blob: 2cab411d9dda51af6c8b3f20a64de5dc2789f4d3 [file] [log] [blame]
Search.setIndex({"docnames": ["api/context/systemds_context", "api/operator/algorithms", "api/operator/node/frame", "api/operator/node/list", "api/operator/node/matrix", "api/operator/node/scalar", "api/operator/node/source", "api/operator/operation_node", "api/script_building/dag", "api/script_building/script", "api/utils/converters", "api/utils/helpers", "getting_started/install", "getting_started/simple_examples", "guide/algorithms_basics", "guide/federated", "guide/python_end_to_end_tut", "index"], "filenames": ["api/context/systemds_context.rst", "api/operator/algorithms.rst", "api/operator/node/frame.rst", "api/operator/node/list.rst", "api/operator/node/matrix.rst", "api/operator/node/scalar.rst", "api/operator/node/source.rst", "api/operator/operation_node.rst", "api/script_building/dag.rst", "api/script_building/script.rst", "api/utils/converters.rst", "api/utils/helpers.rst", "getting_started/install.rst", "getting_started/simple_examples.rst", "guide/algorithms_basics.rst", "guide/federated.rst", "guide/python_end_to_end_tut.rst", "index.rst"], "titles": ["SystemDSContext", "Algorithms", "Frame", "List", "Matrix", "Scalar", "Source", "Operation Node", "Dag", "Script", "Converters", "Helpers", "Install SystemDS", "QuickStart", "Built-in Algorithms", "Federated Environment", "Python end-to-end tutorial", "SystemDS"], "terms": {"all": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16], "oper": [0, 1, 2, 3, 4, 5, 6, 8, 9, 14, 15, 16, 17], "us": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "systemd": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "need": [0, 1, 12, 15, 16], "java": [0, 2, 3, 4, 5, 7, 8, 12], "instanc": [0, 1, 2, 10, 13, 14], "run": [0, 1, 10, 12, 13, 15, 16], "The": [0, 1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 15, 16, 17], "connect": [0, 1], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17], "ensur": [0, 4, 15, 16], "an": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 16], "object": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16], "can": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16], "creat": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15], "from": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17], "context": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16], "import": [0, 1, 6, 12, 13, 14, 15, 16], "sd": [0, 1, 2, 3, 4, 5, 10, 13, 14, 15, 16], "when": [0, 1, 13, 14, 15], "calcul": [0, 1, 4, 5, 13, 14, 16], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 15, 16, 17], "finish": 0, "ha": [0, 1, 9, 14, 15, 16], "close": [0, 1, 13], "again": [0, 14, 16], "sinc": [0, 1, 3, 13, 14, 15, 16], "annoi": 0, "alwai": [0, 1], "necessari": [0, 12, 13, 16], "implement": [0, 1, 14], "python": [0, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 17], "manag": 0, "protocol": [0, 15], "which": [0, 1, 7, 9, 11, 13, 15, 16], "support": [0, 1, 15], "follow": [0, 1, 12, 15], "syntax": 0, "do": [0, 1, 4, 12, 13, 15, 16], "someth": 0, "pass": [0, 1, 2, 3, 4, 5, 7, 8, 9], "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17], "automat": [0, 13], "onc": [0, 1, 12, 15, 16], "block": [0, 1, 10], "left": [0, 1, 15], "expens": 0, "procedur": [0, 1], "becaus": [0, 1, 12, 14], "sub": 0, "process": [0, 1, 12, 13, 15], "start": [0, 1, 13, 14], "jvm": [0, 2, 3, 4, 5, 7, 8, 10], "might": [0, 1, 12], "have": [0, 1, 12, 13, 14, 15, 17], "therefor": [0, 7, 14], "try": 0, "onli": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16], "your": [0, 12, 15], "program": [0, 16], "leav": [0, 1], "least": [0, 1], "one": [0, 1, 3, 4, 6, 13, 14, 15, 16], "open": [0, 12, 15], "class": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16], "port": [0, 15], "int": [0, 1, 2, 3, 4, 5, 7], "1": [0, 1, 2, 3, 4, 5, 6, 7, 13, 15], "capture_statist": 0, "bool": [0, 1, 2, 3, 4, 5, 6, 7, 8], "fals": [0, 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16], "capture_stdout": 0, "logging_level": 0, "20": [0, 1, 13], "py4j_logging_level": 0, "50": [0, 1], "A": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 16], "execut": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17], "random": [0, 1, 13], "tcp": 0, "instruct": [0, 15], "pars": 0, "point": [0, 1, 12], "It": [0, 1, 4, 14, 15, 16], "give": [0, 1, 11, 14], "abil": [0, 15], "differ": [0, 1, 14, 15, 16, 17], "ad": [0, 1, 14], "them": [0, 1], "__init__": [0, 2, 3, 4, 5, 6, 7], "new": [0, 1, 12, 13], "handl": [0, 1, 3], "ani": [0, 1, 3, 8], "would": [0, 1], "separ": [0, 1, 16], "standard": [0, 1], "out": [0, 1], "error": [0, 1, 7], "form": [0, 1], "also": [0, 1, 14, 15, 16], "fill": [0, 1, 13], "up": [0, 1, 13, 14, 15, 16], "queue": 0, "read": [0, 1, 2, 3, 7, 13, 16], "get": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 16], "print": [0, 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15], "statement": [0, 1], "paramet": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16], "default": [0, 1, 2, 3, 4, 5, 6, 7], "commun": [0, 1], "If": [0, 1, 2, 3, 4, 5, 6, 7, 9, 14, 15, 16], "statist": [0, 1], "should": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15], "captur": 0, "maintain": 0, "que": 0, "specifi": [0, 1, 2, 3, 4, 5, 6, 15, 16], "log": [0, 1, 13, 14, 15, 16], "level": [0, 1, 3, 13, 17], "inform": [0, 1, 2, 3, 4, 5, 6, 7, 8], "messag": [0, 1], "indic": [0, 1, 14, 15], "info": [0, 13, 14, 15, 16], "10": [0, 1, 12, 13, 14], "debug": [0, 1], "30": [0, 1, 14], "warn": 0, "40": [0, 1], "critic": 0, "py4j": [0, 12, 13], "done": [0, 1, 14, 15], "through": [0, 1, 14], "verbos": [0, 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 16], "set": [0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16], "high": [0, 13, 17], "arrai": [0, 2, 3, 4, 5, 6, 7, 8, 10, 13, 14, 15, 17], "arg": 0, "sequenc": [0, 2, 3, 4, 5, 6, 7, 8], "dagnod": [0, 1, 2, 3, 4, 5, 7, 8, 9], "str": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 16], "float": [0, 1, 2, 3, 4, 5, 7], "list": [0, 1, 14, 15], "contain": [0, 1, 2, 3, 4, 5, 7, 12, 14, 16], "given": [0, 1, 7, 10], "node": [0, 1, 2, 3, 4, 5, 6, 8], "note": [0, 1, 12, 13, 14, 15, 16], "allow": [0, 1, 6, 15], "dictionari": [0, 3, 11], "both": [0, 1, 3, 11, 15], "same": [0, 1, 3, 14, 15, 16], "time": [0, 1, 7, 14, 15], "param": [0, 1, 2, 4], "insert": 0, "kwarg": [0, 1, 2, 4, 5, 7], "return": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 16], "intern": [0, 1, 8, 9, 10, 11, 13, 16], "capture_stat": 0, "enabl": [0, 1, 15], "true": [0, 1, 4, 16], "disabl": 0, "els": 0, "capture_stats_context": 0, "afterward": [0, 16], "reset": 0, "state": 0, "wa": [0, 1, 14], "befor": [0, 1, 2, 3, 4, 5, 6, 7, 8], "exampl": [0, 1, 13, 14, 16], "some_comput": 0, "comput": [0, 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16], "b": [0, 1], "another_comput": 0, "take_stat": 0, "clear_stat": 0, "clear": [0, 1], "cleanup": 0, "combin": [0, 1, 14, 15, 16], "call": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16], "multipl": [0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14], "useful": 0, "case": [0, 1, 12, 14], "write": [0, 1, 7, 15, 16], "script": [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 15, 17], "want": [0, 1, 14, 16], "reus": 0, "intermedi": [0, 15], "doe": [0, 1, 13, 14, 15], "anyth": 0, "user": [0, 1, 17], "so": [0, 1, 14], "pleas": [0, 12, 16], "end": [0, 1, 17], "either": [0, 1, 2, 3, 4, 5, 16, 17], "element": [0, 1, 13], "dict": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11], "exception_and_clos": 0, "except": 0, "trace_back_limit": 0, "none": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], "method": [0, 1, 2, 3, 4, 5, 6, 7, 8], "stdout": [0, 1, 7], "while": [0, 7], "correctli": [0, 14, 15, 16], "e": [0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17], "thrown": 0, "feder": 0, "address": [0, 15], "iter": [0, 1, 2, 3, 4, 5, 7, 11, 14], "rang": [0, 1, 13, 14], "tupl": [0, 1, 7, 9, 15], "matrix": [0, 1, 2, 3, 5, 6, 7, 10, 14, 15], "sds_context": [0, 2, 3, 4, 5, 6, 7], "worker": 0, "each": [0, 1, 14, 15, 16], "pair": [0, 1, 2, 3, 4, 5, 6, 7, 8], "begin": [0, 1], "index": [0, 1, 4], "held": 0, "unnam": [0, 2, 3, 4, 5, 6, 7, 8, 11], "name": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 16], "data": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17], "from_numpi": [0, 1, 13, 14, 15], "mat": 0, "gener": [0, 1, 2, 3, 4, 5, 6, 7, 8, 13], "repres": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11], "numpi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15], "sent": 0, "from_panda": 0, "df": 0, "datafram": [0, 1, 2, 10, 16], "frame": [0, 1, 3, 4, 16], "panda": [0, 7, 16], "full": [0, 1, 13], "shape": [0, 1, 13, 14], "valu": [0, 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 16], "complet": [0, 1, 13, 16], "row": [0, 1, 2, 4, 14, 15], "col": [0, 1, 15], "todo": [0, 1], "tensor": [0, 17], "cell": [0, 1, 13], "operationnod": [0, 2, 3, 4, 5, 6, 7], "get_stat": 0, "Will": 0, "see": [0, 1, 14], "option": [0, 1], "get_stderr": 0, "line": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12], "getter": 0, "stderr": 0, "subprocess": [0, 13], "output": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14], "taken": 0, "number": [0, 1, 4, 12, 13, 14], "current": [0, 1, 10, 15], "get_stdout": 0, "rand": [0, 1, 13], "min": [0, 1, 4], "max": [0, 1, 4], "pdf": [0, 1], "uniform": [0, 1], "sparsiti": [0, 1, 13], "seed": [0, 1, 13, 16], "lamb": 0, "probabl": [0, 1, 14, 16], "distribut": [0, 1, 12, 14, 17], "function": [0, 1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 16], "normal": [0, 1], "poison": 0, "fraction": [0, 1, 16], "non": [0, 1, 12], "zero": [0, 1, 13], "lambda": [0, 1], "path": [0, 1, 6, 7, 11, 15, 16], "pathlik": [0, 11], "file": [0, 1, 6, 7, 13, 15, 16], "disk": [0, 2, 3, 7, 16], "type": [0, 1, 2, 3, 4, 5, 6, 7, 8, 14], "includ": [0, 1, 16], "csv": [0, 1, 15], "market": 0, "coordin": [0, 1, 15], "text": 0, "j": [0, 1], "v": [0, 1, 14], "binari": [0, 1, 7], "etc": [0, 2, 3, 4, 5, 6, 7], "http": [0, 1, 7, 12], "apach": [0, 7, 12, 17], "github": [0, 7, 12], "io": [0, 7], "site": [0, 7, 15], "dml": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 16], "languag": [0, 7, 17], "refer": [0, 1, 7, 15, 16], "readwrit": [0, 7], "built": [0, 1, 7, 13, 16], "more": [0, 1, 14, 16], "detail": [0, 1, 16], "scalar": [0, 1, 2, 3, 4, 13, 16], "construct": [0, 1, 2, 3, 4, 5, 6, 7], "doubl": [0, 1, 2, 3, 4, 5, 6, 7, 13, 15], "integ": [0, 1, 14], "boolean": [0, 1], "seq": 0, "stop": [0, 1, 13], "step": [0, 1, 12], "singl": [0, 1, 14, 15], "column": [0, 1, 2, 4, 14], "vector": [0, 1, 14], "increment": 0, "defin": [0, 1, 2, 3, 4, 5, 6, 8, 16], "0": [0, 1, 4, 12, 13, 14, 15, 16], "interpret": 0, "maximum": [0, 1], "size": [0, 1, 13, 16], "sourc": [0, 1, 16], "command": [0, 12, 15], "add": [0, 1, 9, 13, 14, 16], "flexibl": [0, 1], "directli": [0, 13, 16], "In": [0, 1, 12, 14, 15, 16, 17], "func_01": 0, "re": [0, 1, 15], "self": 0, "path_to_fil": 0, "unique_nam": 0, "absolut": [0, 4, 5], "rel": 0, "must": [0, 1, 4], "uniqu": [0, 1], "machin": [1, 2, 3, 4, 5, 7, 8], "learn": [1, 14, 16], "box": 1, "As": [1, 13], "lm": 1, "np": [1, 13, 15], "systemdscontext": [1, 2, 3, 4, 5, 6, 7, 9, 13, 14, 15, 16], "featur": [1, 13, 14, 16, 17], "15": 1, "respons": [1, 14], "y": [1, 14, 16], "weight": [1, 16], "similar": [1, 12, 13], "11538199": 1, "20386541": 1, "39956035": 1, "04078623": 1, "4327084": 1, "18954599": 1, "49858968": 1, "26812763": 1, "09961844": 1, "57000751": 1, "43386048": 1, "55358873": 1, "54638565": 1, "2205885": 1, "37957689": 1, "woe": 1, "x": [1, 4, 14, 16], "mask": 1, "evid": 1, "gain": 1, "where": [1, 14, 15], "entropi": 1, "appli": [1, 4, 14, 16], "woeappli": 1, "entropymatrix": 1, "abstain": 1, "threshold": 1, "multilogreg": [1, 14, 16], "solv": 1, "multinomi": [1, 16], "logist": [1, 14, 16], "regress": [1, 14, 16], "trust": 1, "region": 1, "categori": 1, "label": [1, 13, 14, 16], "otherwis": 1, "unmodifi": 1, "flag": [1, 4], "al": 1, "approxim": 1, "factor": 1, "low": 1, "rank": 1, "two": [1, 14, 15, 16], "matric": [1, 2, 4, 15, 16], "u": [1, 13], "altern": 1, "squar": 1, "minim": 1, "loss": 1, "regular": 1, "locat": [1, 7, 15], "input": [1, 2, 3, 4, 5, 6, 7, 9, 14, 16], "regtyp": 1, "l2": 1, "f": [1, 16], "5": [1, 13, 15], "sum": [1, 4, 15], "w": [1, 15], "2": [1, 13, 15], "reg": 1, "wl2": 1, "row_nonzero": 1, "col_nonzero": 1, "maxi": [1, 14], "check": [1, 4, 12, 15], "converg": 1, "after": [1, 12, 15], "everi": [1, 2, 3, 4, 5, 6, 7], "updat": 1, "thr": 1, "assum": [1, 4, 12], "declar": [1, 6], "decreas": [1, 4], "consecut": 1, "fall": 1, "below": [1, 2, 3, 4, 5, 6, 16], "ignor": 1, "part": [1, 12], "m": [1, 12, 13, 14, 16], "r": 1, "alscg": 1, "conjug": 1, "gradient": 1, "alsd": 1, "direct": [1, 8], "individu": 1, "problem": 1, "l": 1, "alspredict": 1, "userid": 1, "rate": [1, 16], "score": 1, "we": [1, 12, 13, 14, 15, 16], "item": 1, "been": [1, 14, 16], "id": [1, 15], "n": 1, "exclud": 1, "alstopkpredict": 1, "top": [1, 15], "k": 1, "highest": [1, 14], "predict": [1, 14], "apply_pipelin": 1, "testdata": 1, "pip": 1, "applyfunc": 1, "hp": 1, "exstat": 1, "istat": 1, "dirti": 1, "clean": [1, 12, 17], "best": [1, 16], "pipelin": 1, "classifi": [1, 14, 16], "dataset": [1, 13, 16, 17], "perform": [1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16], "origin": 1, "term": 1, "classif": 1, "accuraci": [1, 14, 16], "traindata": 1, "metadata": [1, 15, 16], "lp": 1, "evaluationfunc": 1, "evalfunhp": 1, "islastlabel": 1, "correcttypo": 1, "arima": 1, "builtin": [1, 2, 3, 4, 5, 6, 7, 8, 14], "max_func_invoc": 1, "p": [1, 12], "season": 1, "order": [1, 4, 15, 17], "d": [1, 14, 16], "differenc": 1, "q": 1, "ma": 1, "": [1, 10, 13], "period": 1, "include_mean": 1, "center": 1, "mean": [1, 2, 3, 4, 5, 6, 7, 14, 15, 16], "result": [1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16], "solver": 1, "cg": 1, "jacobi": 1, "coeffici": 1, "auc": 1, "area": 1, "under": 1, "roc": 1, "curv": 1, "encod": [1, 4], "predictor": 1, "estim": 1, "autoencoder_2lay": 1, "num_hidden1": 1, "num_hidden2": 1, "max_epoch": 1, "train": [1, 15, 17], "layer": [1, 16], "autoencod": 1, "minibatch": 1, "sgd": 1, "decai": 1, "invok": 1, "h1": 1, "h2": 1, "becom": [1, 15], "bowti": 1, "structur": 1, "initi": 1, "glorot": 1, "bengio": 1, "2010": 1, "aistat": 1, "turn": 1, "off": 1, "randomli": 1, "reshuffl": 1, "tanh": [1, 4, 5], "activ": [1, 2, 3, 4, 5, 6, 7, 8, 12], "By": 1, "func": [1, 3], "bodi": 1, "chang": [1, 14, 15], "filenam": 1, "store": [1, 7, 8, 16], "neuron": [1, 16], "1st": 1, "hidden": [1, 16], "2nd": 1, "epoch": [1, 16], "full_obj": 1, "take": [1, 13, 14, 16], "lot": 1, "batch_siz": [1, 16], "mini": 1, "batch": [1, 16], "mu": 1, "momentum": 1, "w1_rand": 1, "via": [1, 12], "w2_rand": 1, "w3_rand": 1, "w4_rand": 1, "between": 1, "bia": [1, 14], "3rd": 1, "represent": [1, 2, 4, 5, 10], "bandit": 1, "x_train": 1, "y_train": 1, "x_test": 1, "y_test": 1, "metalist": 1, "lphp": 1, "primit": [1, 3], "baselinescor": 1, "cv": 1, "find": 1, "arm": 1, "optim": 1, "known": [1, 14], "unknown": 1, "reward": 1, "cvk": 1, "bivar": 1, "s1": 1, "s2": 1, "t1": 1, "t2": 1, "For": [1, 8, 9, 10, 11, 12, 14, 16], "attribut": [1, 16], "bivari": 1, "index1": 1, "a_11": 1, "a_12": 1, "a_1m": 1, "index2": 1, "a_21": 1, "a_22": 1, "a_2n": 1, "stat": 1, "a_1i": 1, "a_2j": 1, "first": [1, 2, 4, 12, 13, 14, 15, 16, 17], "second": [1, 2, 4, 15, 16], "kind": 1, "scale": 1, "nomin": 1, "3": [1, 12, 13, 15], "ordin": 1, "basestats_scale_scal": 1, "basestats_nominal_scal": 1, "basestats_nominal_nomin": 1, "basestats_ordinal_ordin": 1, "compon": 1, "g": [1, 2, 3, 4, 5, 6, 7, 16], "graph": [1, 8], "assign": [1, 5], "vertic": 1, "identifi": [1, 2, 3, 4, 5, 6, 7, 15], "vertex": 1, "posit": [1, 2, 3, 4, 5, 6, 7], "icpt": 1, "intercept": 1, "presenc": 1, "shift": 1, "rescal": 1, "neither": 1, "nor": 1, "varianc": [1, 4], "tol": 1, "toler": 1, "epsilon": 1, "c": 1, "outer": 1, "newton": 1, "maxii": 1, "inner": 1, "beta": [1, 16], "confusionmatrix": [1, 16], "accept": 1, "hot": 1, "Then": [1, 12, 16], "compar": 1, "averag": [1, 16], "tp": 1, "fp": 1, "fn": 1, "tn": 1, "golden": 1, "One": [1, 13, 14], "actual": [1, 2, 3, 4, 5, 6, 7, 8, 13], "confus": 1, "cor": 1, "correl": 1, "string": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 16], "correct": 1, "corrupt": 1, "assumpt": 1, "most": [1, 4, 7, 16], "simpli": [1, 7, 14, 15], "swap": 1, "occur": [1, 15], "often": 1, "fred": 1, "damerau": 1, "1964": 1, "techniqu": [1, 14], "detect": 1, "spell": 1, "acm": 1, "7": [1, 15], "march": 1, "171": 1, "176": 1, "doi": 1, "org": 1, "1145": 1, "363958": 1, "363994": 1, "nx1": 1, "frequency_threshold": 1, "abov": [1, 13, 14, 16], "frequenc": 1, "distance_threshold": 1, "distanc": 1, "consid": 1, "is_verbos": 1, "correcttyposappli": 1, "distance_matrix": 1, "futur": 1, "word": 1, "sure": [1, 12], "nullmask": 1, "cox": 1, "te": 1, "fit": [1, 14, 16], "proport": 1, "hazard": 1, "model": [1, 13, 14, 15, 17], "breslow": 1, "ti": 1, "surviv": 1, "timestamp": 1, "whether": [1, 16], "event": 1, "censor": 1, "categor": [1, 16], "variabl": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15], "avail": [1, 7, 14, 16], "baselin": [1, 14], "remov": 1, "correspond": [1, 14], "provid": [1, 3, 11, 13, 14, 15, 16, 17], "continu": [1, 16], "alpha": 1, "100": [1, 13, 14], "confid": 1, "interv": 1, "moi": 1, "mii": 1, "denot": 1, "covari": 1, "schema": [1, 17], "exp": 1, "4": [1, 13, 15], "z": 1, "6": [1, 12, 15], "lower": 1, "upper": 1, "summari": 1, "some": [1, 13, 14, 15, 16], "format": [1, 7, 11, 15], "observ": 1, "likelihood": 1, "aic": 1, "rsquar": 1, "snell": 1, "possibl": [1, 2, 3, 4, 5, 6], "t": [1, 4, 8], "ratio": 1, "test": [1, 14, 15, 16], "degre": 1, "freedom": 1, "wald": 1, "addition": [1, 12, 16], "rt": 1, "preserv": 1, "recod": [1, 16], "xo": 1, "sort": [1, 4], "cov": 1, "mf": 1, "cspline": 1, "inp_x": 1, "cubic": 1, "spline": 1, "interpol": 1, "en": 1, "wikipedia": 1, "wiki": 1, "spline_interpol": 1, "algorithm_to_find_the_interpolating_cubic_splin": 1, "natur": [1, 4], "q1": 1, "x0": 1, "qn": 1, "xn": 1, "knot": 1, "monoton": 1, "increas": [1, 4, 14, 16], "duplic": 1, "mode": [1, 12, 15], "graduent": 1, "termin": [1, 12, 13, 15], "earli": 1, "norm": 1, "residu": 1, "less": 1, "than": [1, 2, 3, 4, 5, 6, 7], "its": [1, 15], "csplinecg": 1, "cvlm": 1, "cross": 1, "valid": 1, "exhaust": [1, 14], "lmpredict": 1, "linear": 1, "record": 1, "subset": [1, 14], "nrow": 1, "constant": 1, "nonzero": 1, "highli": [1, 13], "depend": [1, 12], "spars": 1, "numer": 1, "dbscan": 1, "cluster": 1, "euclidian": 1, "ep": 1, "reachabl": 1, "other": [1, 2, 3, 4, 5, 6, 7, 12, 14, 15], "minpt": 1, "neighborhood": 1, "core": 1, "itself": [1, 3], "dbscanappli": 1, "clustermodel": 1, "outlier": 1, "against": 1, "decisiontre": 1, "ctype": 1, "decis": 1, "tree": 1, "bin": [1, 12], "cart": 1, "major": 1, "vote": 1, "per": [1, 14], "leaf": 1, "look": [1, 7, 12, 13, 15], "l1": 1, "p1": 1, "l3": 1, "p2": 1, "p3": 1, "ncol": 1, "last": [1, 15], "entri": 1, "max_depth": 1, "depth": 1, "criterion": 1, "min_leaf": 