blob: a952b8a1d792b8e0c4fe10665269dd22ad5f38ea [file] [log] [blame]
/***************************************************************************
*
* alg_test.h - common definitions for algorithms tests
*
* $Id$
*
***************************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied. See the License for the specific language governing
* permissions and limitations under the License.
*
* Copyright 1994-2005 Rogue Wave Software.
*
**************************************************************************/
#ifndef RW_ALG_TEST_H_INCLUDED
#define RW_ALG_TEST_H_INCLUDED
#include <rw/_iterbase.h> // for iterator
#include <rw_testdefs.h>
// generate a unique sequential number starting from 0
_TEST_EXPORT int gen_seq ();
// generate numbers in the sequence 0, 0, 1, 1, 2, 2, 3, 3, etc...
_TEST_EXPORT int gen_seq_2lists ();
// generate a sequence of subsequences (i.e., 0, 1, 2, 3, 4, 0, 1, 2, etc...)
_TEST_EXPORT int gen_subseq ();
// wrapper around a (possibly) extern "C" int rand()
// extern "C++"
_TEST_EXPORT int gen_rnd ();
// computes an integral log2
_TEST_EXPORT unsigned ilog2 (_RWSTD_SIZE_T);
// computes an integral log10
_TEST_EXPORT unsigned ilog10 (_RWSTD_SIZE_T);
template <class InputIterator, class Predicate>
inline bool
is_sorted (InputIterator first, InputIterator last, Predicate pred)
{
if (first == last)
return true;
for (InputIterator prev (first); ++first != last; prev = first) {
if (pred (*first, *prev))
return false;
}
return true;
}
// returns true iff a sequence of (not necessarily unique) values
// is sorted in an ascending order
template <class InputIterator>
inline bool is_sorted_lt (InputIterator first, InputIterator last)
{
if (first == last)
return true;
for (InputIterator prev (first); ++first != last; prev = first) {
if (*first < *prev)
return false;
}
return true;
}
// returns true iff a sequence of (not necessarily unique) values
// is sorted in a descending order
template <class InputIterator>
inline bool is_sorted_gt (InputIterator first, InputIterator last)
{
if (first == last)
return true;
for (InputIterator prev (first); ++first != last; prev = first) {
if (*prev < *first)
return false;
}
return true;
}
/**************************************************************************/
// type used to exercise that algorithms do not apply operators
// to function objects the latter are not required to define
struct conv_to_bool
{
static conv_to_bool make (bool val) {
return conv_to_bool (val);
}
#if !defined (_MSC_VER) || _MSC_VER > 1300
// unique pointer not compatible with any other
typedef bool conv_to_bool::*UniquePtr;
// strictly convertible to a Boolean value testable
// in the controlling expression of the if statement
// as required in 25, p7
operator UniquePtr () const {
return val_ ? &conv_to_bool::val_ : UniquePtr (0);
}
#else
typedef const void* UniquePtr;
operator UniquePtr () const {
return val_ ? &val_ : UniquePtr (0);
}
#endif
private:
// not (publicly) Default-Constructible
conv_to_bool (bool val): val_ (val) { }
void operator= (conv_to_bool); // not Assignable
void operator!() const; // not defined
bool val_;
};
// not defined
void operator&& (const conv_to_bool&, bool);
void operator&& (bool, const conv_to_bool&);
void operator|| (const conv_to_bool&, bool);
void operator|| (bool, const conv_to_bool&);
// element-type prototypes to exercise container requirements
// meets requirements listed at 25, p7
template <class T>
struct predicate {
conv_to_bool operator() (const T &a) const {
_RWSTD_UNUSED (a);
return conv_to_bool::make (true);
}
};
