| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import pandas as pd |
| import pytest |
| |
| from superset.exceptions import InvalidPostProcessingError |
| from superset.utils import pandas_postprocessing as pp |
| from superset.utils.pandas_postprocessing.utils import FLAT_COLUMN_SEPARATOR |
| from tests.unit_tests.fixtures.dataframes import ( |
| multiple_metrics_df, |
| single_metric_df, |
| timeseries_df, |
| ) |
| from tests.unit_tests.pandas_postprocessing.utils import series_to_list |
| |
| |
| def test_rolling_should_not_side_effect(): |
| _timeseries_df = timeseries_df.copy() |
| pp.rolling( |
| df=timeseries_df, |
| columns={"y": "y"}, |
| rolling_type="sum", |
| window=2, |
| min_periods=0, |
| ) |
| assert _timeseries_df.equals(timeseries_df) |
| |
| |
| def test_rolling(): |
| # sum rolling type |
| post_df = pp.rolling( |
| df=timeseries_df, |
| columns={"y": "y"}, |
| rolling_type="sum", |
| window=2, |
| min_periods=0, |
| ) |
| |
| assert post_df.columns.tolist() == ["label", "y"] |
| assert series_to_list(post_df["y"]) == [1.0, 3.0, 5.0, 7.0] |
| |
| # mean rolling type with alias |
| post_df = pp.rolling( |
| df=timeseries_df, |
| rolling_type="mean", |
| columns={"y": "y_mean"}, |
| window=10, |
| min_periods=0, |
| ) |
| assert post_df.columns.tolist() == ["label", "y", "y_mean"] |
| assert series_to_list(post_df["y_mean"]) == [1.0, 1.5, 2.0, 2.5] |
| |
| # count rolling type |
| post_df = pp.rolling( |
| df=timeseries_df, |
| rolling_type="count", |
| columns={"y": "y"}, |
| window=10, |
| min_periods=0, |
| ) |
| assert post_df.columns.tolist() == ["label", "y"] |
| assert series_to_list(post_df["y"]) == [1.0, 2.0, 3.0, 4.0] |
| |
| # quantile rolling type |
| post_df = pp.rolling( |
| df=timeseries_df, |
| columns={"y": "q1"}, |
| rolling_type="quantile", |
| rolling_type_options={"quantile": 0.25}, |
| window=10, |
| min_periods=0, |
| ) |
| assert post_df.columns.tolist() == ["label", "y", "q1"] |
| assert series_to_list(post_df["q1"]) == [1.0, 1.25, 1.5, 1.75] |
| |
| # incorrect rolling type |
| with pytest.raises(InvalidPostProcessingError): |
| pp.rolling( |
| df=timeseries_df, |
| columns={"y": "y"}, |
| rolling_type="abc", |
| window=2, |
| ) |
| |
| # incorrect rolling type options |
| with pytest.raises(InvalidPostProcessingError): |
| pp.rolling( |
| df=timeseries_df, |
| columns={"y": "y"}, |
| rolling_type="quantile", |
| rolling_type_options={"abc": 123}, |
| window=2, |
| ) |
| |
| |
| def test_rolling_min_periods_trims_correctly(): |
| pivot_df = pp.pivot( |
| df=single_metric_df, |
| index=["dttm"], |
| columns=["country"], |
| aggregates={"sum_metric": {"operator": "sum"}}, |
| ) |
| rolling_df = pp.rolling( |
| df=pivot_df, |
| rolling_type="sum", |
| window=2, |
| min_periods=2, |
| columns={"sum_metric": "sum_metric"}, |
| ) |
| assert len(rolling_df) == 1 |
| |
| |
| def test_rolling_after_pivot_with_single_metric(): |
| pivot_df = pp.pivot( |
| df=single_metric_df, |
| index=["dttm"], |
| columns=["country"], |
| aggregates={"sum_metric": {"operator": "sum"}}, |
| ) |
| """ |
| sum_metric |
| country UK US |
| dttm |
| 2019-01-01 5 6 |
| 2019-01-02 7 8 |
| """ |
| rolling_df = pp.rolling( |
| df=pivot_df, |
| columns={"sum_metric": "sum_metric"}, |
| rolling_type="sum", |
| window=2, |
| min_periods=0, |
| ) |
| """ |
| sum_metric |
| country UK US |
| dttm |
| 2019-01-01 5 6 |
| 2019-01-02 12 14 |
| """ |
| flat_df = pp.flatten(rolling_df) |
| """ |
| dttm sum_metric, UK sum_metric, US |
| 0 2019-01-01 5 6 |
| 1 2019-01-02 12 14 |
| """ |
| assert flat_df.equals( |
| pd.DataFrame( |
| data={ |
| "dttm": pd.to_datetime(["2019-01-01", "2019-01-02"]), |
| FLAT_COLUMN_SEPARATOR.join(["sum_metric", "UK"]): [5, 12], |
| FLAT_COLUMN_SEPARATOR.join(["sum_metric", "US"]): [6, 14], |
| } |
| ) |
| ) |
| |
| |
| def test_rolling_after_pivot_with_multiple_metrics(): |
| pivot_df = pp.pivot( |
| df=multiple_metrics_df, |
| index=["dttm"], |
| columns=["country"], |
| aggregates={ |
| "sum_metric": {"operator": "sum"}, |
| "count_metric": {"operator": "sum"}, |
| }, |
| ) |
| """ |
| count_metric sum_metric |
| country UK US UK US |
| dttm |
| 2019-01-01 1 2 5 6 |
| 2019-01-02 3 4 7 8 |
| """ |
| rolling_df = pp.rolling( |
| df=pivot_df, |
| columns={ |
| "count_metric": "count_metric", |
| "sum_metric": "sum_metric", |
| }, |
| rolling_type="sum", |
| window=2, |
| min_periods=0, |
| ) |
| """ |
| count_metric sum_metric |
| country UK US UK US |
| dttm |
| 2019-01-01 1 2 5 6 |
| 2019-01-02 4 6 12 14 |
| """ |
| flat_df = pp.flatten(rolling_df) |
| """ |
| dttm count_metric, UK count_metric, US sum_metric, UK sum_metric, US |
| 0 2019-01-01 1 2 5 6 |
| 1 2019-01-02 4 6 12 14 |
| """ |
| assert flat_df.equals( |
| pd.DataFrame( |
| data={ |
| "dttm": pd.to_datetime(["2019-01-01", "2019-01-02"]), |
| FLAT_COLUMN_SEPARATOR.join(["count_metric", "UK"]): [1, 4], |
| FLAT_COLUMN_SEPARATOR.join(["count_metric", "US"]): [2, 6], |
| FLAT_COLUMN_SEPARATOR.join(["sum_metric", "UK"]): [5, 12], |
| FLAT_COLUMN_SEPARATOR.join(["sum_metric", "US"]): [6, 14], |
| } |
| ) |
| ) |