1, "minimum": 1, "sampl": [1, 14, 16], "odd": 1, "recommend": [1, 2, 3, 4, 5, 6, 13, 16], "avoid": [1, 13], "min_split": 1, "attempt": 1, "split": 1, "max_featur": 1, "control": 1, "candid": 1, "ceil": 1, "num_featur": 1, "max_valu": 1, "nb": 1, "num_valu": 1, "impur": 1, "measur": 1, "gini": 1, "rss": 1, "fix": 1, "decisiontreepredict": 1, "forest": 1, "hummingbird": 1, "paper": 1, "www": 1, "usenix": 1, "system": [1, 12, 17], "osdi20": 1, "nakandala": 1, "evalu": [1, 2, 3, 4, 5, 6, 7, 8, 16], "hold": 1, "strategi": 1, "gemm": 1, "tt": 1, "ptt": 1, "travers": 1, "perfect": 1, "respect": [1, 2, 3, 4, 5, 6, 7, 15], "deepwalk": 1, "gamma": 1, "arxiv": 1, "1403": 1, "6652": 1, "adjac": 1, "window": [1, 12], "embed": 1, "walk": 1, "length": 1, "denialconstraint": 1, "constraintsfram": 1, "constraint": 1, "NOT": 1, "happen": [1, 14], "denial": 1, "disciplin": 1, "yr": [1, 16], "phd": 1, "servic": 1, "sex": 1, "salari": 1, "prof": 1, "19": 1, "18": [1, 12], "male": 1, "139750": 1, "16": [1, 16], "173200": 1, "asstprof": 1, "79750": 1, "56": 1, "45": [1, 15], "39": 1, "115000": 1, "141500": 1, "assocprof": 1, "97000": 1, "23": 1, "175000": 1, "8": [1, 15], "147765": 1, "9": [1, 14, 15], "21": 1, "119250": 1, "femal": 1, "129000": 1, "11": [1, 12], "12": 1, "119800": 1, "79800": 1, "13": [1, 13], "77700": 1, "idx": 1, "group": 1, "variable1": 1, "relat": 1, "variable2": 1, "variablecompar": 1, "instancecompar": 1, "valuecompar": 1, "78182": 1, "explan": [1, 14, 16], "professor": 1, "year": 1, "coupl": 1, "ie": 1, "higher": 1, "divid": 1, "our": [1, 9, 11, 13, 14, 15, 16], "show": [1, 15, 16], "wrong": 1, "fulfil": 1, "constrain": 1, "wronginst": 1, "discoverfd": 1, "interest": 1, "robust": 1, "fd": 1, "dist": 1, "euclidean": 1, "dimension": [1, 17], "insid": [1, 12, 13], "dmv": 1, "disguis": 1, "miss": 1, "utilis": 1, "syntact": 1, "pattern": [1, 2, 4], "recognit": 1, "domin": 1, "80": 1, "adher": 1, "replac": [1, 2, 4, 14], "ema": 1, "search_iter": 1, "freq": 1, "imput": 1, "exponenti": 1, "move": 1, "tripl": 1, "seri": 1, "budget": 1, "weren": 1, "executepipelin": 1, "xtrain": 1, "ytrain": 1, "xtest": 1, "ytest": 1, "hyperparamet": [1, 16], "flagscount": 1, "logic": 1, "hpforprun": 1, "changesbyop": 1, "ffpredict": 1, "make": [1, 12, 13, 14, 15, 16], "feedforward": 1, "neural": 1, "network": [1, 15], "ff": 1, "fftrain": 1, "out_activ": 1, "loss_fcn": 1, "simpl": [1, 12, 14, 16], "feed": [1, 16], "forward": [1, 16], "architectur": 1, "affine1": 1, "relu": 1, "dropout": 1, "affine2": 1, "configur": 1, "128": 1, "35": 1, "infer": 1, "target": [1, 16], "learning_r": [1, 16], "sigmoid": 1, "lrelu": 1, "softmax": 1, "logit": 1, "log_loss": 1, "logcosh_loss": 1, "cel": 1, "shuffl": 1, "validation_split": 1, "fit_pipelin": 1, "fixinvalidlength": 1, "f1": 1, "invalid": 1, "ql": 1, "qu": 1, "fixinvalidlengthsappli": 1, "qlow": 1, "qup": 1, "framesort": 1, "2662": 1, "frequencyencod": 1, "convers": 1, "count": 1, "frequencyencodeappli": 1, "freqcount": 1, "code": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 16], "garch": 1, "kmax": 1, "start_steps": 1, "end_steps": 1, "start_vicin": 1, "end_vicin": 1, "sim_se": 1, "analyz": [1, 16], "believ": 1, "serial": 1, "autocorrel": 1, "comment": 1, "drawback": 1, "slow": 1, "simul": [1, 15], "anneal": 1, "descent": 1, "bfg": 1, "bhhh": 1, "go": [1, 12, 14], "extend": 1, "search": 1, "space": 1, "wai": [1, 2, 3, 4, 5, 6, 14], "too": 1, "big": 1, "deactiv": 1, "stepsiz": 1, "restart": 1, "dure": 1, "onstant": 1, "st": 1, "arch": 1, "gaussianclassifi": 1, "gaussian": 1, "thu": 1, "prior": 1, "invers": 1, "determin": 1, "furthermor": 1, "explicitli": 1, "small": 1, "smooth": 1, "along": [1, 16], "prevent": 1, "instabl": 1, "varsmooth": 1, "getaccuraci": 1, "yhat": 1, "ground": 1, "truth": 1, "isweight": 1, "glm": 1, "fisher": 1, "ordinari": 1, "addit": [1, 2, 3, 4, 5, 6, 7, 8], "consol": 1, "comma": 1, "termination_cod": 1, "success": 1, "failur": 1, "successfulli": 1, "reach": 1, "link": 1, "beta_min": 1, "smallest": [1, 16], "beta_min_index": 1, "beta_max": 1, "largest": 1, "beta_max_index": 1, "nan": 1, "dispers": 1, "devianc": 1, "disp": 1, "dispersion_est": 1, "deviance_unsc": 1, "satur": 1, "deviance_sc": 1, "request": [1, 12], "num_cg_it": 1, "conj": 1, "is_trust_reach": 1, "boundari": 1, "point_step_norm": 1, "old": 1, "neg": 1, "partial": 1, "obj_drop_r": 1, "reduct": 1, "obj_drop_pr": 1, "quadrat": 1, "obj_drop_ratio": 1, "gradient_norm": 1, "sometim": 1, "omit": 1, "linear_term_min": 1, "overflow": 1, "linear_term_max": 1, "is_point_upd": 1, "reject": 1, "restor": 1, "trust_delta": 1, "delta": 1, "OF": 1, "THE": 1, "famili": 1, "AND": 1, "dfam": 1, "vpow": 1, "lpow": 1, "nical": 1, "ye": 1, "poisson": 1, "sqrt": 1, "invgaussian": 1, "anyvari": 1, "anylink": 1, "binomi": 1, "probit": 1, "cloglog": 1, "cauchit": 1, "bernoulli": 1, "po": 1, "power": 1, "canon": 1, "reciproc": 1, "ident": [1, 16], "yneg": 1, "No": 1, "usual": [1, 14], "over": [1, 17], "whose": [1, 17], "glmpredict": 1, "tabl": 1, "convert": [1, 2, 4, 5, 11], "multi": [1, 2, 3, 4, 5, 6, 7, 17], "tell": 1, "loglhood_z": 1, "dev": 1, "loglhood_z_pv": 1, "pearson_x2": 1, "pearson": 1, "pearson_x2_by_df": 1, "pearson_x2_pv": 1, "deviance_g2": 1, "deviance_g2_by_df": 1, "deviance_g2_pv": 1, "avg_tot_i": 1, "stdev_tot_i": 1, "avg_res_i": 1, "stdev_res_i": 1, "pred_stdev_r": 1, "r2": 1, "adjusted_r2": 1, "adjust": 1, "r2_nobia": 1, "subtract": 1, "adjusted_r2_nobia": 1, "dimens": [1, 14, 15, 17], "unless": 1, "gmm": 1, "mixtur": 1, "There": [1, 7, 14], "four": 1, "vvv": 1, "eee": 1, "vvi": 1, "vii": 1, "kmean": 1, "n_compon": 1, "unequ": 1, "own": 1, "equal": [1, 2, 3, 4, 5, 6, 7, 8], "share": [1, 12, 15], "spheric": 1, "volum": 1, "diag": 1, "diagon": 1, "init_param": 1, "reg_covar": 1, "made": [1, 14, 16], "bayesian": 1, "precis": [1, 16], "th": 1, "belong": 1, "kth": 1, "gmmpredict": 1, "precisions_choleski": 1, "posterior": 1, "dat": 1, "gnmf": 1, "rnk": 1, "h": 1, "three": [1, 14, 15, 16], "easier": 1, "inspect": 1, "chao": 1, "liu": 1, "hung": 1, "chih": 1, "yang": 1, "jinliang": 1, "fan": 1, "li": 1, "wei": 1, "he": 1, "yi": 1, "wang": 1, "nonneg": 1, "web": 1, "dyadic": 1, "analysi": 1, "mapreduc": 1, "681": 1, "690": 1, "repetit": 1, "amplitud": 1, "gridsearch": 1, "paramvalu": 1, "hyper": 1, "accur": 1, "eval": [1, 16], "ft": 1, "trainarg": 1, "predictarg": 1, "numb": 1, "mai": [1, 17], "vari": 1, "like": [1, 3, 13, 14, 15, 16], "dataarg": 1, "columnvector": 1, "align": 1, "argument": [1, 7, 16], "enumer": [1, 8], "empti": 1, "append": [1, 14], "instead": [1, 12, 13, 16], "fold": 1, "hospitalresidencymatch": 1, "capac": 1, "solut": 1, "hospit": 1, "resid": 1, "match": 1, "mtx": 1, "unord": 1, "prefer": 1, "residencymatch": 1, "hospitalmatch": 1, "unordr": 1, "leftmost": 1, "partner": 1, "acceptor": 1, "vice": 1, "versa": 1, "better": [1, 16], "further": [1, 14, 16], "led": 1, "hyperband": 1, "x_val": 1, "y_val": 1, "paramrang": 1, "base": [1, 15, 16], "elimin": 1, "parallel": 1, "bracket": [1, 2, 4, 7], "trial": 1, "drawn": 1, "those": 1, "hard": 1, "lmcg": 1, "resourc": 1, "draw": 1, "eta": 1, "keep": [1, 14], "img_bright": 1, "img_in": 1, "channel_max": 1, "imag": [1, 14], "augment": 1, "bright": 1, "amount": [1, 14], "img_crop": 1, "x_offset": 1, "y_offset": 1, "cut": 1, "subregion": 1, "width": 1, "requir": [1, 14, 15, 16], "height": 1, "horizont": 1, "crop": 1, "img_cutout": 1, "fill_valu": 1, "cutout": 1, "rectangular": 1, "section": 1, "2d": [1, 17], "corner": 1, "rectangl": 1, "img_invert": 1, "invert": 1, "pixel": [1, 14], "img_mirror": 1, "horizontal_axi": 1, "flip": 1, "axi": [1, 4], "img_poster": 1, "bit": [1, 12], "poster": 1, "limit": [1, 16], "255": 1, "attain": 1, "black": 1, "white": 1, "img_rot": 1, "radian": 1, "rotat": 1, "counter": 1, "clockwis": 1, "around": 1, "nearest": [1, 4], "neighbor": 1, "background": 1, "color": 1, "reveal": 1, "img_sample_pair": 1, "img_in1": 1, "img_in2": 1, "blend": 1, "togeth": 1, "visibl": 1, "img_shear": 1, "shear_x": 1, "shear_i": 1, "shear": 1, "transform": [1, 13, 16], "img_transform": 1, "out_w": 1, "out_h": 1, "affin": 1, "resiz": 1, "without": [1, 2, 3, 4, 5, 6, 7, 8], "img_transl": 1, "offset_x": 1, "offset_i": 1, "translat": 1, "impuritymeasur": 1, "version": [1, 12, 16], "expect": [1, 2, 3, 4, 5, 6, 7, 14], "n_bin": 1, "how": [1, 14, 16], "much": [1, 14], "imputebyfd": 1, "exist": [1, 17], "map": 1, "imputebyfdappli": 1, "y_imp": 1, "imputebymean": 1, "imputebymeanappli": 1, "imputedvec": 1, "imputationvector": 1, "imputebymedian": 1, "median": 1, "imputebymedianappli": 1, "imputebymod": 1, "2902": 1, "imputebymodeappli": 1, "frequent": 1, "intersect": 1, "km": 1, "gi": 1, "si": 1, "kaplan": 1, "meier": 1, "stratifi": 1, "survivor": 1, "err_typ": 1, "greenwood": 1, "accord": 1, "peto": 1, "conf_typ": 1, "modifi": [1, 13], "plain": 1, "bound": 1, "complementari": 1, "test_typ": 1, "across": 1, "wilcoxon": 1, "strata": 1, "collect": 1, "risk": 1, "surv": 1, "total": 1, "ttype": 1, "t_groups_o": 1, "o": [1, 15], "chi": 1, "centroid": 1, "max_it": 1, "wcss": 1, "avg_sample_size_per_centroid": 1, "select": 1, "kmeanspredict": 1, "onto": 1, "knn": 1, "cl": 1, "start_select": 1, "cl_t": 1, "trans_continu": 1, "k_valu": 1, "select_k": 1, "k_min": 1, "k_max": 1, "select_featur": 1, "feature_max": 1, "feature_import": 1, "predict_con_tg": 1, "knngraph": 1, "knnbf": 1, "l2svm": [1, 13], "svm": 1, "slack": 1, "maxiter": 1, "columnid": 1, "eg": 1, "msvm": 1, "l2svmpredict": 1, "raw": 1, "ones": [1, 13, 