| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| |
| from pyspark.sql.functions import arrow_udf, ArrowUDFType |
| from pyspark.util import PythonEvalType |
| from pyspark.sql import functions as sf |
| from pyspark.sql.window import Window |
| from pyspark.errors import AnalysisException, PythonException, PySparkTypeError |
| from pyspark.testing.utils import ( |
| have_numpy, |
| numpy_requirement_message, |
| have_pyarrow, |
| pyarrow_requirement_message, |
| ) |
| from pyspark.testing.sqlutils import ReusedSQLTestCase |
| |
| |
| @unittest.skipIf(not have_pyarrow, pyarrow_requirement_message) |
| class WindowArrowUDFTestsMixin: |
| @property |
| def data(self): |
| return ( |
| self.spark.range(10) |
| .toDF("id") |
| .withColumn("vs", sf.array([sf.lit(i * 1.0) + sf.col("id") for i in range(20, 30)])) |
| .withColumn("v", sf.explode(sf.col("vs"))) |
| .drop("vs") |
| .withColumn("w", sf.lit(1.0)) |
| ) |
| |
| @property |
| def python_plus_one(self): |
| @sf.udf("double") |
| def plus_one(v): |
| assert isinstance(v, float) |
| return v + 1 |
| |
| return plus_one |
| |
| @property |
| def arrow_scalar_time_two(self): |
| import pyarrow as pa |
| |
| return arrow_udf(lambda v: pa.compute.multiply(v, 2), "double") |
| |
| @property |
| def arrow_agg_count_udf(self): |
| @arrow_udf("long", ArrowUDFType.GROUPED_AGG) |
| def count(v): |
| return len(v) |
| |
| return count |
| |
| @property |
| def arrow_agg_mean_udf(self): |
| import pyarrow as pa |
| |
| @arrow_udf("double", ArrowUDFType.GROUPED_AGG) |
| def avg(v): |
| return pa.compute.mean(v) |
| |
| return avg |
| |
| @property |
| def arrow_agg_max_udf(self): |
| import pyarrow as pa |
| |
| @arrow_udf("double", ArrowUDFType.GROUPED_AGG) |
| def max(v): |
| return pa.compute.max(v) |
| |
| return max |
| |
| @property |
| def arrow_agg_min_udf(self): |
| import pyarrow as pa |
| |
| @arrow_udf("double", ArrowUDFType.GROUPED_AGG) |
| def min(v): |
| return pa.compute.min(v) |
| |
| return min |
| |
| @property |
| def arrow_agg_weighted_mean_udf(self): |
| import numpy as np |
| |
| @arrow_udf("double", ArrowUDFType.GROUPED_AGG) |
| def weighted_mean(v, w): |
| return np.average(v, weights=w) |
| |
| return weighted_mean |
| |
| @property |
| def unbounded_window(self): |
| return ( |
| Window.partitionBy("id") |
| .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing) |
| .orderBy("v") |
| ) |
| |
| @property |
| def ordered_window(self): |
| return Window.partitionBy("id").orderBy("v") |
| |
| @property |
| def unpartitioned_window(self): |
| return Window.partitionBy() |
| |
| @property |
| def sliding_row_window(self): |
| return Window.partitionBy("id").orderBy("v").rowsBetween(-2, 1) |
| |
| @property |
| def sliding_range_window(self): |
| return Window.partitionBy("id").orderBy("v").rangeBetween(-2, 4) |
| |
| @property |
| def growing_row_window(self): |
| return Window.partitionBy("id").orderBy("v").rowsBetween(Window.unboundedPreceding, 3) |
| |
| @property |
| def growing_range_window(self): |
| return Window.partitionBy("id").orderBy("v").rangeBetween(Window.unboundedPreceding, 4) |
| |
| @property |
| def shrinking_row_window(self): |
| return Window.partitionBy("id").orderBy("v").rowsBetween(-2, Window.unboundedFollowing) |
