In this section, we introduce the pipeline API for clustering in mllib.
Table of Contents
k-means is one of the most commonly used clustering algorithms that clusters the data points into a predefined number of clusters. The MLlib implementation includes a parallelized variant of the k-means++ method called kmeans||.
KMeans is implemented as an Estimator and generates a KMeansModel as the base model.
{% include_example scala/org/apache/spark/examples/ml/KMeansExample.scala %}
{% include_example java/org/apache/spark/examples/ml/JavaKMeansExample.java %}
LDA is implemented as an Estimator that supports both EMLDAOptimizer and OnlineLDAOptimizer, and generates a LDAModel as the base models. Expert users may cast a LDAModel generated by EMLDAOptimizer to a DistributedLDAModel if needed.
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/LDAExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaLDAExample.java %}