15], "lasso": 1, "sparsa": 1, "reconstruct": 1, "design": 1, "histori": 1, "tau": 1, "until": 1, "lenetpredict": 1, "hin": 1, "win": 1, "lenet": 1, "channel": 1, "lenettrain": 1, "cnn": 1, "conv1": 1, "relu1": 1, "pool1": 1, "conv2": 1, "relu2": 1, "pool2": 1, "affine3": 1, "relu3": 1, "affine4": 1, "lr": 1, "strength": 1, "lmd": 1, "lmdc": 1, "lmpredictstat": 1, "avg_r": 1, "ss_avg_r": 1, "logsumexp": 1, "margin": 1, "matrixprofil": 1, "effici": [1, 17], "scrimp": 1, "yan": 1, "zhu": 1, "et": 1, "2018": 1, "profil": 1, "xi": 1, "motif": 1, "discoveri": 1, "interact": 1, "speed": [1, 16], "ieee": 1, "confer": 1, "mine": 1, "icdm": 1, "pp": 1, "837": 1, "846": 1, "1109": 1, "00099": 1, "ucr": 1, "edu": 1, "eamonn": 1, "scrimp_icdm_camera_ready_upd": 1, "window_s": 1, "slide": 1, "sample_perc": 1, "exact": 1, "mcc": 1, "matthew": 1, "mdedup": 1, "lhsfeatur": 1, "lhsthreshold": 1, "rhsfeatur": 1, "rhsthreshold": 1, "dedupl": 1, "street": 1, "95": 1, "citi": 1, "90": 1, "zip": 1, "jaccard": 1, "1xd": 1, "md": 1, "To": [1, 7, 12, 13, 14, 15, 17], "mice": 1, "cmask": 1, "chain": 1, "equat": 1, "suffix": 1, "continuo": 1, "greater": 1, "applic": 1, "miceappli": 1, "meta": [1, 16], "dm": 1, "betalist": 1, "mtea": 1, "colmax": 1, "oh": 1, "compris": 1, "rest": 1, "msvmpredict": 1, "help": [1, 17], "lin": 1, "weng": 1, "keerthi": 1, "jmlr": 1, "2008": 1, "627": 1, "650": 1, "present": 1, "multilogregpredict": [1, 14, 16], "TO": 1, "na_locf": 1, "backward": 1, "locf": 1, "nocb": 1, "next": [1, 15], "carri": 1, "screen": 1, "naivebay": 1, "condit": 1, "laplac": 1, "naivebayespredict": 1, "naivebaysepredict": 1, "naiv": 1, "bay": 1, "minima": 1, "maxima": 1, "normalizeappli": 1, "cmin": 1, "cmax": 1, "post": [1, 12], "caller": 1, "colunm": 1, "opposit": 1, "quartil": 1, "outlierbyarima": 1, "repair": 1, "deviat": 1, "awai": 1, "predic": 1, "68": 1, "99": 1, "sigma": 1, "rule": 1, "repairmethod": 1, "delet": 1, "outlierbyiqr": 1, "max_iter": 1, "discern": 1, "iqr": 1, "isit": 1, "arbitrari": 1, "iterait": 1, "outlierbyiqrappli": 1, "q3": 1, "third": 1, "inter": 1, "outlierbysd": 1, "outlierbysdappli": 1, "colmean": 1, "colsd": 1, "pca": 1, "typic": 1, "reduc": [1, 14, 16], "eigenvector": 1, "data_reduc": 1, "onlycompon": 1, "ml": [1, 17], "x_reduc": 1, "y_predict_norm": 1, "y_predict_round": 1, "eigen": 1, "influenc": 1, "pcainvers": 1, "scalefactor": 1, "princip": 1, "lost": 1, "previou": [1, 14], "pcatransform": 1, "transpos": [1, 4], "good": [1, 14], "product": 1, "previous": 1, "pnmf": 1, "probabilist": 1, "obj": 1, "ppca": 1, "spca": 1, "scalabl": 1, "platform": 1, "tarek": 1, "elgam": 1, "tolobj": 1, "tolrecerr": 1, "project": [1, 12], "randomforest": 1, "ensembl": 1, "regressor": 1, "chosen": 1, "remain": 1, "p4": 1, "With": [1, 14, 16], "feature_frac": 1, "prefix": 1, "num_tre": 1, "sample_frac": 1, "randomforestpredict": 1, "wise": [1, 2, 4, 13], "subsequ": [1, 16], "resist": 1, "guarante": 1, "extra": [1, 7], "introduc": [1, 16], "scaleappli": 1, "multipli": [1, 13, 14, 15], "scaleminmax": 1, "selectbyvarthresh": 1, "drop": 1, "thresh": 1, "setdiff": 1, "sherlock": 1, "phase": 1, "deep": 1, "approach": [1, 15], "semant": 1, "hulsebo": 1, "madelon": 1, "proceed": 1, "25th": 1, "sigkdd": 1, "knowledg": 1, "2019": 1, "final": [1, 14], "charact": 1, "bias": [1, 16], "paragraph": 1, "global": 1, "sherlockpredict": 1, "cw1": 1, "cb1": 1, "cw2": 1, "cb2": 1, "cw3": 1, "cb3": 1, "ww1": 1, "wb1": 1, "ww2": 1, "wb2": 1, "ww3": 1, "wb3": 1, "pw1": 1, "pb1": 1, "pw2": 1, "pb2": 1, "pw3": 1, "pb3": 1, "sw1": 1, "sb1": 1, "sw2": 1, "sb2": 1, "sw3": 1, "sb3": 1, "fw1": 1, "fb1": 1, "fw2": 1, "fb2": 1, "fw3": 1, "fb3": 1, "cw": 1, "distribt": 1, "cb": 1, "ww": 1, "wb": 1, "pw": 1, "pb": 1, "sw": 1, "sb": 1, "fw": 1, "fb": 1, "shortestpath": 1, "sourcenod": 1, "shortest": 1, "grzegorz": 1, "malewicz": 1, "austern": 1, "aart": 1, "bilk": 1, "jame": 1, "dehnert": 1, "ikkan": 1, "horn": 1, "nati": 1, "leiser": 1, "czajkowski": 1, "pregel": 1, "larg": 1, "sigmod": 1, "Such": 1, "symmetr": [1, 4], "undirect": 1, "just": [1, 12], "edg": 1, "ith": 1, "jth": 1, "infin": 1, "squash": 1, "slicefind": 1, "slicelin": 1, "algebra": 1, "slice": 1, "significantli": 1, "wors": 1, "overal": [1, 14, 16], "descript": 1, "experiment": 1, "svetlana": 1, "sagadeeva": 1, "matthia": 1, "boehm": 1, "fast": 1, "2021": 1, "maxl": 1, "conjunct": 1, "unlimit": 1, "minsup": 1, "tpeval": 1, "task": [1, 17], "tpblksz": 1, "num": 1, "selfeat": 1, "don": 1, "satisfi": 1, "popul": 1, "smote": 1, "hand": [1, 2, 4], "imbal": 1, "synthet": 1, "minor": 1, "nitesh": 1, "chawla": 1, "journal": 1, "artifici": 1, "intellig": 1, "research": 1, "2002": 1, "321": 1, "357": 1, "percentag": 1, "oversampl": 1, "integr": [1, 16, 17], "contigu": 1, "cont": 1, "splitbalanc": 1, "balanc": 1, "stablemarriag": 1, "stabl": 1, "marriag": 1, "propos": 1, "statsna": 1, "about": 1, "univari": 1, "na": 1, "gap": 1, "consist": [1, 16], "longest": 1, "account": [1, 16], "print_onli": 1, "overview": 1, "describ": [1, 9], "steplm": 1, "stepwis": 1, "classic": 1, "what": [1, 14], "scenario": [1, 2, 3, 4, 5, 6, 7], "greedili": 1, "akaik": 1, "improv": [1, 7, 14], "anymor": 1, "lmgc": 1, "content": 1, "hdf": [1, 7], "achiev": [1, 14, 16], "stratstat": 1, "common": [1, 16], "slope": 1, "mani": 1, "confound": 1, "covariant": 1, "01": [1, 12, 13, 16], "02": [1, 13], "03": 1, "04": [1, 12], "05": 1, "06": 1, "07": 1, "08": 1, "09": 1, "reserv": 1, "14": 1, "17": [1, 12], "22": 1, "24": 1, "25": 1, "26": 1, "27": 1, "28": [1, 14], "hypothesi": 1, "29": 1, "31": 1, "32": 1, "33": 1, "34": 1, "36": 1, "37": 1, "38": 1, "nd": 1, "place": 1, "stratum": 1, "xcid": 1, "ycid": 1, "scid": 1, "distinct": [1, 14], "symmetricdiffer": 1, "tsne": 1, "visual": 1, "sne": 1, "maaten": 1, "reduced_dim": 1, "perplex": 1, "toonehot": 1, "numclass": 1, "tomeklink": 1, "tomek": 1, "imbalanc": 1, "nxm": 1, "wrt": 1, "topk_clean": 1, "datatrain": 1, "undersampl": 1, "union": 1, "univar": 1, "vectortocsv": 1, "winsor": 1, "outsid": 1, "winsorizeappli": 1, "qlower": 1, "qupper": 1, "quantil": 1, "xdummy1": 1, "here": [1, 14, 15, 16], "purpos": 1, "xdummy2": 1, "xgboost": 1, "boost": 1, "capabl": [1, 16], "work": [1, 14, 15, 16, 17], "explain": 1, "init": 1, "offset": 1, "child": 1, "depict": 1, "dummi": 1, "1xn": 1, "sml_type": 1, "supervis": 1, "alia": 1, "complex": 1, "overfit": 1, "conserv": 1, "xgboostpredictclassif": 1, "y_predict": 1, "xgboostpredictregress": 1, "deriv": [2, 3, 4, 5], "although": [2, 3, 4, 5, 6], "unnamed_input_nod": [2, 3, 4, 5, 6, 7], "named_input_nod": [2, 3, 4, 5, 6, 7], "local_data": [2, 4], "output_typ": [2, 3, 4, 5, 6, 7], "is_python_local_data": [2, 3, 4, 5, 6, 7], "local": [2, 3, 4, 5, 6, 7, 9, 15, 17], "number_of_output": [2, 3, 4, 5, 6, 7], "rememb": [2, 3, 4, 5, 6, 7, 13], "well": [2, 3, 4, 5, 6, 7, 14, 16, 17], "cbind": [2, 4], "concaten": [2, 4], "bind": [2, 4, 17], "right": [2, 4], "side": [2, 4], "code_lin": [2, 3, 4, 5, 6, 7, 8], "var_nam": [2, 3, 4, 5, 6, 7, 8, 9], "unnamed_input_var": [2, 3, 4, 5, 6, 7, 8], "named_input_var": [2, 3, 4, 5, 6, 7, 8], "intend": [2, 3, 4, 5, 6, 7, 8, 9], "action": [2, 3, 4, 5, 6, 7, 8], "save": [2, 3, 4, 5, 6, 7, 8, 14], "lineag": [2, 3, 4, 5, 6, 7, 8, 9], "build": [2, 3, 4, 5, 6, 7, 8, 9, 12], "dag": [2, 3, 4, 5, 6, 7, 9], "lazi": [2, 3, 4, 5, 6, 7, 8, 15], "trace": [2, 3, 4, 5, 6, 7, 8, 9], "till": [2, 3, 4, 5, 6, 7, 8], "pass_python_data_to_prepared_script": [2, 3, 4, 5, 7, 8], "prepared_script": [2, 3, 4, 5, 7, 8], "javaobject": [2, 3, 4, 5, 7, 8, 9, 10], "prepar": [2, 3, 4, 5, 7, 8, 9], "virtual": [2, 3, 4, 5, 7, 8, 12], "rbind": [2, 4], "to_str": [2, 4, 5], "access": [3, 15, 16], "patter": 3, "constructor": 3, "fundament": 4, "ab": [4, 5], "aco": [4, 5], "arcco": [4, 5], "asin": [4, 5], "arcsin": [4, 5], "atan": [4, 5], "arctan": [4, 5], "choleski": 4, "safe": 4, "decomposit": 4, "definit": 4, "skip": [4, 14, 16], "co": [4, 5], "cosh": [4, 5], "aggreg": 4, "index_return": 4, "rev": 4, "revers": 4, "round": 4, "sin": [4, 5], "sinh": [4, 5], "tan": [4, 5], "to_one_hot": 4, "num_class": 4, "onehot": 4, "whole": [4, 16], "onehotencod": 4, "var": 4, "outputtyp": [5, 7, 8], "api": [6, 12, 16], "overload": 7, "thei": 7, "you": [7, 12, 13, 14, 15], "therebi": 7, "equival": 7, "lazili": 7, "noth": [7, 13, 14, 16], "immedi": 7, "recogn": 7, "get_lineage_trac": [7, 8], "jvmview": [7, 8, 10], "destin": 7, "written": 7, "easili": [7, 13], "specif": [7, 14, 15, 16], "seen": [7, 16], "op": [8, 9, 10, 11], "script_build": [8, 9], "acycl": 8, "unlik": 8, "doesn": 8, "dmlscript": 9, "behavior": 9, "add_cod": 9, "add_input_from_python": 9, "input_var": 9, "preparedscript": 9, "build_cod": 9, "dag_root": 9, "topmost": 9, "alreadi": 9, "dmlcode": 9, "resultvari": 9, "execute_with_lineag": 9, "util": [10, 11], "matrix_block_to_numpi": 10, "mb": 10, "matrixblock": 10, "pointer": 10, "numpy_to_matrix_block": 10, "np_arr": 10, "pandas_to_frame_block": 10, "pd_df": 10, "create_params_str": 11, "unnamed_paramet": 11, "named_paramet": 11, "basic": [11, 14, 16], "get_module_dir": 11, "modul": 11, "quit": 12, "packag": [12, 13, 17], "jar": 12, "older": 12, "newer": 12, "compat": [12, 13], "openjdk": 12, "2023": 12, "runtim": 12, "environ": 12, "ubuntu": 12, "0ubuntu122": 12, "64": 12, "server": [12, 15], "vm": 12, "mix": 12, "xx": 12, "involv": 12, "maven": 12, "xxx": 12, "verifi": [12, 14], "few": 12, "suggest": 12, "env": 12, "src": 12, "main": 12, "python3": 12, "venv": 12, "python_venv": 12, "now": [12, 14, 16], "linux": 12, "powershel": 12, "executionpolici": 12, "bypass": 12, "scope": 12, "forc": 12, "ps1": 12, "pip3": 12, "wheel": 12, "clone": 12, "git": 12, "repositori": [12, 15], "com": 12, "root": 12, "mvn": 12, "cd": 12, "librari": 12, "create_python_dist": 12, "py": 12, "readi": [12, 14], "let": 13, "5x10": 13, "yet": [13, 14, 16], "m_re": 13, "quick": 13, "m1": [13, 16], "randint": 13, "dtype": 13, "anoth": [13, 15, 16], "m2": [13, 16], "m_res_np": 13, "algorithm": 13, "simplifi": 13, "develop": 13, "scientist": 13, "exchang": 13, "02033445": 13, "00324092": 13, "0014692": 13, "02649209": 13, "00616902": 13, "0095087": 13, "01039221": 13, "0011352": 13, "01686351": 13, "03839821": 13, "transfer": [13, 16], "goe": [13, 14], "prerequisit": [14, 16], "instal": [14, 16], "simplic": 14, "mnist": 14, "commonli": 14, "explor": 14, "bottom": [14, 15], "page": 14, "download": [14, 16], "setup": [14, 15, 16], "tutori": 14, "datamanag": [14, 16], "get_train_data": 14, "60000": 14, "get_train_label": 14, "come": 14, "perfectli": 14, "realist": 14, "preprocess": [14, 16], "resembl": 14, "shown": 14, "unfortun": 14, "upward": 14, "yt": [14, 16], "get_test_label": 14, "everyth": 14, "smaller": 14, "sample_s": 14, "1000": 14, "x_d": 14, "y_d": 14, "And": 14, "bias_r": 14, "could": 14, "later": [14, 16], "load": 14, "extract": 14, "loader": 14, "short": 14, "xt": [14, 16], "get_test_data": 14, "10000": 14, "y_pred": [14, 16], "acc": [14, 16], "85": 14, "pictur": 14, "But": 14, "valuabl": 14, "know": 14, "potenti": 14, "1k": 14, "60k": 14, "xt_d": 14, "yt_d": 14, "92": 14, "varieti": 14, "noteworthi": 14, "guid": 15, "8001": 15, "mtd": 15, "isdir": 15, "temp": 15, "mkdir": 15, "asarrai": 15, "savetxt": 15, "delimit": 15, "header": 15, "abl": 15, "dim": 15, "localhost": 15, "fed_a": 15, "8002": 15, "8003": 15, "leverag": 15, "addr1": 15, "addr2": 15, "addr3": 15, "stack": 15, "fed": 15, "loc": 15, "ret": 15, "198": 15, "243": 15, "288": 15, "perspect": 15, "simultan": 15, "isol": 15, "differenti": 15, "ip": 15, "behind": 15, "proxi": 15, "coincident": 15, "dynam": 15, "host": 15, "dhcp": 15, "renew": 15, "goal": 16, "showcas": 16, "framework": 16, "adult": 16, "incom": 16, "person": 16, "exce": 16, "50k": 16, "censu": 16, "ag": 16, "workclass": 16, "educ": 16, "marit": 16, "statu": 16, "occup": 16, "race": 16, "regard": 16, "custom": 16, "uci": 16, "assess": 16, "train_count": 16, "15000": 16, "test_count": 16, "5000": 16, "x_frame": 16, "y_frame": 16, "xt_frame": 16, "yt_frame": 16, "get_preprocessed_dataset": 16, "jspec_data": 16, "get_jspec": 16, "jspec_label": 16, "transform_encod": 16, "spec": 16, "transform_appli": 16, "subsampl": 16, "faster": 16, "betas_r": 16, "_": 16, "tool": 16, "understand": 16, "difficulti": 16, "confusion_matrix_ab": 16, "almost": 16, "200": 16, "found": 16, "neural_net_src_path": 16, "neural_net_sourc": 16, "ffn_packag": 16, "fnn": 16, "straightforward": 16, "choos": 16, "yield": 16, "42": 16, "usag": 16, "similarli": 16, "docs_test": 16, "end_to_end": 16, "encode_x": 16, "encode_i": 16, "m1_r": 16, "m2_r": 16, "network_r": 16, "ffn_package_2": 16, "prob": 16, "interfac": 17, "versatil": 17, "scienc": 17, "lifecycl": 17, "engin": 17, "deploy": 17, "serv": 17, "facilit": 17, "abstract": 17, "expertis": 17, "These": 17, "compil": 17, "hybrid": 17, "plan": 17, "memori": 17, "cpu": 17, "gpu": 17, "spark": 17, "contrast": 17, "homogen": 17, "entir": 17, "underli": 17, "datatensor": 17, "heterogen": 17, "nest": 17}, "objects": {"systemds.context": [[0, 0, 1, "", "SystemDSContext"]], "systemds.context.SystemDSContext": [[0, 1, 1, "", "__init__"], [0, 1, 1, "", "array"], [0, 1, 1, "", "capture_stats"], [0, 1, 1, "", "capture_stats_context"], [0, 1, 1, "", "clear_stats"], [0, 1, 1, "", "close"], [0, 1, 1, "", "combine"], [0, 1, 1, "", "dict"], [0, 1, 1, "", "exception_and_close"], [0, 1, 1, "", "federated"], [0, 1, 1, "", "from_numpy"], [0, 1, 1, "", "from_pandas"], [0, 1, 1, "", "full"], [0, 1, 1, "", "get_stats"], [0, 1, 1, "", "get_stderr"], [0, 1, 1, "", "get_stdout"], [0, 1, 1, "", "list"], [0, 1, 1, "", "rand"], [0, 1, 1, "", "read"], [0, 1, 1, "", "scalar"], [0, 1, 1, "", "seq"], [0, 1, 1, "", "source"], [0, 1, 1, "", "take_stats"]], "systemds.operator": [[2, 0, 1, "", "Frame"], [3, 0, 1, "", "List"], [4, 0, 1, "", "Matrix"], [7, 0, 1, "", "OperationNode"], [5, 0, 1, "", "Scalar"], [6, 0, 1, "", "Source"], [1, 2, 0, "-", "algorithm"]], "systemds.operator.Frame": [[2, 1, 1, "", "__init__"], [2, 1, 1, "", "cbind"], [2, 1, 1, "", "code_line"], [2, 1, 1, "", "compute"], [2, 1, 1, "", "pass_python_data_to_prepared_script"], [2, 1, 1, "", "rbind"], [2, 1, 1, "", "replace"], [2, 1, 1, "", "to_string"]], "systemds.operator.List": [[3, 1, 1, "", "__init__"], [3, 1, 1, "", "code_line"], [3, 1, 1, "", "compute"], [3, 1, 1, "", "pass_python_data_to_prepared_script"]], "systemds.operator.Matrix": [[4, 1, 1, "", "__init__"], [4, 1, 1, "", "abs"], [4, 1, 1, "", "acos"], [4, 1, 1, "", "asin"], [4, 1, 1, "", "atan"], [4, 1, 1, "", "cbind"], [4, 1, 1, "", "cholesky"], [4, 1, 1, "", "code_line"], [4, 1, 1, "", "compute"], [4, 1, 1, "", "cos"], [4, 1, 1, "", "cosh"], [4, 1, 1, "", "max"], [4, 1, 1, "", "mean"], [4, 1, 1, "", "min"], [4, 1, 1, "", "order"], [4, 1, 1, "", "pass_python_data_to_prepared_script"], [4, 1, 1, "", "rbind"], [4, 1, 1, "", "replace"], [4, 1, 1, "", "rev"], [4, 1, 1, "", "round"], [4, 1, 1, "", "sin"], [4, 1, 1, "", "sinh"], [4, 1, 1, "", "sum"], [4, 1, 1, "", "t"], [4, 1, 1, "", "tan"], [4, 1, 1, "", "tanh"], [4, 1, 1, "", "to_one_hot"], [4, 1, 1, "", "to_string"], [4, 1, 1, "", "var"]], "systemds.operator.OperationNode": [[7, 1, 1, "", "__init__"], [7, 1, 1, "", "code_line"], [7, 1, 1, "", "compute"], [7, 1, 1, "", "get_lineage_trace"], [7, 1, 1, "", "pass_python_data_to_prepared_script"], [7, 1, 1, "", "print"], [7, 1, 1, "", "write"]], "systemds.operator.Scalar": [[5, 1, 1, "", "__init__"], [5, 1, 1, "", "abs"], [5, 1, 1, "", "acos"], [5, 1, 1, "", "asin"], [5, 1, 1, "", "atan"], [5, 1, 1, "", "code_line"], [5, 1, 1, "", "compute"], [5, 1, 1, "", "cos"], [5, 1, 1, "", "cosh"], [5, 1, 1, "", "pass_python_data_to_prepared_script"], [5, 1, 1, "", "sin"], [5, 1, 1, "", "sinh"], [5, 1, 1, "", "tan"], [5, 1, 1, "", "tanh"], [5, 1, 1, "", "to_string"]], "systemds.operator.Source": [[6, 1, 1, "", "__init__"], [6, 1, 1, "", "code_line"], [6, 1, 1, "", "compute"]], "systemds.operator.algorithm": [[1, 3, 1, "", "WoE"], [1, 3, 1, "", "WoEApply"], [1, 3, 1, "", "abstain"], [1, 3, 1, "", "als"], [1, 3, 1, "", "alsCG"], [1, 3, 1, "", "alsDS"], [1, 3, 1, "", "alsPredict"], [1, 3, 1, "", "alsTopkPredict"], [1, 3, 1, "", "apply_pipeline"], [1, 3, 1, "", "arima"], [1, 3, 1, "", "auc"], [1, 3, 1, "", "autoencoder_2layer"], [1, 3, 1, "", "bandit"], [1, 3, 1, "", "bivar"], [1, 3, 1, "", "components"], [1, 3, 1, "", "confusionMatrix"], [1, 3, 1, "", "cor"], [1, 3, 1, "", "correctTypos"], [1, 3, 1, "", "correctTyposApply"], [1, 3, 1, "", "cox"], [1, 3, 1, "", "cspline"], [1, 3, 1, "", "csplineCG"], [1, 3, 1, "", "csplineDS"], [1, 3, 1, "", "cvlm"], [1, 3, 1, "", "dbscan"], [1, 3, 1, "", "dbscanApply"], [1, 3, 1, "", "decisionTree"], [1, 3, 1, "", "decisionTreePredict"], [1, 3, 1, "", "deepWalk"], [1, 3, 1, "", "denialConstraints"], [1, 3, 1, "", "discoverFD"], [1, 3, 1, "", "dist"], [1, 3, 1, "", "dmv"], [1, 3, 1, "", "ema"], [1, 3, 1, "", "executePipeline"], [1, 3, 1, "", "ffPredict"], [1, 3, 1, "", "ffTrain"], [1, 3, 1, "", "fit_pipeline"], [1, 3, 1, "", "fixInvalidLengths"], [1, 3, 1, "", "fixInvalidLengthsApply"], [1, 3, 1, "", "frameSort"], [1, 3, 1, "", "frequencyEncode"], [1, 3, 1, "", "frequencyEncodeApply"], [1, 3, 1, "", "garch"], [1, 3, 1, "", "gaussianClassifier"], [1, 3, 1, "", "getAccuracy"], [1, 3, 1, "", "glm"], [1, 3, 1, "", "glmPredict"], [1, 3, 1, "", "gmm"], [1, 3, 1, "", "gmmPredict"], [1, 3, 1, "", "gnmf"], [1, 3, 1, "", "gridSearch"], [1, 3, 1, "", "hospitalResidencyMatch"], [1, 3, 1, "", "hyperband"], [1, 3, 1, "", "img_brightness"], [1, 3, 1, "", "img_crop"], [1, 3, 1, "", "img_cutout"], [1, 3, 1, "", "img_invert"], [1, 3, 1, "", "img_mirror"], [1, 3, 1, "", "img_posterize"], [1, 3, 1, "", "img_rotate"], [1, 3, 1, "", "img_sample_pairing"], [1, 3, 1, "", "img_shear"], [1, 3, 1, "", "img_transform"], [1, 3, 1, "", "img_translate"], [1, 3, 1, "", "impurityMeasures"], [1, 3, 1, "", "imputeByFD"], [1, 3, 1, "", "imputeByFDApply"], [1, 3, 1, "", "imputeByMean"], [1, 3, 1, "", "imputeByMeanApply"], [1, 3, 1, "", "imputeByMedian"], [1, 3, 1, "", "imputeByMedianApply"], [1, 3, 1, "", "imputeByMode"], [1, 3, 1, "", "imputeByModeApply"], [1, 3, 1, "", "intersect"], [1, 3, 1, "", "km"], [1, 3, 1, "", "kmeans"], [1, 3, 1, "", "kmeansPredict"], [1, 3, 1, "", "knn"], [1, 3, 1, "", "knnGraph"], [1, 3, 1, "", "knnbf"], [1, 3, 1, "", "l2svm"], [1, 3, 1, "", "l2svmPredict"], [1, 3, 1, "", "lasso"], [1, 3, 1, "", "lenetPredict"], [1, 3, 1, "", "lenetTrain"], [1, 3, 1, "", "lm"], [1, 3, 1, "", "lmCG"], [1, 3, 1, "", "lmDS"], [1, 3, 1, "", "lmPredict"], [1, 3, 1, "", "lmPredictStats"], [1, 3, 1, "", "logSumExp"], [1, 3, 1, "", "matrixProfile"], [1, 3, 1, "", "mcc"], [1, 3, 1, "", "mdedup"], [1, 3, 1, "", "mice"], [1, 3, 1, "", "miceApply"], [1, 3, 1, "", "msvm"], [1, 3, 1, "", "msvmPredict"], [1, 3, 1, "", "multiLogReg"], [1, 3, 1, "", "multiLogRegPredict"], [1, 3, 1, "", "na_locf"], [1, 3, 1, "", "naiveBayes"], [1, 3, 1, "", "naiveBayesPredict"], [1, 3, 1, "", "normalize"], [1, 3, 1, "", "normalizeApply"], [1, 3, 1, "", "outlier"], [1, 3, 1, "", "outlierByArima"], [1, 3, 1, "", "outlierByIQR"], [1, 3, 1, "", "outlierByIQRApply"], [1, 3, 1, "", "outlierBySd"], [1, 3, 1, "", "outlierBySdApply"], [1, 3, 1, "", "pca"], [1, 3, 1, "", "pcaInverse"], [1, 3, 1, "", "pcaTransform"], [1, 3, 1, "", "pnmf"], [1, 3, 1, "", "ppca"], [1, 3, 1, "", "randomForest"], [1, 3, 1, "", "randomForestPredict"], [1, 3, 1, "", "scale"], [1, 3, 1, "", "scaleApply"], [1, 3, 1, "", "scaleMinMax"], [1, 3, 1, "", "selectByVarThresh"], [1, 3, 1, "", "setdiff"], [1, 3, 1, "", "sherlock"], [1, 3, 1, "", "sherlockPredict"], [1, 3, 1, "", "shortestPath"], [1, 3, 1, "", "sigmoid"], [1, 3, 1, "", "slicefinder"], [1, 3, 1, "", "smote"], [1, 3, 1, "", "softmax"], [1, 3, 1, "", "split"], [1, 3, 1, "", "splitBalanced"], [1, 3, 1, "", "stableMarriage"], [1, 3, 1, "", "statsNA"], [1, 3, 1, "", "steplm"], [1, 3, 1, "", "stratstats"], [1, 3, 1, "", "symmetricDifference"], [1, 3, 1, "", "tSNE"], [1, 3, 1, "", "toOneHot"], [1, 3, 1, "", "tomeklink"], [1, 3, 1, "", "topk_cleaning"], [1, 3, 1, "", "underSampling"], [1, 3, 1, "", "union"], [1, 3, 1, "", "univar"], [1, 3, 1, "", "vectorToCsv"], [1, 3, 1, "", "winsorize"], [1, 3, 1, "", "winsorizeApply"], [1, 3, 1, "", "xdummy1"], [1, 3, 1, "", "xdummy2"], [1, 3, 1, "", "xgboost"], [1, 3, 1, "", "xgboostPredictClassification"], [1, 3, 1, "", "xgboostPredictRegression"]], "systemds.script_building": [[8, 2, 0, "-", "dag"], [9, 2, 0, "-", "script"]], "systemds.script_building.dag": [[8, 0, 1, "", "DAGNode"], [8, 0, 1, "", "OutputType"]], "systemds.script_building.dag.DAGNode": [[8, 1, 1, "", "code_line"], [8, 1, 1, "", "compute"], [8, 1, 1, "", "get_lineage_trace"], [8, 1, 1, "", "pass_python_data_to_prepared_script"]], "systemds.script_building.script": [[9, 0, 1, "", "DMLScript"]], "systemds.script_building.script.DMLScript": [[9, 1, 1, "", "add_code"], [9, 1, 1, "", "add_input_from_python"], [9, 1, 1, "", "build_code"], [9, 1, 1, "", "execute"], [9, 1, 1, "", "execute_with_lineage"]], "systemds.utils": [[10, 2, 0, "-", "converters"], [11, 2, 0, "-", "helpers"]], "systemds.utils.converters": [[10, 3, 1, "", "matrix_block_to_numpy"], [10, 3, 1, "", "numpy_to_matrix_block"], [10, 3, 1, "", "pandas_to_frame_block"]], "systemds.utils.helpers": [[11, 3, 1, "", "create_params_string"], [11, 3, 1, "", "get_module_dir"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:module", "3": "py:function"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "module", "Python module"], "3": ["py", "function", "Python function"]}, "titleterms": {"systemdscontext": 0, "algorithm": [1, 14, 16], "frame": 2, "list": 3, "matrix": [4, 13, 16], "scalar": 5, "sourc": [6, 12], "oper": [7, 13], "node": 7, "dag": 8, "script": [9, 14, 16], "convert": 10, "helper": 11, "instal": 12, "systemd": [12, 17], "pip": 12, "quickstart": 13, "more": 13, "complex": 13, "built": 14, "step": [14, 16], "1": [14, 16], "get": 14, "dataset": 14, "2": [14, 16], "reshap": 14, "format": 14, "3": [14, 16], "train": [14, 16], "valid": 14, "4": [14, 16], "tune": 14, "full": [14, 16], "feder": 15, "environ": 15, "start": 15, "worker": 15, "simpl": 15, "aggreg": 15, "exampl": 15, "multipl": 15, "multi": 15, "tenant": 15, "learn": 15, "limit": 15, "python": 16, "end": 16, "tutori": 16, "level": 16, "load": 16, "prepar": 16, "data": 16, "confus": 16, "obtain": 16, "neural": 16, "network": 16, "save": 16, "model": 16, "5": 16, "predict": 16, "unseen": 16, "nn": 16}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx": 57}, "alltitles": {"SystemDSContext": [[0, "systemdscontext"]], "Algorithms": [[1, "algorithms"]], "Frame": [[2, "frame"]], "List": [[3, "list"]], "Matrix": [[4, "matrix"]], "Scalar": [[5, "scalar"]], "Source": [[6, "source"], [12, "source"]], "Operation Node": [[7, "operation-node"]], "Dag": [[8, "dag"]], "Script": [[9, "script"]], "Converters": [[10, "converters"]], "Helpers": [[11, "helpers"]], "Install SystemDS": [[12, "install-systemds"]], "Pip": [[12, "pip"]], "QuickStart": [[13, "quickstart"]], "Matrix Operations": [[13, "matrix-operations"]], "More complex operations": [[13, "more-complex-operations"]], "Built-in Algorithms": [[14, "built-in-algorithms"]], "Step 1: Get Dataset": [[14, "step-1-get-dataset"]], "Step 2: Reshape & Format": [[14, "step-2-reshape-format"]], "Step 3: Training": [[14, "step-3-training"]], "Step 3: Validate": [[14, "step-3-validate"]], "Step 4: Tuning": [[14, "step-4-tuning"]], "Full Script": [[14, "full-script"], [16, "full-script"]], "Federated Environment": [[15, "federated-environment"]], "Start Federated worker": [[15, "start-federated-worker"]], "Simple Aggregation Example": [[15, "simple-aggregation-example"]], "Multiple Federated Environments": [[15, "multiple-federated-environments"]], "Multi-tenant Federated Learning": [[15, "multi-tenant-federated-learning"]], "Limitations": [[15, "limitations"]], "Python end-to-end tutorial": [[16, "python-end-to-end-tutorial"]], "Level 1": [[16, "level-1"]], "Step 1: Load and prepare data": [[16, "step-1-load-and-prepare-data"]], "Step 2: Training": [[16, "step-2-training"]], "Step 3: Confusion Matrix": [[16, "step-3-confusion-matrix"]], "Level 2": [[16, "level-2"]], "Step 1: Obtain data": [[16, "step-1-obtain-data"]], "Step 2: Load the algorithm": [[16, "step-2-load-the-algorithm"]], "Step 3: Training the neural network": [[16, "step-3-training-the-neural-network"]], "Step 4: Saving the model": [[16, "step-4-saving-the-model"]], "Step 5: Predict on Unseen data": [[16, "step-5-predict-on-unseen-data"]], "Full Script NN": [[16, "full-script-nn"]], "SystemDS": [[17, "systemds"]]}, "indexentries": {"systemdscontext (class in systemds.context)": [[0, "systemds.context.SystemDSContext"]], "__init__() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.__init__"]], "array() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.array"]], "capture_stats() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.capture_stats"]], "capture_stats_context() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.capture_stats_context"]], "clear_stats() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.clear_stats"]], "close() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.close"]], "combine() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.combine"]], "dict() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.dict"]], "exception_and_close() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.exception_and_close"]], "federated() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.federated"]], "from_numpy() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.from_numpy"]], "from_pandas() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.from_pandas"]], "full() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.full"]], "get_stats() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.get_stats"]], "get_stderr() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.get_stderr"]], "get_stdout() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.get_stdout"]], "list() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.list"]], "rand() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.rand"]], "read() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.read"]], "scalar() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.scalar"]], "seq() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.seq"]], "source() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.source"]], "take_stats() (systemds.context.systemdscontext method)": [[0, "systemds.context.SystemDSContext.take_stats"]], "woe() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.WoE"]], "woeapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.WoEApply"]], "abstain() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.abstain"]], "als() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.als"]], "alscg() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.alsCG"]], "alsds() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.alsDS"]], "alspredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.alsPredict"]], "alstopkpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.alsTopkPredict"]], "apply_pipeline() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.apply_pipeline"]], "arima() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.arima"]], "auc() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.auc"]], "autoencoder_2layer() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.autoencoder_2layer"]], "bandit() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.bandit"]], "bivar() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.bivar"]], "components() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.components"]], "confusionmatrix() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.confusionMatrix"]], "cor() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.cor"]], "correcttypos() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.correctTypos"]], "correcttyposapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.correctTyposApply"]], "cox() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.cox"]], "cspline() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.cspline"]], "csplinecg() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.csplineCG"]], "csplineds() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.csplineDS"]], "cvlm() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.cvlm"]], "dbscan() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.dbscan"]], "dbscanapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.dbscanApply"]], "decisiontree() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.decisionTree"]], "decisiontreepredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.decisionTreePredict"]], "deepwalk() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.deepWalk"]], "denialconstraints() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.denialConstraints"]], "discoverfd() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.discoverFD"]], "dist() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.dist"]], "dmv() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.dmv"]], "ema() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.ema"]], "executepipeline() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.executePipeline"]], "ffpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.ffPredict"]], "fftrain() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.ffTrain"]], "fit_pipeline() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.fit_pipeline"]], "fixinvalidlengths() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.fixInvalidLengths"]], "fixinvalidlengthsapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.fixInvalidLengthsApply"]], "framesort() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.frameSort"]], "frequencyencode() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.frequencyEncode"]], "frequencyencodeapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.frequencyEncodeApply"]], "garch() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.garch"]], "gaussianclassifier() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.gaussianClassifier"]], "getaccuracy() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.getAccuracy"]], "glm() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.glm"]], "glmpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.glmPredict"]], "gmm() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.gmm"]], "gmmpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.gmmPredict"]], "gnmf() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.gnmf"]], "gridsearch() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.gridSearch"]], "hospitalresidencymatch() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.hospitalResidencyMatch"]], "hyperband() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.hyperband"]], "img_brightness() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_brightness"]], "img_crop() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_crop"]], "img_cutout() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_cutout"]], "img_invert() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_invert"]], "img_mirror() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_mirror"]], "img_posterize() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_posterize"]], "img_rotate() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_rotate"]], "img_sample_pairing() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_sample_pairing"]], "img_shear() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_shear"]], "img_transform() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_transform"]], "img_translate() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.img_translate"]], "impuritymeasures() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.impurityMeasures"]], "imputebyfd() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.imputeByFD"]], "imputebyfdapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.imputeByFDApply"]], "imputebymean() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.imputeByMean"]], "imputebymeanapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.imputeByMeanApply"]], "imputebymedian() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.imputeByMedian"]], "imputebymedianapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.imputeByMedianApply"]], "imputebymode() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.imputeByMode"]], "imputebymodeapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.imputeByModeApply"]], "intersect() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.intersect"]], "km() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.km"]], "kmeans() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.kmeans"]], "kmeanspredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.kmeansPredict"]], "knn() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.knn"]], "knngraph() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.knnGraph"]], "knnbf() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.knnbf"]], "l2svm() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.l2svm"]], "l2svmpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.l2svmPredict"]], "lasso() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.lasso"]], "lenetpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.lenetPredict"]], "lenettrain() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.lenetTrain"]], "lm() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.lm"]], "lmcg() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.lmCG"]], "lmds() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.lmDS"]], "lmpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.lmPredict"]], "lmpredictstats() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.lmPredictStats"]], "logsumexp() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.logSumExp"]], "matrixprofile() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.matrixProfile"]], "mcc() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.mcc"]], "mdedup() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.mdedup"]], "mice() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.mice"]], "miceapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.miceApply"]], "module": [[1, "module-systemds.operator.algorithm"], [8, "module-systemds.script_building.dag"], [9, "module-systemds.script_building.script"], [10, "module-systemds.utils.converters"], [11, "module-systemds.utils.helpers"]], "msvm() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.msvm"]], "msvmpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.msvmPredict"]], "multilogreg() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.multiLogReg"]], "multilogregpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.multiLogRegPredict"]], "na_locf() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.na_locf"]], "naivebayes() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.naiveBayes"]], "naivebayespredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.naiveBayesPredict"]], "normalize() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.normalize"]], "normalizeapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.normalizeApply"]], "outlier() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.outlier"]], "outlierbyarima() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.outlierByArima"]], "outlierbyiqr() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.outlierByIQR"]], "outlierbyiqrapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.outlierByIQRApply"]], "outlierbysd() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.outlierBySd"]], "outlierbysdapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.outlierBySdApply"]], "pca() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.pca"]], "pcainverse() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.pcaInverse"]], "pcatransform() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.pcaTransform"]], "pnmf() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.pnmf"]], "ppca() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.ppca"]], "randomforest() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.randomForest"]], "randomforestpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.randomForestPredict"]], "scale() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.scale"]], "scaleapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.scaleApply"]], "scaleminmax() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.scaleMinMax"]], "selectbyvarthresh() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.selectByVarThresh"]], "setdiff() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.setdiff"]], "sherlock() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.sherlock"]], "sherlockpredict() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.sherlockPredict"]], "shortestpath() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.shortestPath"]], "sigmoid() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.sigmoid"]], "slicefinder() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.slicefinder"]], "smote() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.smote"]], "softmax() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.softmax"]], "split() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.split"]], "splitbalanced() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.splitBalanced"]], "stablemarriage() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.stableMarriage"]], "statsna() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.statsNA"]], "steplm() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.steplm"]], "stratstats() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.stratstats"]], "symmetricdifference() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.symmetricDifference"]], "systemds.operator.algorithm": [[1, "module-systemds.operator.algorithm"]], "tsne() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.tSNE"]], "toonehot() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.toOneHot"]], "tomeklink() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.tomeklink"]], "topk_cleaning() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.topk_cleaning"]], "undersampling() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.underSampling"]], "union() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.union"]], "univar() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.univar"]], "vectortocsv() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.vectorToCsv"]], "winsorize() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.winsorize"]], "winsorizeapply() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.winsorizeApply"]], "xdummy1() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.xdummy1"]], "xdummy2() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.xdummy2"]], "xgboost() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.xgboost"]], "xgboostpredictclassification() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.xgboostPredictClassification"]], "xgboostpredictregression() (in module systemds.operator.algorithm)": [[1, "systemds.operator.algorithm.xgboostPredictRegression"]], "frame (class in systemds.operator)": [[2, "systemds.operator.Frame"]], "__init__() (systemds.operator.frame method)": [[2, "systemds.operator.Frame.