| |
| @property |
| def shrinking_range_window(self): |
| return Window.partitionBy("id").orderBy("v").rangeBetween(-3, Window.unboundedFollowing) |
| |
| def test_simple(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| mean_udf = self.arrow_agg_mean_udf |
| |
| result1 = df.withColumn("mean_v", mean_udf(df["v"]).over(w)) |
| expected1 = df.withColumn("mean_v", sf.mean(df["v"]).over(w)) |
| |
| result2 = df.select(mean_udf(df["v"]).over(w)) |
| expected2 = df.select(sf.mean(df["v"]).over(w)) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| self.assertEqual(expected2.collect(), result2.collect()) |
| |
| def test_multiple_udfs(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| result1 = ( |
| df.withColumn("mean_v", self.arrow_agg_mean_udf(df["v"]).over(w)) |
| .withColumn("max_v", self.arrow_agg_max_udf(df["v"]).over(w)) |
| .withColumn("min_w", self.arrow_agg_min_udf(df["w"]).over(w)) |
| ) |
| |
| expected1 = ( |
| df.withColumn("mean_v", sf.mean(df["v"]).over(w)) |
| .withColumn("max_v", sf.max(df["v"]).over(w)) |
| .withColumn("min_w", sf.min(df["w"]).over(w)) |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_replace_existing(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| result1 = df.withColumn("v", self.arrow_agg_mean_udf(df["v"]).over(w)) |
| expected1 = df.withColumn("v", sf.mean(df["v"]).over(w)) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_mixed_sql(self): |
| df = self.data |
| w = self.unbounded_window |
| mean_udf = self.arrow_agg_mean_udf |
| |
| result1 = df.withColumn("v", mean_udf(df["v"] * 2).over(w) + 1) |
| expected1 = df.withColumn("v", sf.mean(df["v"] * 2).over(w) + 1) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_mixed_udf(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| plus_one = self.python_plus_one |
| time_two = self.arrow_scalar_time_two |
| mean_udf = self.arrow_agg_mean_udf |
| |
| result1 = df.withColumn("v2", plus_one(mean_udf(plus_one(df["v"])).over(w))) |
| expected1 = df.withColumn("v2", plus_one(sf.mean(plus_one(df["v"])).over(w))) |
| |
| result2 = df.withColumn("v2", time_two(mean_udf(time_two(df["v"])).over(w))) |
| expected2 = df.withColumn("v2", time_two(sf.mean(time_two(df["v"])).over(w))) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| self.assertEqual(expected2.collect(), result2.collect()) |
| |
| def test_without_partitionBy(self): |
| df = self.data |
| w = self.unpartitioned_window |
| mean_udf = self.arrow_agg_mean_udf |
| |
| result1 = df.withColumn("v2", mean_udf(df["v"]).over(w)) |
| expected1 = df.withColumn("v2", sf.mean(df["v"]).over(w)) |
| |
| result2 = df.select(mean_udf(df["v"]).over(w)) |
| expected2 = df.select(sf.mean(df["v"]).over(w)) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| self.assertEqual(expected2.collect(), result2.collect()) |
| |
| def test_mixed_sql_and_udf(self): |
| df = self.data |
| w = self.unbounded_window |
| ow = self.ordered_window |
| max_udf = self.arrow_agg_max_udf |
| min_udf = self.arrow_agg_min_udf |
| |
| result1 = df.withColumn("v_diff", max_udf(df["v"]).over(w) - min_udf(df["v"]).over(w)) |
| expected1 = df.withColumn("v_diff", sf.max(df["v"]).over(w) - sf.min(df["v"]).over(w)) |
| |
| # Test mixing sql window function and window udf in the same expression |