// meets requirements listed at 25, p8
template <class T>
struct binary_predicate {
conv_to_bool operator() (const T &a, const T &b) const {
_RWSTD_UNUSED (a);
_RWSTD_UNUSED (b);
return conv_to_bool::make (true);
}
};
// meets requirements listed at 25.2.3, p2
template <class T>
struct func {
typedef T argument_type;
typedef argument_type& reference;
reference operator() (const argument_type&) const {
return _RWSTD_REINTERPRET_CAST (reference,
_RWSTD_CONST_CAST (func*, this)->dummy);
}
private:
char dummy;
};
// meets requirements listed at 25.2.3, p2
template <class T>
struct binary_func {
typedef T argument_type;
typedef argument_type& reference;
reference operator() (const argument_type&,
const argument_type&) const {
return _RWSTD_REINTERPRET_CAST (reference,
_RWSTD_CONST_CAST (binary_func*, this)->dummy);
}
private:
char dummy;
};
// a base-class to extend the requirements classes from
enum { no_ctor = 0, def_ctor = 1, cpy_ctor = 2 };
template <int c = no_ctor>
struct base;
template<>
struct base<no_ctor>
{
private:
// struct s added to prevent gcc warning: base<no_ctor> has a private
// constructor and no friends
struct s { };
friend struct s;
base ();
base (const base&);
void operator= (base&);
};
template<>
struct base<def_ctor>
{
base () : unused (0) { }
private:
void operator= (base&);
base (const base&);
// unused member prevents bogus HP aCC warnings (see Onyx #23561)
int unused;
};
template<>
struct base<cpy_ctor>
{
// explicitly specifying redundant template parameters to work
// around a SunPro 5.2 bug (see Onyx #24260)
base (const base<cpy_ctor> &rhs): unused (rhs.unused) { }
private:
base ();
void operator= (base&);
// unused member prevents bogus HP aCC warnings (see Onyx #23561)
int unused;
};
template<>
struct base<(def_ctor | cpy_ctor)>
{
base (): unused (0) { }
// explicitly specifying redundant template parameters to work
// around a SunPro 5.2 bug (see Onyx #24260)
base (const base<(def_ctor | cpy_ctor)> &rhs): unused (rhs.unused) { }
private:
void operator= (base&);
// unused member prevents bogus HP aCC warnings (see Onyx #23561)
int unused;
};
template <class T>
struct eq_comp: T { };
template <class T>
inline bool operator== (const eq_comp<T>&, const eq_comp<T>&)
{
return true;
}
template <class T>
struct lt_comp: T { };
template <class T>
inline bool operator< (const lt_comp<T>&, const lt_comp<T>&)
{
return true;
}
// assignment
template <class T>
struct assign : T
{
assign& operator= (const assign& rhs) {
unused = rhs.unused;
return *this;
}
private:
// unused member prevents bogus HP aCC warnings (see Onyx #23561)
int unused;
};
// conversion structs
// struct split into 2 to eliminate the following g++ 2.95.2 warning:
// warning: choosing `convert<T>::operator U&()' over
// `convert<T>::operator const U&() const'
template <class T, class U>
struct cvt : T
{
operator U& () {
return _RWSTD_REINTERPRET_CAST (U&, *this);
}
};
template <class T, class U>
struct const_cvt : T
{
operator const U& () const {
return _RWSTD_REINTERPRET_CAST (const U&, *this);
}
};
/**************************************************************************/
// Size template argument to fill_n(), generate_n(), and search_n()
template <class IntegralT>
struct Size
{
typedef IntegralT IntegralType;
// dummy argument provided to prevent Size from being constructible
// by conversion from IntegralT
Size (IntegralT val, int /* dummy */ )
: val_ (val) { /* empty */ }
// Size must be convertible to an integral type
operator IntegralT () const { return val_; }
private:
void operator= (const Size&); // not Assignable
IntegralT val_;
};
/**************************************************************************/
#ifndef _RWSTD_NO_CLASS_PARTIAL_SPEC
struct DummyBase { };
# define ITER_BASE(ign1, ign2, ign3, ign4, ign5) DummyBase
#else // if defined (_RWSTD_NO_CLASS_PARTIAL_SPEC)
// when partial specialization isn't supported
# define ITER_BASE(Cat, T, Dist, Ptr, Ref) \
std::iterator<Cat, T, Dist, Ptr, Ref >
#endif // _RWSTD_NO_CLASS_PARTIAL_SPEC
// satisfies the requirements in 24.1.1 [lib.input.iterators]
template <class T>
struct InputIter: ITER_BASE (std::input_iterator_tag, T, int, T*, T&)
{
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef _RWSTD_PTRDIFF_T difference_type;
typedef std::input_iterator_tag iterator_category;
// body shared by all copies of the same InputIter specialization
// to detect algorithms that pass through the same interator more
// than once (disallowed by 24.1.1, p3)
struct Shared {
const value_type *cur_;
const value_type *beg_;
const value_type *end_;
int ref_;
Shared (const value_type *cur,
const value_type *beg,
const value_type *end)
: cur_ (cur), beg_ (beg), end_ (end), ref_ (1) {
RW_ASSERT (beg_ <= cur_ && cur_ <= end_);
}
~Shared () {
cur_ = beg_ = end_ = 0;
ref_ = -1;
}
private:
Shared (const Shared&); // not defined
void operator= (const Shared&); // not defined
};
// InputIterators are not default constructible
InputIter (const value_type* /* current */,
const value_type* /* begin */,
const value_type* /* end */);
InputIter (const InputIter&);
~InputIter ();
InputIter& operator= (const InputIter&);
bool operator== (const InputIter&) const;
bool operator!= (const InputIter &rhs) const {
return !(*this == rhs);
}
// returning const-reference rather than a value in order
// not to impose the CopyConstructible requirement on T
// and to disallow constructs like *InputIter<T>() = T()
const value_type& operator* () const {
RW_ASSERT (*this == *this); // assert *this is valid
RW_ASSERT (cur_ < ptr_->end_); // assert *this is dereferenceable
return *cur_;
}
_RWSTD_OPERATOR_ARROW (const value_type* operator-> () const);
InputIter& operator++ () {
RW_ASSERT (*this == *this); // assert *this is valid
RW_ASSERT (cur_ < ptr_->end_); // assert *this is not past the end
ptr_->cur_ = ++cur_;
return *this;
}
InputIter operator++ (int) {
return ++*this;
}
// private:
Shared *ptr_;
const value_type *cur_; // past-the-end
};
// "large" member functions outlined to prevent gcc -Winline warnings
template <class T>
InputIter<T>::
InputIter (const value_type *cur,
const value_type *beg,
const value_type *end)
: ptr_ (new Shared (cur, beg, end)), cur_ (cur)
{
// empty
}
template <class T>
InputIter<T>::
InputIter (const InputIter &rhs)
: ptr_ (rhs.ptr_), cur_ (rhs.cur_)
{
RW_ASSERT (0 != ptr_);
++ptr_->ref_;
}
template <class T>
InputIter<T>::
~InputIter ()
{
RW_ASSERT (0 != ptr_);
if (0 == --ptr_->ref_) // decrement the reference count
delete ptr_;
ptr_ = 0;
cur_ = 0;
}
template <class T>
InputIter<T>&
InputIter<T>::
operator= (const InputIter &rhs)
{
RW_ASSERT (rhs == rhs); // assert `rhs' is valid
RW_ASSERT (0 != ptr_);
if (0 == --ptr_->ref_)
delete ptr_;
ptr_ = rhs.ptr_;
RW_ASSERT (0 != ptr_);
++ptr_->ref_;
cur_ = rhs.cur_;
return *this;
}
template <class T>
bool
InputIter<T>::
operator== (const InputIter &rhs) const
{
// assert that both arguments are in the domain of operator==()
// i.e., that no copy of *this or `rhs' has been incremented
// and that no copy passed through this value of the iterator
RW_ASSERT (0 != ptr_);
RW_ASSERT (cur_ == ptr_->cur_);