__init__"]], "cbind() (systemds.operator.frame method)": [[2, "systemds.operator.Frame.cbind"]], "code_line() (systemds.operator.frame method)": [[2, "systemds.operator.Frame.code_line"]], "compute() (systemds.operator.frame method)": [[2, "systemds.operator.Frame.compute"]], "pass_python_data_to_prepared_script() (systemds.operator.frame method)": [[2, "systemds.operator.Frame.pass_python_data_to_prepared_script"]], "rbind() (systemds.operator.frame method)": [[2, "systemds.operator.Frame.rbind"]], "replace() (systemds.operator.frame method)": [[2, "systemds.operator.Frame.replace"]], "to_string() (systemds.operator.frame method)": [[2, "systemds.operator.Frame.to_string"]], "list (class in systemds.operator)": [[3, "systemds.operator.List"]], "__init__() (systemds.operator.list method)": [[3, "systemds.operator.List.__init__"]], "code_line() (systemds.operator.list method)": [[3, "systemds.operator.List.code_line"]], "compute() (systemds.operator.list method)": [[3, "systemds.operator.List.compute"]], "pass_python_data_to_prepared_script() (systemds.operator.list method)": [[3, "systemds.operator.List.pass_python_data_to_prepared_script"]], "matrix (class in systemds.operator)": [[4, "systemds.operator.Matrix"]], "__init__() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.__init__"]], "abs() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.abs"]], "acos() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.acos"]], "asin() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.asin"]], "atan() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.atan"]], "cbind() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.cbind"]], "cholesky() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.cholesky"]], "code_line() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.code_line"]], "compute() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.compute"]], "cos() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.cos"]], "cosh() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.cosh"]], "max() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.max"]], "mean() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.mean"]], "min() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.min"]], "order() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.order"]], "pass_python_data_to_prepared_script() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.pass_python_data_to_prepared_script"]], "rbind() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.rbind"]], "replace() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.replace"]], "rev() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.rev"]], "round() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.round"]], "sin() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.sin"]], "sinh() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.sinh"]], "sum() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.sum"]], "t() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.t"]], "tan() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.tan"]], "tanh() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.tanh"]], "to_one_hot() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.to_one_hot"]], "to_string() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.to_string"]], "var() (systemds.operator.matrix method)": [[4, "systemds.operator.Matrix.var"]], "scalar (class in systemds.operator)": [[5, "systemds.operator.Scalar"]], "__init__() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.__init__"]], "abs() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.abs"]], "acos() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.acos"]], "asin() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.asin"]], "atan() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.atan"]], "code_line() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.code_line"]], "compute() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.compute"]], "cos() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.cos"]], "cosh() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.cosh"]], "pass_python_data_to_prepared_script() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.pass_python_data_to_prepared_script"]], "sin() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.sin"]], "sinh() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.sinh"]], "tan() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.tan"]], "tanh() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.tanh"]], "to_string() (systemds.operator.scalar method)": [[5, "systemds.operator.Scalar.to_string"]], "source (class in systemds.operator)": [[6, "systemds.operator.Source"]], "__init__() (systemds.operator.source method)": [[6, "systemds.operator.Source.__init__"]], "code_line() (systemds.operator.source method)": [[6, "systemds.operator.Source.code_line"]], "compute() (systemds.operator.source method)": [[6, "systemds.operator.Source.compute"]], "operationnode (class in systemds.operator)": [[7, "systemds.operator.OperationNode"]], "__init__() (systemds.operator.operationnode method)": [[7, "systemds.operator.OperationNode.__init__"]], "code_line() (systemds.operator.operationnode method)": [[7, "systemds.operator.OperationNode.code_line"]], "compute() (systemds.operator.operationnode method)": [[7, "systemds.operator.OperationNode.compute"]], "get_lineage_trace() (systemds.operator.operationnode method)": [[7, "systemds.operator.OperationNode.get_lineage_trace"]], "pass_python_data_to_prepared_script() (systemds.operator.operationnode method)": [[7, "systemds.operator.OperationNode.pass_python_data_to_prepared_script"]], "print() (systemds.operator.operationnode method)": [[7, "systemds.operator.OperationNode.print"]], "write() (systemds.operator.operationnode method)": [[7, "systemds.operator.OperationNode.write"]], "dagnode (class in systemds.script_building.dag)": [[8, "systemds.script_building.dag.DAGNode"]], "outputtype (class in systemds.script_building.dag)": [[8, "systemds.script_building.dag.OutputType"]], "code_line() (systemds.script_building.dag.dagnode method)": [[8, "systemds.script_building.dag.DAGNode.code_line"]], "compute() (systemds.script_building.dag.dagnode method)": [[8, "systemds.script_building.dag.DAGNode.compute"]], "get_lineage_trace() (systemds.script_building.dag.dagnode method)": [[8, "systemds.script_building.dag.DAGNode.get_lineage_trace"]], "pass_python_data_to_prepared_script() (systemds.script_building.dag.dagnode method)": [[8, "systemds.script_building.dag.DAGNode.pass_python_data_to_prepared_script"]], "systemds.script_building.dag": [[8, "module-systemds.script_building.dag"]], "dmlscript (class in systemds.script_building.script)": [[9, "systemds.script_building.script.DMLScript"]], "add_code() (systemds.script_building.script.dmlscript method)": [[9, "systemds.script_building.script.DMLScript.add_code"]], "add_input_from_python() (systemds.script_building.script.dmlscript method)": [[9, "systemds.script_building.script.DMLScript.add_input_from_python"]], "build_code() (systemds.script_building.script.dmlscript method)": [[9, "systemds.script_building.script.DMLScript.build_code"]], "execute() (systemds.script_building.script.dmlscript method)": [[9, "systemds.script_building.script.DMLScript.execute"]], "execute_with_lineage() (systemds.script_building.script.dmlscript method)": [[9, "systemds.script_building.script.DMLScript.execute_with_lineage"]], "systemds.script_building.script": [[9, "module-systemds.script_building.script"]], "matrix_block_to_numpy() (in module systemds.utils.converters)": [[10, "systemds.utils.converters.matrix_block_to_numpy"]], "numpy_to_matrix_block() (in module systemds.utils.converters)": [[10, "systemds.utils.converters.numpy_to_matrix_block"]], "pandas_to_frame_block() (in module systemds.utils.converters)": [[10, "systemds.utils.converters.pandas_to_frame_block"]], "systemds.utils.converters": [[10, "module-systemds.utils.converters"]], "create_params_string() (in module systemds.utils.helpers)": [[11, "systemds.utils.helpers.create_params_string"]], "get_module_dir() (in module systemds.utils.helpers)": [[11, "systemds.utils.helpers.get_module_dir"]], "systemds.utils.helpers": [[11, "module-systemds.utils.helpers"]]}})