| result2 = df.withColumn("v_diff", max_udf(df["v"]).over(w) - sf.min(df["v"]).over(w)) |
| expected2 = expected1 |
| |
| # Test chaining sql aggregate function and udf |
| result3 = ( |
| df.withColumn("max_v", max_udf(df["v"]).over(w)) |
| .withColumn("min_v", sf.min(df["v"]).over(w)) |
| .withColumn("v_diff", sf.col("max_v") - sf.col("min_v")) |
| .drop("max_v", "min_v") |
| ) |
| expected3 = expected1 |
| |
| # Test mixing sql window function and udf |
| result4 = df.withColumn("max_v", max_udf(df["v"]).over(w)).withColumn( |
| "rank", sf.rank().over(ow) |
| ) |
| expected4 = df.withColumn("max_v", sf.max(df["v"]).over(w)).withColumn( |
| "rank", sf.rank().over(ow) |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| self.assertEqual(expected2.collect(), result2.collect()) |
| self.assertEqual(expected3.collect(), result3.collect()) |
| self.assertEqual(expected4.collect(), result4.collect()) |
| |
| def test_array_type(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| array_udf = arrow_udf(lambda x: [1.0, 2.0], "array<double>", ArrowUDFType.GROUPED_AGG) |
| result1 = df.withColumn("v2", array_udf(df["v"]).over(w)) |
| self.assertEqual(result1.first()["v2"], [1.0, 2.0]) |
| |
| def test_invalid_args(self): |
| with self.quiet(): |
| self.check_invalid_args() |
| |
| def check_invalid_args(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| with self.assertRaises(PySparkTypeError): |
| foo_udf = arrow_udf(lambda x: x, "v double", PythonEvalType.SQL_GROUPED_MAP_ARROW_UDF) |
| df.withColumn("v2", foo_udf(df["v"]).over(w)).schema |
| |
| def test_bounded_simple(self): |
| df = self.data |
| w1 = self.sliding_row_window |
| w2 = self.shrinking_range_window |
| |
| plus_one = self.python_plus_one |
| count_udf = self.arrow_agg_count_udf |
| mean_udf = self.arrow_agg_mean_udf |
| max_udf = self.arrow_agg_max_udf |
| min_udf = self.arrow_agg_min_udf |
| |
| result1 = ( |
| df.withColumn("mean_v", mean_udf(plus_one(df["v"])).over(w1)) |
| .withColumn("count_v", count_udf(df["v"]).over(w2)) |
| .withColumn("max_v", max_udf(df["v"]).over(w2)) |
| .withColumn("min_v", min_udf(df["v"]).over(w1)) |
| ) |
| |
| expected1 = ( |
| df.withColumn("mean_v", sf.mean(plus_one(df["v"])).over(w1)) |
| .withColumn("count_v", sf.count(df["v"]).over(w2)) |
| .withColumn("max_v", sf.max(df["v"]).over(w2)) |
| .withColumn("min_v", sf.min(df["v"]).over(w1)) |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_growing_window(self): |
| df = self.data |
| w1 = self.growing_row_window |
| w2 = self.growing_range_window |
| |
| mean_udf = self.arrow_agg_mean_udf |
| |
| result1 = df.withColumn("m1", mean_udf(df["v"]).over(w1)).withColumn( |
| "m2", mean_udf(df["v"]).over(w2) |
| ) |
| |
| expected1 = df.withColumn("m1", sf.mean(df["v"]).over(w1)).withColumn( |
| "m2", sf.mean(df["v"]).over(w2) |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_sliding_window(self): |
| df = self.data |
| w1 = self.sliding_row_window |
| w2 = self.sliding_range_window |
| |
| mean_udf = self.arrow_agg_mean_udf |
| |
| result1 = df.withColumn("m1", mean_udf(df["v"]).over(w1)).withColumn( |
| "m2", mean_udf(df["v"]).over(w2) |
| ) |
| |
| expected1 = df.withColumn("m1", sf.mean(df["v"]).over(w1)).withColumn( |
| "m2", sf.mean(df["v"]).over(w2) |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_shrinking_window(self): |
| df = self.data |
| w1 = self.shrinking_row_window |
| w2 = self.shrinking_range_window |
| |
| mean_udf = self.arrow_agg_mean_udf |
| |
| result1 = df.withColumn("m1", mean_udf(df["v"]).over(w1)).withColumn( |
| "m2", mean_udf(df["v"]).over(w2) |
| ) |
| |
| expected1 = df.withColumn("m1", sf.mean(df["v"]).over(w1)).withColumn( |
| "m2", sf.mean(df["v"]).over(w2) |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_bounded_mixed(self): |
| df = self.data |
| w1 = self.sliding_row_window |
| w2 = self.unbounded_window |
| |
| mean_udf = self.arrow_agg_mean_udf |
| max_udf = self.arrow_agg_max_udf |
| |
| result1 = ( |
| df.withColumn("mean_v", mean_udf(df["v"]).over(w1)) |
| .withColumn("max_v", max_udf(df["v"]).over(w2)) |
| .withColumn("mean_unbounded_v", mean_udf(df["v"]).over(w1)) |
| ) |
| |
| expected1 = ( |
| df.withColumn("mean_v", sf.mean(df["v"]).over(w1)) |
| .withColumn("max_v", sf.max(df["v"]).over(w2)) |
| .withColumn("mean_unbounded_v", sf.mean(df["v"]).over(w1)) |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| @unittest.skipIf(not have_numpy, numpy_requirement_message) |
| def test_named_arguments(self): |
| df = self.data |
| weighted_mean = self.arrow_agg_weighted_mean_udf |
| |
| for w, bound in [(self.sliding_row_window, True), (self.unbounded_window, False)]: |
| for i, windowed in enumerate( |
| [ |
| df.withColumn("wm", weighted_mean(df.v, w=df.w).over(w)), |
| df.withColumn("wm", weighted_mean(v=df.v, w=df.w).over(w)), |
| df.withColumn("wm", weighted_mean(w=df.w, v=df.v).over(w)), |
| ] |
| ): |
| with self.subTest(bound=bound, query_no=i): |
| self.assertEqual( |
| windowed.collect(), df.withColumn("wm", sf.mean(df.v).over(w)).collect() |
| ) |
| |
| with self.tempView("v"): |
| df.createOrReplaceTempView("v") |
| self.spark.udf.register("weighted_mean", weighted_mean) |
| |
| for w in [ |
| "ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING", |
| "ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING", |
| ]: |
| window_spec = f"PARTITION BY id ORDER BY v {w}" |
| for i, func_call in enumerate( |
| [ |
| "weighted_mean(v, w => w)", |
| "weighted_mean(v => v, w => w)", |
| "weighted_mean(w => w, v => v)", |
| ] |
| ): |
| with self.subTest(window_spec=window_spec, query_no=i): |
| self.assertEqual( |
| self.spark.sql( |
| f"SELECT id, {func_call} OVER ({window_spec}) as wm FROM v" |
| ).collect(), |
| self.spark.sql( |
| f"SELECT id, mean(v) OVER ({window_spec}) as wm FROM v" |
| ).collect(), |
| ) |
| |
| @unittest.skipIf(not have_numpy, numpy_requirement_message) |
| def test_named_arguments_negative(self): |
| df = self.data |
| weighted_mean = self.arrow_agg_weighted_mean_udf |
| |
| with self.tempView("v"): |
| df.createOrReplaceTempView("v") |
| self.spark.udf.register("weighted_mean", weighted_mean) |
| |
| base_sql = "SELECT id, {func_call} OVER ({window_spec}) as wm FROM v" |
| |
| for w in [ |
| "ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING", |
| "ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING", |
| ]: |
| window_spec = f"PARTITION BY id ORDER BY v {w}" |
| with self.subTest(window_spec=window_spec): |
| with self.assertRaisesRegex( |
| AnalysisException, |
| "DUPLICATE_ROUTINE_PARAMETER_ASSIGNMENT.DOUBLE_NAMED_ARGUMENT_REFERENCE", |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, v => w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| with self.assertRaisesRegex( |
| AnalysisException, "UNEXPECTED_POSITIONAL_ARGUMENT" |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| with self.assertRaisesRegex( |
| PythonException, r"weighted_mean\(\) got an unexpected keyword argument 'x'" |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, x => w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| with self.assertRaisesRegex( |
| PythonException, r"weighted_mean\(\) got multiple values for argument 'v'" |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v, v => w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| def test_kwargs(self): |
| df = self.data |
| |
| @arrow_udf("double", ArrowUDFType.GROUPED_AGG) |
| def weighted_mean(**kwargs): |
| import numpy as np |
| |
| return np.average(kwargs["v"], weights=kwargs["w"]) |
| |
| for w, bound in [(self.sliding_row_window, True), (self.unbounded_window, False)]: |
| for i, windowed in enumerate( |
| [ |
| df.withColumn("wm", weighted_mean(v=df.v, w=df.w).over(w)), |
| df.withColumn("wm", weighted_mean(w=df.w, v=df.v).over(w)), |
| ] |
| ): |
| with self.subTest(bound=bound, query_no=i): |
| self.assertEqual( |
| windowed.collect(), df.withColumn("wm", sf.mean(df.v).over(w)).collect() |
| ) |
| |
| with self.tempView("v"): |
| df.createOrReplaceTempView("v") |
| self.spark.udf.register("weighted_mean", weighted_mean) |
| |
| base_sql = "SELECT id, {func_call} OVER ({window_spec}) as wm FROM v" |
| |
| for w in [ |
| "ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING", |
| "ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING", |
| ]: |
| window_spec = f"PARTITION BY id ORDER BY v {w}" |
| with self.subTest(window_spec=window_spec): |
| for i, func_call in enumerate( |
| [ |
| "weighted_mean(v => v, w => w)", |
| "weighted_mean(w => w, v => v)", |
| ] |
| ): |
| with self.subTest(query_no=i): |
| self.assertEqual( |
| self.spark.sql( |
| base_sql.format(func_call=func_call, window_spec=window_spec) |
| ).collect(), |
| self.spark.sql( |
| base_sql.format(func_call="mean(v)", window_spec=window_spec) |
| ).collect(), |
| ) |
| |
| # negative |
| with self.assertRaisesRegex( |
| AnalysisException, |
| "DUPLICATE_ROUTINE_PARAMETER_ASSIGNMENT.DOUBLE_NAMED_ARGUMENT_REFERENCE", |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, v => w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| with self.assertRaisesRegex( |
| AnalysisException, "UNEXPECTED_POSITIONAL_ARGUMENT" |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| def test_complex_window_collect_set(self): |
| import pyarrow as pa |
| |
| df = self.spark.createDataFrame([(1, 1), (1, 2), (2, 3), (2, 5), (2, 3)], ("id", "v")) |
| w = Window.partitionBy("id").orderBy("v") |
| |
| @arrow_udf("array<int>") |
| def arrow_collect_set(v: pa.Array) -> pa.Scalar: |
| assert isinstance(v, pa.Array), str(type(v)) |
| s = sorted([x.as_py() for x in pa.compute.unique(v)]) |
| t = pa.list_(pa.int32()) |
| return pa.scalar(value=s, type=t) |
| |
| result1 = df.select( |
| arrow_collect_set(df["v"]).over(w).alias("vs"), |
| ) |
| |
| expected1 = df.select( |
| sf.sort_array(sf.collect_set(df["v"]).over(w)).alias("vs"), |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_complex_window_collect_list(self): |
| import pyarrow as pa |
| |
| df = self.spark.createDataFrame([(1, 1), (1, 2), (2, 3), (2, 5), (2, 3)], ("id", "v")) |
| w = Window.partitionBy("id").orderBy("v") |
| |
| @arrow_udf("array<int>") |
| def arrow_collect_list(v: pa.Array) -> pa.Scalar: |
| assert isinstance(v, pa.Array), str(type(v)) |
| s = sorted([x.as_py() for x in v]) |
| t = pa.list_(pa.int32()) |
| return pa.scalar(value=s, type=t) |
| |
| result1 = df.select( |
| arrow_collect_list(df["v"]).over(w).alias("vs"), |
| ) |
| |
| expected1 = df.select( |
| sf.sort_array(sf.collect_list(df["v"]).over(w)).alias("vs"), |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_complex_window_collect_as_map(self): |
| import pyarrow as pa |
| |
| df = self.spark.createDataFrame( |
| [(1, 2, 1), (1, 3, 2), (2, 4, 3), (2, 5, 5), (2, 6, 3)], ("id", "k", "v") |
| ) |
| w = Window.partitionBy("id").orderBy("v") |
| |
| @arrow_udf("map<int, int>") |
| def arrow_collect_as_map(id: pa.Array, v: pa.Array) -> pa.Scalar: |
| assert isinstance(id, pa.Array), str(type(id)) |
| assert isinstance(v, pa.Array), str(type(v)) |
| d = {i: j for i, j in zip(id.to_pylist(), v.to_pylist())} |
| t = pa.map_(pa.int32(), pa.int32()) |
| return pa.scalar(value=d, type=t) |
| |
| result1 = df.select( |
| arrow_collect_as_map("k", "v").over(w).alias("map"), |
| ) |
| |
| expected1 = df.select( |
| sf.map_from_arrays( |
| sf.collect_list("k").over(w), |
| sf.collect_list("v").over(w), |
| ).alias("map") |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_complex_window_min_max_struct(self): |
| import pyarrow as pa |
| |
| df = self.spark.createDataFrame([(1, 1), (1, 2), (2, 3), (2, 5), (2, 3)], ("id", "v")) |
| w = Window.partitionBy("id").orderBy("v") |
| |
| @arrow_udf("struct<m1: int, m2:int>") |
| def arrow_collect_min_max(id: pa.Array, v: pa.Array) -> pa.Scalar: |
| assert isinstance(id, pa.Array), str(type(id)) |
| assert isinstance(v, pa.Array), str(type(v)) |
| m1 = pa.compute.min(id) |
| m2 = pa.compute.max(v) |
| t = pa.struct([pa.field("m1", pa.int32()), pa.field("m2", pa.int32())]) |
| return pa.scalar(value={"m1": m1.as_py(), "m2": m2.as_py()}, type=t) |
| |
| result1 = df.select( |
| arrow_collect_min_max("id", "v").over(w).alias("struct"), |
| ) |
| |
| expected1 = df.select( |
| sf.struct( |
| sf.min("id").over(w).alias("m1"), |
| sf.max("v").over(w).alias("m2"), |
| ).alias("struct") |
| ) |
| |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| def test_time_min(self): |
| import pyarrow as pa |
| |
| df = self.spark.sql( |
| """ |
| SELECT * FROM VALUES |
| (1, TIME '12:34:56'), |
| (1, TIME '1:2:3'), |
| (2, TIME '0:58:59'), |
| (2, TIME '10:58:59'), |
| (2, TIME '10:00:03') |
| AS tab(i, t) |
| """ |
| ) |
| w1 = Window.partitionBy("i").orderBy("t") |
| w2 = Window.orderBy("t") |
| |
| @arrow_udf("time", ArrowUDFType.GROUPED_AGG) |
| def agg_min_time(v): |
| assert isinstance(v, pa.Array) |
| assert isinstance(v, pa.Time64Array) |
| return pa.compute.min(v) |
| |
| expected1 = df.withColumn("res", sf.min("t").over(w1)) |
