blob: c80bb883f704651530ef2f0cec027fb28841200e [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <iostream>
#include <vector>
#include <string>
#include "ThreadFactoryTests.h"
#include "TimerManagerTests.h"
#include "ThreadManagerTests.h"
int main(int argc, char** argv) {
std::string arg;
std::vector<std::string> args(argc - 1 > 1 ? argc - 1 : 1);
args[0] = "all";
for (int ix = 1; ix < argc; ix++) {
args[ix - 1] = std::string(argv[ix]);
}
bool runAll = args[0].compare("all") == 0;
if (runAll || args[0].compare("thread-factory") == 0) {
ThreadFactoryTests threadFactoryTests;
std::cout << "ThreadFactory tests..." << std::endl;
size_t count = 1000;
size_t floodLoops = 1;
size_t floodCount = 100000;
std::cout << "\t\tThreadFactory reap N threads test: N = " << count << std::endl;
assert(threadFactoryTests.reapNThreads(count));
std::cout << "\t\tThreadFactory floodN threads test: N = " << floodCount << std::endl;
assert(threadFactoryTests.floodNTest(floodLoops, floodCount));
std::cout << "\t\tThreadFactory synchronous start test" << std::endl;
assert(threadFactoryTests.synchStartTest());
std::cout << "\t\tThreadFactory monitor timeout test" << std::endl;
assert(threadFactoryTests.monitorTimeoutTest());
}
if (runAll || args[0].compare("util") == 0) {
std::cout << "Util tests..." << std::endl;
std::cout << "\t\tUtil minimum time" << std::endl;
int64_t time00 = Util::currentTime();
int64_t time01 = Util::currentTime();
std::cout << "\t\t\tMinimum time: " << time01 - time00 << "ms" << std::endl;
time00 = Util::currentTime();
time01 = time00;
size_t count = 0;
while (time01 < time00 + 10) {
count++;
time01 = Util::currentTime();
}
std::cout << "\t\t\tscall per ms: " << count / (time01 - time00) << std::endl;
}
if (runAll || args[0].compare("timer-manager") == 0) {
std::cout << "TimerManager tests..." << std::endl;
std::cout << "\t\tTimerManager test00" << std::endl;
TimerManagerTests timerManagerTests;
assert(timerManagerTests.test00());
}
if (runAll || args[0].compare("thread-manager") == 0) {
std::cout << "ThreadManager tests..." << std::endl;
{
size_t workerCount = 100;
size_t taskCount = 100000;
int64_t delay = 10LL;
std::cout << "\t\tThreadManager load test: worker count: " << workerCount << " task count: " << taskCount << " delay: " << delay << std::endl;
ThreadManagerTests threadManagerTests;
assert(threadManagerTests.loadTest(taskCount, delay, workerCount));
std::cout << "\t\tThreadManager block test: worker count: " << workerCount << " delay: " << delay << std::endl;
assert(threadManagerTests.blockTest(delay, workerCount));
}
}
if (runAll || args[0].compare("thread-manager-benchmark") == 0) {
std::cout << "ThreadManager benchmark tests..." << std::endl;
{
size_t minWorkerCount = 2;
size_t maxWorkerCount = 512;
size_t tasksPerWorker = 1000;
int64_t delay = 10LL;
for (size_t workerCount = minWorkerCount; workerCount < maxWorkerCount; workerCount*= 2) {
size_t taskCount = workerCount * tasksPerWorker;
std::cout << "\t\tThreadManager load test: worker count: " << workerCount << " task count: " << taskCount << " delay: " << delay << std::endl;
ThreadManagerTests threadManagerTests;
threadManagerTests.loadTest(taskCount, delay, workerCount);
}
}
}
}