod[glb_0] = func
mod = transform.InferType()(mod)
# The partitioned graph contains subtract
x0 = relay.var("x0", shape=(8, 8))
y0 = relay.var("y0", shape=(8, 8))
sub = x0 - y0
func = relay.Function([x0, y0], sub)
func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_1")
glb_1 = relay.GlobalVar("tvmgen_default_ccompiler_main_1")
mod[glb_1] = func
mod = transform.InferType()(mod)
add = x + y
call_log = relay.Call(glb_0, [add])
call_sub = relay.Call(glb_1, [add, z])
main = relay.Function([x, y, z], call_log * call_sub)
mod["main"] = main
mod = transform.InferType()(mod)
return mod
def get_mod():
x = relay.var("x", shape=(8, 8))
y = relay.var("y", shape=(8, 8))
z = relay.var("z", shape=(8, 8))
add = x + y
sub = add - z
log = relay.log(add)
sub1 = log * sub
f = relay.Function([x, y, z], sub1)
mod = tvm.IRModule()
mod["main"] = f
return mod
def test_same_output_region():
mod = get_mod()
mod = WhiteListAnnotator(["subtract", "log", "multiply"], "ccompiler")(mod)
mod = transform.MergeCompilerRegions()(mod)
mod = transform.PartitionGraph()(mod)
expected_mod = expected_same_output_region()
assert tvm.ir.structural_equal(mod, expected_mod, map_free_vars=True)
def test_different_output_region():
mod = get_mod()
mod = WhiteListAnnotator(["subtract", "log"], "ccompiler")(mod)
mod = transform.MergeCompilerRegions()(mod)
mod = transform.PartitionGraph()(mod)
expected_mod = expected_different_output_region()
assert tvm.ir.structural_equal(mod, expected_mod, map_free_vars=True)
test_same_output_region()
test_different_output_region()
def test_duplicate_outputs():
target = "test_duplicate_outputs"
@tvm.ir.register_op_attr("abs", "target." + target)
def abs(expr): # pylint: disable=unused-variable
return True
def create_graph():
data = relay.var("data", shape=(10, 10))
x = relay.abs(data)
out_1 = relay.nn.relu(x)
out_2 = relay.tanh(x)
out_3 = relay.log(x)
out = relay.Tuple([out_1, out_2, out_3])
func = relay.Function([data], out)
return func
def expected():
mod = tvm.IRModule()
# function 0
f0_i0 = relay.var(target + "_0_i0", shape=(10, 10))
f0_o0 = relay.abs(f0_i0)
func0 = relay.Function([f0_i0], f0_o0)
func0 = func0.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
func0 = func0.with_attr("Inline", tvm.tir.IntImm("int32", 1))
func0 = func0.with_attr("Compiler", target)
func0 = func0.with_attr("global_symbol", "tvmgen_default_" + target + "_main_0")
gv0 = relay.GlobalVar("tvmgen_default_" + target + "_main_0")
mod[gv0] = func0
mod = transform.InferType()(mod)
# body
data = relay.var("data", shape=(10, 10))
function_out = gv0(data)
out_1 = relay.nn.relu(function_out)
out_2 = relay.tanh(function_out)
out_3 = relay.log(function_out)
out = relay.Tuple([out_1, out_2, out_3])
func = relay.Function([data], out)
mod["main"] = func
mod = transform.InferType()(mod)
return mod
mod = tvm.IRModule()
mod["main"] = create_graph()
seq = tvm.transform.Sequential(
[
transform.AnnotateTarget(target),
transform.MergeCompilerRegions(),
transform.PartitionGraph(),
]
)
ref_mod = expected()
partitioned = seq(mod)
assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True)
def test_duplicate_merge_and_tuplegetitem():
target = "test_duplicate_merge_and_tuplegetitem"
@tvm.ir.register_op_attr("nn.batch_norm", "target." + target)
def batch_norm(expr): # pylint: disable=unused-variable
return True
@tvm.ir.register_op_attr("nn.relu", "target." + target)
def relu(expr): # pylint: disable=unused-variable
return True
def create_graph():
data = relay.var("data", shape=(10, 10))
bn_gamma = relay.var("bn_gamma")
bn_beta = relay.var("bn_beta")
bn_mmean = relay.var("bn_mean")
bn_mvar = relay.var("bn_var")