RW_ASSERT (0 != rhs.ptr_);
RW_ASSERT (rhs.cur_ == rhs.ptr_->cur_);
return cur_ == rhs.cur_;
}
/**************************************************************************/
// satisfies the requirements in 24.1.2 [lib.output.iterators]
template <class T>
struct OutputIter: ITER_BASE (std::output_iterator_tag, T, int, T*, T&)
{
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef _RWSTD_PTRDIFF_T difference_type;
typedef std::output_iterator_tag iterator_category;
// body shared by all copies of the same OutputIter specialization
// to detect algorithms that pass through the same interator more
// than once (disallowed by 24.1.2, p2)
struct Shared {
pointer cur_;
pointer assign_;
const value_type *begin_;
const value_type *end_;
int ref_;
Shared (pointer cur, const value_type *end)
: cur_ (cur), assign_ (cur), begin_ (cur), end_ (end), ref_ (1) { }
~Shared () {
begin_ = end_ = cur_ = assign_ = 0;
ref_ = -1;
}
private:
Shared (const Shared&); // not defined
void operator= (const Shared&); // not defined
};
// class whose objects are returned from OutputIter::operator*
// to detect multiple assignments (disallowed by 24.1.2, p2)
class Proxy {
friend struct OutputIter;
Shared* const ptr_;
Proxy (Shared *ptr): ptr_ (ptr) { }
public:
void operator= (const value_type &rhs) {
RW_ASSERT (0 != ptr_);
// verify that the iterator is in the valid range
RW_ASSERT (ptr_->cur_ >= ptr_->begin_ && ptr_->cur_ <= ptr_->end_);
// verify that the assignment point is the same as the current
// position `cur' within the sequence or immediately before it
// (in order to allow the expression: *it++ = val)
RW_ASSERT ( ptr_->assign_ == ptr_->cur_
|| ptr_->assign_ + 1 == ptr_->cur_);
// assign and increment the assignment point
*ptr_->assign_++ = rhs;
}
};
// OutputIterators are not default constructible
OutputIter (pointer cur,
const value_type *,
const value_type *end)
: ptr_ (new Shared (cur, end)), cur_ (cur) { }
OutputIter (const OutputIter &rhs)
: ptr_ (rhs.ptr_), cur_ (rhs.cur_) {
++ptr_->ref_; // increment the reference count
}
~OutputIter ();
OutputIter& operator= (const OutputIter&);
void operator= (const value_type &rhs) const {
**this = rhs;
}
// return a proxy in order to detect multiple assignments
// through the iterator (disallowed by 24.1.2, p2))
Proxy operator* () const {
RW_ASSERT (0 != ptr_);
RW_ASSERT (ptr_->assign_ && ptr_->assign_ != ptr_->end_);
return Proxy (ptr_);
}
_RWSTD_OPERATOR_ARROW (pointer operator-> () const);
OutputIter& operator++ () {
RW_ASSERT (cur_ == ptr_->cur_);
RW_ASSERT (ptr_->cur_ >= ptr_->begin_ && ptr_->cur_ < ptr_->end_);
cur_ = ++ptr_->cur_;
return *this;
}
// returning a const value rather than a modifiable value
// in order to verify the requirement in row 5 of Table 73
const OutputIter operator++ (int) {
OutputIter tmp (*this);
return ++*this, tmp;
}
// private:
Shared *ptr_;
pointer cur_;
};
// "large" member functions outlined to prevent gcc -Winline warnings
template <class T>
OutputIter<T>::
~OutputIter ()
{
RW_ASSERT (0 != ptr_);
if (0 == --ptr_->ref_) // decrement the reference count
delete ptr_;
ptr_ = 0;
cur_ = 0;
}
template <class T>
OutputIter<T>&
OutputIter<T>::
operator= (const OutputIter &rhs)
{
RW_ASSERT (0 != ptr_);
if (0 == --ptr_->ref_)
delete ptr_;
ptr_ = rhs.ptr_;
++ptr_->ref_;
cur_ = rhs.cur_;
return *this;
}
/**************************************************************************/
// satisfies the requirements in 24.1.3 [lib.forward.iterators]
template <class T>
struct FwdIter: ITER_BASE (std::forward_iterator_tag, T, int, T*, T&)
{
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef _RWSTD_PTRDIFF_T difference_type;
typedef std::forward_iterator_tag iterator_category;
FwdIter (): cur_ (0), end_ (0) { }
FwdIter (pointer cur,
const value_type *,
const value_type *end)
: cur_ (cur), end_ (end) { }
FwdIter (const FwdIter &rhs)
: cur_ (rhs.cur_), end_ (rhs.end_) { }
~FwdIter () {
end_ = cur_ = 0;
}
FwdIter& operator= (const FwdIter &rhs) {
cur_ = rhs.cur_;
end_ = rhs.end_;
return *this;
}
bool operator== (const FwdIter &rhs) const {
RW_ASSERT (cur_ != 0);
return cur_ == rhs.cur_;
}
bool operator!= (const FwdIter &rhs) const {
return !(*this == rhs);
}
reference operator* () const {
RW_ASSERT (cur_ != 0 && cur_ != end_);
return *cur_;
}
_RWSTD_OPERATOR_ARROW (pointer operator-> () const);
FwdIter& operator++ () {
RW_ASSERT (cur_ != 0 && cur_ != end_);
return ++cur_, *this;
}
FwdIter operator++ (int) {
FwdIter tmp (*this);
return ++*this, tmp;
}
// private:
pointer cur_; // pointer to current element
const value_type *end_; // past-the-end
};
template <class T>
struct ConstFwdIter: FwdIter<const T>
{
typedef T value_type;
typedef FwdIter<const value_type> Base;
ConstFwdIter (): Base () { }
ConstFwdIter (const value_type *cur,
const value_type *begin,
const value_type *end)
: Base (cur, begin, end) { }
const value_type& operator* () const {
return Base::operator* ();
}
_RWSTD_OPERATOR_ARROW (const value_type* operator-> () const);
};
/**************************************************************************/
// satisfies the requirements in 24.1.4 [lib.bidirectional.iterators]
template <class T>
struct BidirIter: ITER_BASE (std::bidirectional_iterator_tag, T, int, T*, T&)
{
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef _RWSTD_PTRDIFF_T difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
BidirIter (): cur_ (0), begin_ (0), end_ (0) { }
BidirIter (pointer cur,
const value_type *begin,
const value_type *end)
: cur_ (cur), begin_ (begin), end_ (end) { }
BidirIter (const BidirIter &rhs)
: cur_ (rhs.cur_), begin_ (rhs.begin_), end_ (rhs.end_) { }
~BidirIter () {
begin_ = end_ = cur_ = 0;
}
BidirIter& operator= (const BidirIter &rhs) {
cur_ = rhs.cur_;
end_ = rhs.end_;
return *this;
}
bool operator== (const BidirIter &rhs) const {
RW_ASSERT (cur_ != 0 && rhs.cur_ != 0);
return cur_ == rhs.cur_;
}
bool operator!= (const BidirIter &rhs) const {
return !(*this == rhs);
}
reference operator* () const {
RW_ASSERT (cur_ != 0 && cur_ != end_);
return *cur_;
}
_RWSTD_OPERATOR_ARROW (pointer operator-> () const);
BidirIter& operator++ () {
RW_ASSERT (cur_ != 0 && cur_ != end_);
return ++cur_, *this;
}
BidirIter operator++ (int) {
BidirIter tmp (*this);
return ++*this, tmp;
}
BidirIter& operator-- () {
RW_ASSERT (cur_ != 0 && cur_ != begin_);
return --cur_, *this;
}
BidirIter operator-- (int) {
BidirIter tmp (*this);
return --*this, tmp;
}
// private:
pointer cur_; // pointer to current element
const value_type *begin_; // first in range
const value_type *end_; // past-the-end
};
template <class T>
struct ConstBidirIter: BidirIter<const T>
{
typedef T value_type;
typedef BidirIter<const value_type> Base;
ConstBidirIter (): Base () { }
ConstBidirIter (const value_type *cur,
const value_type *begin,
const value_type *end)
: Base (cur, begin, end) { }
const value_type& operator* () const {
return Base::operator* ();
}
_RWSTD_OPERATOR_ARROW (const value_type* operator-> () const);
};
/**************************************************************************/
// satisfies the requirements in 24.1.5 [lib.random.access.iterators]
