blob: 9c8fe5b40176fac0621ac138ec0fa5a9924ce1d6 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# The lm-function solves linear regression using either the direct solve method or the conjugate gradient
# algorithm depending on the input size of the matrices (See lmDS-function and lmCG-function respectively).
#
# INPUT:
# --------------------------------------------------------------------------------------
# X Matrix of feature vectors.
# y 1-column matrix of response values.
# icpt Intercept presence, shifting and rescaling the columns of X
# reg Regularization constant (lambda) for L2-regularization. set to nonzero
# for highly dependant/sparse/numerous features
# tol Tolerance (epsilon); conjugate gradient procedure terminates early if L2
# norm of the beta-residual is less than tolerance * its initial norm
# maxi Maximum number of conjugate gradient iterations. 0 = no maximum
# verbose If TRUE print messages are activated
# --------------------------------------------------------------------------------------
#
# OUTPUT:
# --------------------------------------------------------------------------------------------
# B The model fit
# --------------------------------------------------------------------------------------------
m_lm = function(Matrix[Double] X, Matrix[Double] y, Integer icpt = 0, Double reg = 1e-7, Double tol = 1e-7, Integer maxi = 0, Boolean verbose = TRUE)
return (Matrix[Double] B) {
if( ncol(X) <= 1024 )
B = lmDS(X, y, icpt, reg, verbose)
else
B = lmCG(X, y, icpt, reg, tol, maxi, verbose)
}