x = relay.nn.batch_norm(data, bn_gamma, bn_beta, bn_mmean, bn_mvar)
out_1 = relay.nn.relu(x[0])
bn_out_1 = x[1]
out_2 = relay.tanh(bn_out_1)
out_3 = relay.log(bn_out_1)
out = relay.Tuple([out_1, out_2, out_3])
func = relay.Function([data, bn_gamma, bn_beta, bn_mmean, bn_mvar], out)
return func
def expected():
mod = tvm.IRModule()
# function 0
f0_i0 = relay.var(target + "_0_i0", shape=(10, 10))
f0_i1 = relay.var(target + "_0_i1")
f0_i2 = relay.var(target + "_0_i2")
f0_i3 = relay.var(target + "_0_i3")
f0_i4 = relay.var(target + "_0_i4")
f0_n0 = relay.nn.batch_norm(f0_i0, f0_i1, f0_i2, f0_i3, f0_i4)
f0_n1 = f0_n0[1]
f0_n2 = relay.nn.relu(f0_n0[0])
f0_o0 = relay.Tuple([f0_n2, f0_n1])
func0 = relay.Function([f0_i0, f0_i1, f0_i2, f0_i3, f0_i4], f0_o0)
func0 = func0.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
func0 = func0.with_attr("Inline", tvm.tir.IntImm("int32", 1))
func0 = func0.with_attr("Compiler", target)
func0 = func0.with_attr("global_symbol", "tvmgen_default_" + target + "_main_0")
gv0 = relay.GlobalVar("tvmgen_default_" + target + "_main_0")
mod[gv0] = func0
mod = transform.InferType()(mod)
# body
data = relay.var("data", shape=(10, 10))
bn_gamma = relay.var("bn_gamma")
bn_beta = relay.var("bn_beta")
bn_mmean = relay.var("bn_mean")
bn_mvar = relay.var("bn_var")
function_out = gv0(data, bn_gamma, bn_beta, bn_mmean, bn_mvar)
get_out0 = relay.TupleGetItem(function_out, 0)
get_out1 = relay.TupleGetItem(function_out, 1)
out_2 = relay.tanh(get_out1)
out_3 = relay.log(get_out1)
out = relay.Tuple([get_out0, out_2, out_3])
func = relay.Function([data, bn_gamma, bn_beta, bn_mmean, bn_mvar], out)
mod["main"] = func
mod = transform.InferType()(mod)
return mod
mod = tvm.IRModule()
mod["main"] = create_graph()
mod = transform.InferType()(mod)
seq = tvm.transform.Sequential(
[
transform.AnnotateTarget(target),
transform.MergeCompilerRegions(),
transform.PartitionGraph(),
]
)
ref_mod = expected()
partitioned = seq(mod)
assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True)
def test_constant_tuples():
@tvm.ir.register_op_attr("qnn.concatenate", "target.const_tuples")
def add(expr): # pylint: disable=unused-variable
return True
def create_graph():
a = relay.var("a", shape=(10, 10), dtype="uint8")
b = relay.var("b", shape=(10, 10), dtype="uint8")
a1 = relay.abs(a)
zeroi = relay.const(1, "int32")
zerof = relay.const(0, "float32")
con = relay.qnn.op.concatenate(
(a1, b),
input_scales=(zerof, zerof),
input_zero_points=(zeroi, zeroi),
output_scale=zerof,
output_zero_point=zeroi,
axis=1,
)
f = relay.Function([a, b], con)
mod = tvm.IRModule.from_expr(f)
mod = transform.InferType()(mod)
return mod
seq = tvm.transform.Sequential(
[
transform.AnnotateTarget("const_tuples"),
transform.InferType(),
transform.MergeCompilerRegions(),
transform.PartitionGraph(),
]
)
partitioned = seq(create_graph())
concat = partitioned["tvmgen_default_const_tuples_main_0"].body
assert type(concat.args[1]) == relay.Tuple
assert type(concat.args[2]) == relay.Tuple
assert type(concat.args[3]) == relay.Constant
assert type(concat.args[4]) == relay.Constant
def test_flatten_tuple_output():
target = "test_flatten_tuple_output"
@tvm.ir.register_op_attr("split", "target." + target)
def split(expr): # pylint: disable=unused-variable
return True
@tvm.ir.register_op_attr("abs", "target." + target)
def abs(expr): # pylint: disable=unused-variable
return True
def create_graph():
a = relay.var("a", shape=(10, 10), dtype="uint8")
a_split = relay.split(a, 2)
a_split_0 = relay.TupleGetItem(a_split.astuple(), 0)
a_split_0_abs = relay.abs(a_split_0)
a_con = relay.concatenate(a_split, 0)
a_split_0_relu = relay.nn.relu(a_split_0_abs)