template <class T>
struct RandomAccessIter
: ITER_BASE (std::random_access_iterator_tag, T, int, T*, T&)
{
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef _RWSTD_PTRDIFF_T difference_type;
typedef std::random_access_iterator_tag iterator_category;
RandomAccessIter (): cur_ (0), begin_ (0), end_ (0) { }
RandomAccessIter (pointer cur,
const value_type *begin,
const value_type *end)
: cur_ (cur), begin_ (begin), end_ (end) { }
RandomAccessIter (const RandomAccessIter &rhs)
: cur_ (rhs.cur_), begin_ (rhs.begin_), end_ (rhs.end_) { }
~RandomAccessIter () {
begin_ = end_ = cur_ = 0;
}
RandomAccessIter& operator= (const RandomAccessIter &rhs) {
cur_ = rhs.cur_;
begin_ = rhs.begin_;
end_ = rhs.end_;
return *this;
}
reference operator* () const {
RW_ASSERT (cur_ != 0 && cur_ != end_);
return *cur_;
}
_RWSTD_OPERATOR_ARROW (pointer operator-> () const);
RandomAccessIter& operator++ () {
RW_ASSERT (cur_ != 0 && cur_ != end_);
return ++cur_, *this;
}
RandomAccessIter operator++ (int) {
RandomAccessIter tmp (*this);
return ++*this, tmp;
}
RandomAccessIter& operator-- () {
RW_ASSERT (cur_ != 0 && cur_ != begin_);
return --cur_, *this;
}
RandomAccessIter operator-- (int) {
RandomAccessIter tmp (*this);
return --*this, tmp;
}
RandomAccessIter& operator+= (difference_type n) {
RW_ASSERT ( cur_ != 0
&& (!end_ || cur_ + n <= end_)
&& (!begin_ || cur_ + n >= begin_));
return cur_ += n, *this;
}
RandomAccessIter& operator-= (difference_type n) {
return *this += -n;
}
RandomAccessIter operator+ (difference_type n) const {
return RandomAccessIter (*this) += n;
}
RandomAccessIter operator- (difference_type n) const {
return RandomAccessIter (*this) -= n;
}
difference_type operator- (const RandomAccessIter &rhs) const {
RW_ASSERT (cur_ != 0 && rhs.cur_ != 0);
return cur_ - rhs.cur_;
}
bool operator== (const RandomAccessIter &rhs) const {
RW_ASSERT (cur_ != 0 && rhs.cur_ != 0);
return cur_ == rhs.cur_;
}
bool operator!= (const RandomAccessIter &rhs) const {
return !(*this == rhs);
}
bool operator< (const RandomAccessIter &rhs) const {
RW_ASSERT (cur_ != 0 && rhs.cur_ != 0);
return cur_ < rhs.cur_;
};
bool operator> (const RandomAccessIter &rhs) const {
return rhs < *this;
}
bool operator<= (const RandomAccessIter &rhs) const {
return !(rhs < *this);
}
bool operator>= (const RandomAccessIter &rhs) const {
return !(*this < rhs);
}
reference operator[] (difference_type inx) const {
RW_ASSERT ( cur_ != 0
&& (!end_ || cur_ + inx < end_)
&& !(begin_ || cur_ + inx >= begin_));
return cur_ [inx];
}
// private:
pointer cur_; // pointer to current element
const value_type *begin_; // first in range
const value_type *end_; // past-the-end
};
/**************************************************************************/
template <class T>
struct ConstRandomAccessIter: RandomAccessIter<const T>
{
typedef T value_type;
typedef RandomAccessIter<const value_type> Base;
typedef typename Base::difference_type difference_type;
ConstRandomAccessIter (): Base () { }
ConstRandomAccessIter (const value_type *cur,
const value_type *begin,
const value_type *end)
: Base (cur, begin, end) { }
const value_type& operator* () const {
return Base::operator* ();
}
_RWSTD_OPERATOR_ARROW (const value_type* operator-> () const);
const value_type& operator[] (difference_type inx) const {
return Base::operator[] (inx);
}
};
/**************************************************************************/
template <class T>
inline T*
make_iter (T *cur, const T*, const T*, T*)
{
return cur;
}
template <class T>
inline T*
copy_iter (T *ptr, const T*)
{
return ptr;
