blob: 32cf4f2d760108990cfa0ba5a54c57c1d1f54606 [file] [log] [blame]
<HTML>
<HEAD>
<TITLE>Binary Search</TITLE>
<LINK REL=StyleSheet HREF="../rw.css" TYPE="text/css" TITLE="Apache stdcxx Stylesheet"></HEAD>
<BODY BGCOLOR=#FFFFFF>
<A HREF="14-3.html"><IMG SRC="images/bprev.gif" WIDTH=20 HEIGHT=21 ALT="Previous file" BORDER=O></A><A HREF="noframes.html"><IMG SRC="images/btop.gif" WIDTH=56 HEIGHT=21 ALT="Top of Document" BORDER=O></A><A HREF="booktoc.html"><IMG SRC="images/btoc.gif" WIDTH=56 HEIGHT=21 ALT="Contents" BORDER=O></A><A HREF="tindex.html"><IMG SRC="images/bindex.gif" WIDTH=56 HEIGHT=21 ALT="Index page" BORDER=O></A><A HREF="14-5.html"><IMG SRC="images/bnext.gif" WIDTH=25 HEIGHT=21 ALT="Next file" BORDER=O></A><DIV CLASS="DOCUMENTNAME"><B>Apache C++ Standard Library User's Guide</B></DIV>
<H2>14.4 Binary Search</H2>
<A NAME="idx356"><!></A>
<P>The C++ Standard Library provides a number of different variations on binary search algorithms. All perform only approximately <SAMP>log N</SAMP> comparisons, where <SAMP>N</SAMP> is the number of elements in the range described by the arguments. The algorithms work best with random access <B><I><A HREF="../stdlibref/iterator.html">iterator</A></I></B>s, such as those generated by <B><I><A HREF="../stdlibref/vector.html">vector</A></I></B>s or <B><I><A HREF="../stdlibref/deque.html">deque</A></I></B>s. In this case they perform approximately <SAMP>log N</SAMP> operations in total. However, these algorithms also work with non-random access <B><I>iterator</I></B>s, such as those generated by <B><I><A HREF="../stdlibref/list.html">list</A></I></B>s, in which case they perform a linear number of steps. Although possible, it is not worthwhile to perform a binary search on a <B><I><A HREF="../stdlibref/set.html">set</A></I></B> or <B><I><A HREF="../stdlibref/multiset.html">multiset</A></I></B> data structure, since those container classes provide their own search methods, which are more efficient.</P>
<A NAME="idx357"><!></A>
<P>The generic algorithm <SAMP>std::binary_search()</SAMP> returns <SAMP>true</SAMP> if the sequence contains a value that is equivalent to the argument. Recall that to be equivalent means that both <SAMP>Compare(value, arg)</SAMP> and <SAMP>Compare(arg, value)</SAMP> are <SAMP>false</SAMP>. The algorithm is declared as follows:</P>
<UL><PRE>
namespace std {
bool binary_search(ForwardIterator first, ForwardIterator last,
const T&amp; value [, Compare ] );
}
</PRE></UL>
<P>In other situations it is important to know the position of the matching value. This information is returned by a collection of algorithms, defined as follows:</P>
<UL><PRE>
namespace std {
ForwardIterator lower_bound(ForwardIterator first,
ForwardIterator last, const T&amp; value [, Compare ] );
ForwardIterator upper_bound (ForwardIterator first,
ForwardIterator last, const T&amp; value [, Compare ] );
pair&lt;ForwardIterator, ForwardIterator&gt; equal_range
(ForwardIterator first, ForwardIterator last,
const T&amp; value [, Compare ] );
}
</PRE></UL>
<A NAME="idx358"><!></A>
<P>The algorithm <SAMP>std::lower_bound()</SAMP> returns, as an <B><I><A HREF="../stdlibref/iterator.html">iterator</A></I></B>, the first position into which the argument could be inserted without violating the ordering, whereas the algorithm <SAMP>std::upper_bound()</SAMP> finds the last such position. These match only when the element is not currently found in the sequence. Both can be executed together in the algorithm <SAMP>std::equal_range()</SAMP>, which returns a pair of <B><I>iterator</I></B>s.</P>
<P>Our example program shows these functions being used with a <B><I><A HREF="../stdlibref/vector.html">vector</A></I></B> of random integers.</P>
<A NAME="idx359"><!></A>
<UL><PRE>
void binary_search_example()
// illustrates the use of the binary search algorithm
// see alg7.cpp for complete source code
{
// make an ordered vector of 15 random integers
std::vector&lt;int&gt; aVec(15);
std::generate(aVec.begin(), aVec.end(), randomValue);
std::sort(aVec.begin(), aVec.end());
// see if it contains an eleven
if (binary_search(aVec.begin(), aVec.end(), 11))
std::cout &lt;&lt; "contains an 11" &lt;&lt; std::endl;
else
std::cout &lt;&lt; "does not contain an 11" &lt;&lt; std::endl;
// insert an 11 and a 14
std::vector&lt;int&gt;::iterator where;
where = std::lower_bound(aVec.begin(), aVec.end(), 11);
aVec.insert(where, 11);
where = std::upper_bound(aVec.begin(), aVec.end(), 14);
aVec.insert(where, 14);
}
</PRE></UL>
<BR>
<HR>
<A HREF="14-3.html"><IMG SRC="images/bprev.gif" WIDTH=20 HEIGHT=21 ALT="Previous file" BORDER=O></A><A HREF="noframes.html"><IMG SRC="images/btop.gif" WIDTH=56 HEIGHT=21 ALT="Top of Document" BORDER=O></A><A HREF="booktoc.html"><IMG SRC="images/btoc.gif" WIDTH=56 HEIGHT=21 ALT="Contents" BORDER=O></A><A HREF="tindex.html"><IMG SRC="images/bindex.gif" WIDTH=56 HEIGHT=21 ALT="Index page" BORDER=O></A><A HREF="14-5.html"><IMG SRC="images/bnext.gif" WIDTH=20 HEIGHT=21 ALT="Next file" BORDER=O></A>
<!-- Google Analytics tracking code -->
<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-1775151-1";
urchinTracker();
</script>
<!-- end of Google Analytics tracking code -->
</BODY>
</HTML>