blob: 3446670bf781d6d98639831101cb72bad302d548 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class GroupbyHeadTailMixin:
def test_head(self):
pdf = pd.DataFrame(
{
"a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3,
"b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3,
"c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3,
},
index=np.random.rand(10 * 3),
)
psdf = ps.from_pandas(pdf)
for limit in (2, 100000, -2, -100000, -1):
self.assert_eq(
pdf.groupby("a").head(limit).sort_index(),
psdf.groupby("a").head(limit).sort_index(),
)
self.assert_eq(
pdf.groupby("a")["b"].head(limit).sort_index(),
psdf.groupby("a")["b"].head(limit).sort_index(),
)
self.assert_eq(
pdf.groupby("a")[["b"]].head(limit).sort_index(),
psdf.groupby("a")[["b"]].head(limit).sort_index(),
)
self.assert_eq(
pdf.groupby(pdf.a // 2).head(2).sort_index(),
psdf.groupby(psdf.a // 2).head(2).sort_index(),
)
self.assert_eq(
pdf.groupby(pdf.a // 2)["b"].head(2).sort_index(),
psdf.groupby(psdf.a // 2)["b"].head(2).sort_index(),
)
self.assert_eq(
pdf.groupby(pdf.a // 2)[["b"]].head(2).sort_index(),
psdf.groupby(psdf.a // 2)[["b"]].head(2).sort_index(),
)
self.assert_eq(
pdf.b.rename().groupby(pdf.a).head(2).sort_index(),
psdf.b.rename().groupby(psdf.a).head(2).sort_index(),
)
self.assert_eq(
pdf.b.groupby(pdf.a.rename()).head(2).sort_index(),
psdf.b.groupby(psdf.a.rename()).head(2).sort_index(),
)
self.assert_eq(
pdf.b.rename().groupby(pdf.a.rename()).head(2).sort_index(),
psdf.b.rename().groupby(psdf.a.rename()).head(2).sort_index(),
)
# multi-index
midx = pd.MultiIndex(
[["x", "y"], ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]],
[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]],
)
pdf = pd.DataFrame(
{
"a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3],
"b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5],
"c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6],
},
columns=["a", "b", "c"],
index=midx,
)
psdf = ps.from_pandas(pdf)
for limit in (2, 100000, -2, -100000, -1):
self.assert_eq(
pdf.groupby("a").head(limit).sort_index(),
psdf.groupby("a").head(limit).sort_index(),
)
self.assert_eq(
pdf.groupby("a")["b"].head(limit).sort_index(),
psdf.groupby("a")["b"].head(limit).sort_index(),
)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")])
pdf.columns = columns
psdf.columns = columns
for limit in (2, 100000, -2, -100000, -1):
self.assert_eq(
pdf.groupby(("x", "a")).head(limit).sort_index(),
psdf.groupby(("x", "a")).head(limit).sort_index(),
)
def test_tail(self):
pdf = pd.DataFrame(
{
"a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3,
"b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3,
"c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3,
},
index=np.random.rand(10 * 3),
)
psdf = ps.from_pandas(pdf)
for limit in (2, 100000, -2, -100000, -1):
self.assert_eq(
pdf.groupby("a").tail(limit).sort_index(),
psdf.groupby("a").tail(limit).sort_index(),
)
self.assert_eq(
pdf.groupby("a")["b"].tail(limit).sort_index(),
psdf.groupby("a")["b"].tail(limit).sort_index(),
)
self.assert_eq(
pdf.groupby("a")[["b"]].tail(limit).sort_index(),
psdf.groupby("a")[["b"]].tail(limit).sort_index(),
)
self.assert_eq(
pdf.groupby(pdf.a // 2).tail(2).sort_index(),
psdf.groupby(psdf.a // 2).tail(2).sort_index(),
)
self.assert_eq(
pdf.groupby(pdf.a // 2)["b"].tail(2).sort_index(),
psdf.groupby(psdf.a // 2)["b"].tail(2).sort_index(),
)
self.assert_eq(
pdf.groupby(pdf.a // 2)[["b"]].tail(2).sort_index(),
psdf.groupby(psdf.a // 2)[["b"]].tail(2).sort_index(),
)
self.assert_eq(
pdf.b.rename().groupby(pdf.a).tail(2).sort_index(),
psdf.b.rename().groupby(psdf.a).tail(2).sort_index(),
)
self.assert_eq(
pdf.b.groupby(pdf.a.rename()).tail(2).sort_index(),
psdf.b.groupby(psdf.a.rename()).tail(2).sort_index(),
)
self.assert_eq(
pdf.b.rename().groupby(pdf.a.rename()).tail(2).sort_index(),
psdf.b.rename().groupby(psdf.a.rename()).tail(2).sort_index(),
)
# multi-index
midx = pd.MultiIndex(
[["x", "y"], ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]],
[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]],
)
pdf = pd.DataFrame(
{
"a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3],
"b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5],
"c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6],
},
columns=["a", "b", "c"],
index=midx,
)
psdf = ps.from_pandas(pdf)
for limit in (2, 100000, -2, -100000, -1):
self.assert_eq(
pdf.groupby("a").tail(limit).sort_index(),
psdf.groupby("a").tail(limit).sort_index(),
)
self.assert_eq(
pdf.groupby("a")["b"].tail(limit).sort_index(),
psdf.groupby("a")["b"].tail(limit).sort_index(),
)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")])
pdf.columns = columns
psdf.columns = columns
for limit in (2, 100000, -2, -100000, -1):
self.assert_eq(
pdf.groupby(("x", "a")).tail(limit).sort_index(),
psdf.groupby(("x", "a")).tail(limit).sort_index(),
)
class GroupbyHeadTailTests(
GroupbyHeadTailMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.groupby.test_head_tail import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)