| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| from pyspark import SparkContext |
| from pyspark.sql.column import Column, _to_java_column |
| |
| |
| def vector_to_array(col: Column, dtype: str = "float64") -> Column: |
| """ |
| Converts a column of MLlib sparse/dense vectors into a column of dense arrays. |
| |
| .. versionadded:: 3.0.0 |
| |
| Parameters |
| ---------- |
| col : :py:class:`pyspark.sql.Column` or str |
| Input column |
| dtype : str, optional |
| The data type of the output array. Valid values: "float64" or "float32". |
| |
| Returns |
| ------- |
| :py:class:`pyspark.sql.Column` |
| The converted column of dense arrays. |
| |
| Examples |
| -------- |
| >>> from pyspark.ml.linalg import Vectors |
| >>> from pyspark.ml.functions import vector_to_array |
| >>> from pyspark.mllib.linalg import Vectors as OldVectors |
| >>> df = spark.createDataFrame([ |
| ... (Vectors.dense(1.0, 2.0, 3.0), OldVectors.dense(10.0, 20.0, 30.0)), |
| ... (Vectors.sparse(3, [(0, 2.0), (2, 3.0)]), |
| ... OldVectors.sparse(3, [(0, 20.0), (2, 30.0)]))], |
| ... ["vec", "oldVec"]) |
| >>> df1 = df.select(vector_to_array("vec").alias("vec"), |
| ... vector_to_array("oldVec").alias("oldVec")) |
| >>> df1.collect() |
| [Row(vec=[1.0, 2.0, 3.0], oldVec=[10.0, 20.0, 30.0]), |
| Row(vec=[2.0, 0.0, 3.0], oldVec=[20.0, 0.0, 30.0])] |
| >>> df2 = df.select(vector_to_array("vec", "float32").alias("vec"), |
| ... vector_to_array("oldVec", "float32").alias("oldVec")) |
| >>> df2.collect() |
| [Row(vec=[1.0, 2.0, 3.0], oldVec=[10.0, 20.0, 30.0]), |
| Row(vec=[2.0, 0.0, 3.0], oldVec=[20.0, 0.0, 30.0])] |
| >>> df1.schema.fields |
| [StructField('vec', ArrayType(DoubleType(), False), False), |
| StructField('oldVec', ArrayType(DoubleType(), False), False)] |
| >>> df2.schema.fields |
| [StructField('vec', ArrayType(FloatType(), False), False), |
| StructField('oldVec', ArrayType(FloatType(), False), False)] |
| """ |
| sc = SparkContext._active_spark_context |
| assert sc is not None and sc._jvm is not None |
| return Column( |
| sc._jvm.org.apache.spark.ml.functions.vector_to_array(_to_java_column(col), dtype) |
| ) |
| |
| |
| def array_to_vector(col: Column) -> Column: |
| """ |
| Converts a column of array of numeric type into a column of pyspark.ml.linalg.DenseVector |
| instances |
| |
| .. versionadded:: 3.1.0 |
| |
| Parameters |
| ---------- |
| col : :py:class:`pyspark.sql.Column` or str |
| Input column |
| |
| Returns |
| ------- |
| :py:class:`pyspark.sql.Column` |
| The converted column of dense vectors. |
| |
| Examples |
| -------- |
| >>> from pyspark.ml.functions import array_to_vector |
| >>> df1 = spark.createDataFrame([([1.5, 2.5],),], schema='v1 array<double>') |
| >>> df1.select(array_to_vector('v1').alias('vec1')).collect() |
| [Row(vec1=DenseVector([1.5, 2.5]))] |
| >>> df2 = spark.createDataFrame([([1.5, 3.5],),], schema='v1 array<float>') |
| >>> df2.select(array_to_vector('v1').alias('vec1')).collect() |
| [Row(vec1=DenseVector([1.5, 3.5]))] |
| >>> df3 = spark.createDataFrame([([1, 3],),], schema='v1 array<int>') |
| >>> df3.select(array_to_vector('v1').alias('vec1')).collect() |
| [Row(vec1=DenseVector([1.0, 3.0]))] |
| """ |
| sc = SparkContext._active_spark_context |
| assert sc is not None and sc._jvm is not None |
| return Column(sc._jvm.org.apache.spark.ml.functions.array_to_vector(_to_java_column(col))) |
| |
| |
| def _test() -> None: |
| import doctest |
| from pyspark.sql import SparkSession |
| import pyspark.ml.functions |
| import sys |
| |
| globs = pyspark.ml.functions.__dict__.copy() |
| spark = SparkSession.builder.master("local[2]").appName("ml.functions tests").getOrCreate() |
| sc = spark.sparkContext |
| globs["sc"] = sc |
| globs["spark"] = spark |
| |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.ml.functions, |
| globs=globs, |
| optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, |
| ) |
| spark.stop() |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |