| #------------------------------------------------------------- |
| # |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| #------------------------------------------------------------- |
| |
| # This builtin function makes prediction given data and trained feedforward neural network model |
| # |
| # INPUT: |
| # -------------------------------------------------------------------------------------------- |
| # Model Trained ff neural network model |
| # X Data used for making predictions |
| # batch_size Batch size |
| # -------------------------------------------------------------------------------------------- |
| # |
| # OUTPUT: |
| # --------------------------------------------------------------------------------------- |
| # pred Predicted value |
| # --------------------------------------------------------------------------------------- |
| |
| source("nn/layers/feedForward.dml") as ff_pass |
| |
| s_ffPredict = function(List[unknown] model, Matrix[Double] X, Integer batch_size = 128) |
| return (Matrix[Double] pred) { |
| |
| rows = nrow(X) |
| out = as.matrix(model["W2"]) |
| cols = ncol(out) |
| pred = matrix(0, rows, cols) |
| |
| iters = ceil(rows / batch_size) |
| |
| batch = batch_size |
| for(i in 1:iters) { |
| begin = (i-1)*batch+1 |
| end = min(rows, begin + batch - 1) |
| X_batch = X[begin:end,] |
| output = ff_pass::feedForward(X_batch, model, TRUE) |
| pred[begin:end,] = as.matrix(output[length(output)]) |
| } |
| } |