blob: ad1bb5fabb41975b04a30807e886a27e3398d374 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
ratio = as.double($1)
X = rand(rows=20, cols=4, min=1, max =100, seed=1)
Y = rbind(matrix(1, rows=15, cols=1), matrix(2, rows=5, cols=1))
classesUnBalanced = table(Y[, ncol(Y)], 1)
# # # randomize the data
IX = sample(nrow(X), nrow(X))
P = table(seq(1,nrow(IX)), IX, nrow(IX), nrow(X));
X = P %*% X
Y = P %*% Y
[balancedX, balancedY] = underSampling(X, Y, ratio)
classesBalanced = table(balancedY, 1)
out = as.scalar(classesUnBalanced[1] - classesBalanced[1]) >= (floor(15.0*ratio) - 1) &
as.scalar(classesUnBalanced[1] - classesBalanced[1]) <= (floor(15.0*ratio) + 1)
print(out)