}
// dummy function argument provided to help broken compilers (PR #29835)
template <class T>
inline InputIter<T>
make_iter (const T *cur, const T *begin, const T *end, const InputIter<T>&)
{
return InputIter<T>(cur, begin, end);
}
template <class T>
inline InputIter<T>
copy_iter (const InputIter<T> &it, const T*)
{
return InputIter<T>(it.cur_, it.ptr_->beg_, it.ptr_->end_);
}
template <class T>
inline const char* type_name (InputIter<T>, const T*)
{ return "InputIterator"; }
template <class T>
inline OutputIter<T>
make_iter (T *cur, const T *begin, const T *end, const OutputIter<T>&)
{
return OutputIter<T>(cur, begin, end);
}
template <class T>
inline OutputIter<T>
copy_iter (const OutputIter<T> &it, const T*)
{
return OutputIter<T>(it.cur_, 0, it.ptr_->end);
}
template <class T>
inline const char* type_name (OutputIter<T>, const T*)
{ return "OutputIterator"; }
template <class T>
inline FwdIter<T>
make_iter (T *cur, const T *begin, const T *end, const FwdIter<T>&)
{
return FwdIter<T>(cur, begin, end);
}
template <class T>
inline FwdIter<T>
copy_iter (const FwdIter<T> &it, const T*)
{
return FwdIter<T>(it.cur_, 0, it.end_);
}
template <class T>
inline const char* type_name (FwdIter<T>, const T*)
{ return "ForwardIterator"; }
template <class T>
inline ConstFwdIter<T>
make_iter (const T *cur, const T *begin, const T *end, const ConstFwdIter<T>&)
{
return ConstFwdIter<T>(cur, begin, end);
}
template <class T>
inline ConstFwdIter<T>
copy_iter (const ConstFwdIter<T> &it, const T*)
{
return ConstFwdIter<T>(it.cur_, 0, it.end_);
}
template <class T>
inline const char* type_name (ConstFwdIter<T>, const T*)
{ return "ConstForwardIterator"; }
template <class T>
inline BidirIter<T>
make_iter (T *cur, const T *begin, const T *end, const BidirIter<T>&)
{
return BidirIter<T>(cur, begin, end);
}
template <class T>
inline BidirIter<T>
copy_iter (const BidirIter<T> &it, const T*)
{
return BidirIter<T>(it.cur_, it.begin_, it.end_);
}
template <class T>
inline const char* type_name (BidirIter<T>, const T*)
{ return "BidirectionalIterator"; }
template <class T>
inline ConstBidirIter<T>
make_iter (const T *cur, const T *begin, const T *end, const ConstBidirIter<T>&)
{
return ConstBidirIter<T>(cur, begin, end);
}
template <class T>
inline ConstBidirIter<T>
copy_iter (const ConstBidirIter<T> &it, const T*)
{
return ConstBidirIter<T>(it.cur_, it.begin_, it.end_);
}
template <class T>
inline const char* type_name (ConstBidirIter<T>, const T*)
{ return "ConstBidirectionalIterator"; }
template <class T>
inline RandomAccessIter<T>
make_iter (T *cur, const T *begin, const T *end, const RandomAccessIter<T>&)
{
return RandomAccessIter<T>(cur, begin, end);
}
template <class T>
inline RandomAccessIter<T>
copy_iter (const RandomAccessIter<T> &it, const T*)
{
return RandomAccessIter<T>(it.cur_, it.begin_, it.end_);
}
template <class T>
inline const char* type_name (RandomAccessIter<T>, const T*)
{ return "RandomAccessIterator"; }
template <class T>
inline ConstRandomAccessIter<T>
make_iter (const T *cur, const T *begin, const T *end,
const ConstRandomAccessIter<T>&)
{
return ConstRandomAccessIter<T>(cur, begin, end);
}
template <class T>
inline ConstRandomAccessIter<T>
copy_iter (const ConstRandomAccessIter<T> &it, const T*)
{
return ConstRandomAccessIter<T>(it.cur_, it.begin_, it.end_);
}
template <class T>
inline const char* type_name (ConstRandomAccessIter<T>, const T*)
{ return "ConstRandomAccessIterator"; }
// temporary to not break the tests which uses struct X
#include <rw_value.h>
#endif // RW_ALG_TEST_H_INCLUDED