| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class GroupbyHeadTailMixin: |
| def test_head(self): |
| pdf = pd.DataFrame( |
| { |
| "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3, |
| "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3, |
| "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3, |
| }, |
| index=np.random.rand(10 * 3), |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| for limit in (2, 100000, -2, -100000, -1): |
| self.assert_eq( |
| pdf.groupby("a").head(limit).sort_index(), |
| psdf.groupby("a").head(limit).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby("a")["b"].head(limit).sort_index(), |
| psdf.groupby("a")["b"].head(limit).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby("a")[["b"]].head(limit).sort_index(), |
| psdf.groupby("a")[["b"]].head(limit).sort_index(), |
| ) |
| |
| self.assert_eq( |
| pdf.groupby(pdf.a // 2).head(2).sort_index(), |
| psdf.groupby(psdf.a // 2).head(2).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby(pdf.a // 2)["b"].head(2).sort_index(), |
| psdf.groupby(psdf.a // 2)["b"].head(2).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby(pdf.a // 2)[["b"]].head(2).sort_index(), |
| psdf.groupby(psdf.a // 2)[["b"]].head(2).sort_index(), |
| ) |
| |
| self.assert_eq( |
| pdf.b.rename().groupby(pdf.a).head(2).sort_index(), |
| psdf.b.rename().groupby(psdf.a).head(2).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.b.groupby(pdf.a.rename()).head(2).sort_index(), |
| psdf.b.groupby(psdf.a.rename()).head(2).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.b.rename().groupby(pdf.a.rename()).head(2).sort_index(), |
| psdf.b.rename().groupby(psdf.a.rename()).head(2).sort_index(), |
| ) |
| |
| # multi-index |
| midx = pd.MultiIndex( |
| [["x", "y"], ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]], |
| [[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]], |
| ) |
| pdf = pd.DataFrame( |
| { |
| "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3], |
| "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5], |
| "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6], |
| }, |
| columns=["a", "b", "c"], |
| index=midx, |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| for limit in (2, 100000, -2, -100000, -1): |
| self.assert_eq( |
| pdf.groupby("a").head(limit).sort_index(), |
| psdf.groupby("a").head(limit).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby("a")["b"].head(limit).sort_index(), |
| psdf.groupby("a")["b"].head(limit).sort_index(), |
| ) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| for limit in (2, 100000, -2, -100000, -1): |
| self.assert_eq( |
| pdf.groupby(("x", "a")).head(limit).sort_index(), |
| psdf.groupby(("x", "a")).head(limit).sort_index(), |
| ) |
| |
| def test_tail(self): |
| pdf = pd.DataFrame( |
| { |
| "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3, |
| "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3, |
| "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3, |
| }, |
| index=np.random.rand(10 * 3), |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| for limit in (2, 100000, -2, -100000, -1): |
| self.assert_eq( |
| pdf.groupby("a").tail(limit).sort_index(), |
| psdf.groupby("a").tail(limit).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby("a")["b"].tail(limit).sort_index(), |
| psdf.groupby("a")["b"].tail(limit).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby("a")[["b"]].tail(limit).sort_index(), |
| psdf.groupby("a")[["b"]].tail(limit).sort_index(), |
| ) |
| |
| self.assert_eq( |
| pdf.groupby(pdf.a // 2).tail(2).sort_index(), |
| psdf.groupby(psdf.a // 2).tail(2).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby(pdf.a // 2)["b"].tail(2).sort_index(), |
| psdf.groupby(psdf.a // 2)["b"].tail(2).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby(pdf.a // 2)[["b"]].tail(2).sort_index(), |
| psdf.groupby(psdf.a // 2)[["b"]].tail(2).sort_index(), |
| ) |
| |
| self.assert_eq( |
| pdf.b.rename().groupby(pdf.a).tail(2).sort_index(), |
| psdf.b.rename().groupby(psdf.a).tail(2).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.b.groupby(pdf.a.rename()).tail(2).sort_index(), |
| psdf.b.groupby(psdf.a.rename()).tail(2).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.b.rename().groupby(pdf.a.rename()).tail(2).sort_index(), |
| psdf.b.rename().groupby(psdf.a.rename()).tail(2).sort_index(), |
| ) |
| |
| # multi-index |
| midx = pd.MultiIndex( |
| [["x", "y"], ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]], |
| [[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]], |
| ) |
| pdf = pd.DataFrame( |
| { |
| "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3], |
| "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5], |
| "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6], |
| }, |
| columns=["a", "b", "c"], |
| index=midx, |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| for limit in (2, 100000, -2, -100000, -1): |
| self.assert_eq( |
| pdf.groupby("a").tail(limit).sort_index(), |
| psdf.groupby("a").tail(limit).sort_index(), |
| ) |
| self.assert_eq( |
| pdf.groupby("a")["b"].tail(limit).sort_index(), |
| psdf.groupby("a")["b"].tail(limit).sort_index(), |
| ) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| for limit in (2, 100000, -2, -100000, -1): |
| self.assert_eq( |
| pdf.groupby(("x", "a")).tail(limit).sort_index(), |
| psdf.groupby(("x", "a")).tail(limit).sort_index(), |
| ) |
| |
| |
| class GroupbyHeadTailTests( |
| GroupbyHeadTailMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.groupby.test_head_tail import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |