blob: 4a3b49617db5d64b9d1783b32e2db4b603ce3b5a [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# This builtin function makes prediction given data and trained feedforward neural network model
#
# INPUT:
# --------------------------------------------------------------------------------------------
# Model Trained ff neural network model
# X Data used for making predictions
# batch_size Batch size
# --------------------------------------------------------------------------------------------
#
# OUTPUT:
# ---------------------------------------------------------------------------------------
# pred Predicted value
# ---------------------------------------------------------------------------------------
source("nn/layers/feedForward.dml") as ff_pass
s_ffPredict = function(List[unknown] model, Matrix[Double] X, Integer batch_size = 128)
return (Matrix[Double] pred) {
rows = nrow(X)
out = as.matrix(model["W2"])
cols = ncol(out)
pred = matrix(0, rows, cols)
iters = ceil(rows / batch_size)
batch = batch_size
for(i in 1:iters) {
begin = (i-1)*batch+1
end = min(rows, begin + batch - 1)
X_batch = X[begin:end,]
output = ff_pass::feedForward(X_batch, model, TRUE)
pred[begin:end,] = as.matrix(output[length(output)])
}
}