out = relay.Tuple((a_con, a_split_0_relu))
f = relay.Function([a], out)
mod = tvm.IRModule.from_expr(f)
mod = transform.InferType()(mod)
return mod
def expected():
mod = tvm.IRModule()
# function 0
f0_i0 = relay.var(target + "_0_i0", shape=(10, 10), dtype="uint8")
a_split = relay.split(f0_i0, 2)
a_split_0 = relay.TupleGetItem(a_split.astuple(), 0)
a_split_1 = relay.TupleGetItem(a_split.astuple(), 1)
a_split_abs_in = relay.TupleGetItem(a_split.astuple(), 0)
abs = relay.abs(a_split_abs_in)
tuple_out = relay.Tuple((a_split_0, a_split_1, abs))
func0 = relay.Function([f0_i0], tuple_out)
func0 = func0.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
func0 = func0.with_attr("Inline", tvm.tir.IntImm("int32", 1))
func0 = func0.with_attr("Compiler", target)
func0 = func0.with_attr("global_symbol", "tvmgen_default_" + target + "_main_0")
gv0 = relay.GlobalVar("tvmgen_default_" + target + "_main_0")
mod[gv0] = func0
mod = transform.InferType()(mod)
# body
data = relay.var("a", shape=(10, 10), dtype="uint8")
f_out = gv0(data)
f_out_0 = relay.TupleGetItem(f_out, 0)
f_out_1 = relay.TupleGetItem(f_out, 1)
tuple = relay.Tuple((f_out_0, f_out_1))
concat = relay.concatenate(tuple, 0)
f_out_2 = relay.TupleGetItem(f_out, 2)
relu = relay.nn.relu(f_out_2)
ret_tuple = relay.Tuple((concat, relu))
mod["main"] = relay.Function([data], ret_tuple)
mod = transform.InferType()(mod)
return mod
seq = tvm.transform.Sequential(
[
transform.AnnotateTarget(target),
transform.MergeCompilerRegions(),
transform.PartitionGraph(),
]
)
partitioned = seq(create_graph())
partitioned = transform.InferType()(partitioned)
expected_mod = transform.InferType()(expected())
assert tvm.ir.structural_equal(partitioned, expected_mod, map_free_vars=True)
def test_tuple_output_exec():
"""Test C codegen and runtime for a subgraph with a tuple output"""
a = relay.var("a", shape=(10, 10), dtype="float32")
b = relay.var("b", shape=(10, 10), dtype="float32")
ba = relay.annotation.compiler_begin(a, "ccompiler")
bb = relay.annotation.compiler_begin(b, "ccompiler")
add = relay.add(ba, bb)
sub = relay.subtract(ba, bb)
out = relay.Tuple((add, sub))
eout = relay.annotation.compiler_end(out, "ccompiler")
func = relay.Function([a, b], eout)
mod = tvm.IRModule()
mod["main"] = func
mod = transform.InferType()(mod)
mod = transform.PartitionGraph()(mod)
a_data = np.random.rand(10, 10).astype("float32")
b_data = np.random.rand(10, 10).astype("float32")
check_result(
mod,
{"a": a_data, "b": b_data},
[(10, 10), (10, 10)],
[(a_data + b_data), (a_data - b_data)],
)
def test_extern_opt():
def Optimize(mod):
return relay.transform.FoldConstant()(mod)
tvm.register_func("relay.ext.test_target.optimize", Optimize)
x = relay.var("x", shape=(2, 2))
y0 = relay.var("y0", shape=(2, 2))
y1 = relay.var("y1", shape=(2, 2))
yy0 = relay.annotation.compiler_begin(y0, "test_target")
yy1 = relay.annotation.compiler_begin(y1, "test_target")
z = yy0 + yy1
end = relay.annotation.compiler_end(z, "test_target")
f = relay.Function([x, y0, y1], end * x)
c = np.ones(shape=(2, 2), dtype="float32")
f = bind_params_by_name(f, {"y0": tvm.nd.array(c), "y1": tvm.nd.array(c)})
mod = tvm.IRModule()
mod["main"] = f
mod = transform.InferType()(mod)
mod = transform.PartitionGraph()(mod)
try:
t0 = mod["tvmgen_default_test_target_main_0"]
except:
raise KeyError("test_target_main_0 not found")
assert isinstance(t0.body, relay.Constant)
expected = np.empty([2, 2])
expected.fill(2)
tvm.testing.assert_allclose(t0.body.data.numpy(), expected, rtol=1e-5, atol=1e-5)
def test_preserve_type_import():
"""Test to make sure type definition and imports are preserved during the BYOC pipeline."""
from tvm.relay.prelude import Prelude, StaticTensorArrayOps
def run(dtype, shape):
mod = tvm.IRModule()
p = Prelude(mod)
static_tensor_array_ops = StaticTensorArrayOps(p, dtype, shape)
static_tensor_array_ops.register()
tensor_array = p.get_global_var_static("tensor_array", dtype, shape)
tensor = p.get_tensor_ctor_static("tensor_constructor", dtype, shape)
write = p.get_global_var_static("tensor_array_write", dtype, shape)
gather = p.get_global_var_static("tensor_array_gather", dtype, shape)
v = relay.var("v")
indice = relay.var("indice")
init_tensor_array = tensor_array(relay.const(3))
tensor_array1 = write(init_tensor_array, relay.const(0), tensor(v))
tensor_array2 = write(tensor_array1, relay.const(1), tensor(v))
tensor_array3 = write(tensor_array2, relay.const(2), tensor(v))
out = gather(tensor_array3, indice)
mod["main"] = relay.Function([v, indice], out)
mod = transform.RemoveUnusedFunctions()(mod)
mod = transform.PartitionGraph()(mod)
run("float32", [2, 3])
def test_not_bind_constant():
def get_net(prefix, data, out_channel):
weight = relay.var(prefix + "weight")
bn_gamma = relay.var(prefix + "bn_gamma")
bn_beta = relay.var(prefix + "bn_beta")
bn_mmean = relay.var(prefix + "bn_mean")
bn_mvar = relay.var(prefix + "bn_var")
layer = relay.nn.conv2d(
data=data, weight=weight, kernel_size=(3, 3), channels=out_channel, padding=(1, 1)
)
bn_output = relay.nn.batch_norm(layer, bn_gamma, bn_beta, bn_mmean, bn_mvar)
out = relay.nn.relu(bn_output[0])
return relay.Function(relay.analysis.free_vars(out), out)
def get_partitoned_mod(mod, params, pattern_table, bind_constants):
mod["main"] = bind_params_by_name(mod["main"], params)
remove_bn_pass = tvm.transform.Sequential(
[
transform.InferType(),
transform.SimplifyInference(),
transform.FoldConstant(),
transform.FoldScaleAxis(),
]
)
composite_partition = tvm.transform.Sequential(
[
remove_bn_pass,
transform.MergeComposite(pattern_table),
transform.AnnotateTarget("dnnl"),
transform.PartitionGraph(bind_constants=bind_constants),
]
)
with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]):
return composite_partition(mod)
data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
net = get_net("block_", data, 8)
mod, params = tvm.relay.testing.create_workload(net)
mod = get_partitoned_mod(mod, params, get_pattern_table("dnnl"), bind_constants=True)
len(mod["main"].body.args) == 1
mod = get_partitoned_mod(mod, params, get_pattern_table("dnnl"), bind_constants=False)
len(mod["main"].body.args) == 3
if __name__ == "__main__":
test_multi_node_compiler()
test_extern_ccompiler_single_op()
test_extern_ccompiler_default_ops()
test_extern_ccompiler_multiple_functions()
test_extern_ccompiler()
test_extern_dnnl()
test_extern_dnnl_mobilenet()
test_function_lifting()
test_function_lifting_inline()
test_constant_propagation()
test_multiple_outputs()
test_mixed_single_multiple_outputs()
test_dnnl_fuse()
test_multiple_use_of_an_output()
test_duplicate_outputs()
test_duplicate_merge_and_tuplegetitem()
test_constant_tuples()
test_flatten_tuple_output()
test_tuple_output_exec()
test_extern_opt()
test_not_bind_constant()