| result1 = df.withColumn("res", agg_min_time("t").over(w1)) |
| self.assertEqual(expected1.collect(), result1.collect()) |
| |
| expected2 = df.withColumn("res", sf.min("t").over(w2)) |
| result2 = df.withColumn("res", agg_min_time("t").over(w2)) |
| self.assertEqual(expected2.collect(), result2.collect()) |
| |
| def test_return_type_coercion(self): |
| import pyarrow as pa |
| |
| df = self.spark.range(10).withColumn("v", sf.lit(1)) |
| w = Window.partitionBy("id").orderBy("v") |
| |
| @arrow_udf("long", ArrowUDFType.GROUPED_AGG) |
| def agg_long(id: pa.Array) -> int: |
| assert isinstance(id, pa.Array), str(type(id)) |
| return pa.scalar(value=len(id), type=pa.int64()) |
| |
| result1 = df.select(agg_long("v").over(w).alias("res")) |
| self.assertEqual(10, len(result1.collect())) |
| |
| # long -> int coercion |
| @arrow_udf("int", ArrowUDFType.GROUPED_AGG) |
| def agg_int1(id: pa.Array) -> int: |
| assert isinstance(id, pa.Array), str(type(id)) |
| return pa.scalar(value=len(id), type=pa.int64()) |
| |
| result2 = df.select(agg_int1("v").over(w).alias("res")) |
| self.assertEqual(10, len(result2.collect())) |
| |
| # long -> int coercion, overflow |
| @arrow_udf("int", ArrowUDFType.GROUPED_AGG) |
| def agg_int2(id: pa.Array) -> int: |
| assert isinstance(id, pa.Array), str(type(id)) |
| return pa.scalar(value=len(id) + 2147483647, type=pa.int64()) |
| |
| result3 = df.select(agg_int2("id").alias("res")) |
| with self.assertRaises(Exception): |
| # pyarrow.lib.ArrowInvalid: |
| # Integer value 2147483657 not in range: -2147483648 to 2147483647 |
| result3.collect() |
| |
| @unittest.skipIf(not have_numpy, numpy_requirement_message) |
| def test_return_numpy_scalar(self): |
| import numpy as np |
| import pyarrow as pa |
| |
| df = self.spark.range(10).withColumn("v", sf.lit(1)) |
| w = Window.partitionBy("id").orderBy("v") |
| |
| @arrow_udf("long") |
| def np_max_udf(v: pa.Array) -> np.int64: |
| assert isinstance(v, pa.Array) |
| return np.max(v) |
| |
| @arrow_udf("long") |
| def np_min_udf(v: pa.Array) -> np.int64: |
| assert isinstance(v, pa.Array) |
| return np.min(v) |
| |
| @arrow_udf("double") |
| def np_avg_udf(v: pa.Array) -> np.float64: |
| assert isinstance(v, pa.Array) |
| return np.mean(v) |
| |
| expected = df.select( |
| sf.max("id").over(w).alias("max"), |
| sf.min("id").over(w).alias("min"), |
| sf.avg("id").over(w).alias("avg"), |
| ) |
| |
| result = df.select( |
| np_max_udf("id").over(w).alias("max"), |
| np_min_udf("id").over(w).alias("min"), |
| np_avg_udf("id").over(w).alias("avg"), |
| ) |
| self.assertEqual(expected.collect(), result.collect()) |
| |
| def test_arrow_batch_slicing(self): |
| import pyarrow as pa |
| |
| df = self.spark.range(1000).select((sf.col("id") % 2).alias("key"), sf.col("id").alias("v")) |
| |
| w1 = Window.partitionBy("key").orderBy("v") |
| w2 = ( |
| Window.partitionBy("key") |
| .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing) |
| .orderBy("v") |
| ) |
| |
| @arrow_udf("long", ArrowUDFType.GROUPED_AGG) |
| def arrow_sum(v): |
| return pa.compute.sum(v) |
| |
| @arrow_udf("long", ArrowUDFType.GROUPED_AGG) |
| def arrow_sum_unbounded(v): |
| assert len(v) == 1000 / 2, len(v) |
| return pa.compute.sum(v) |
| |
| expected1 = df.select("*", sf.sum("v").over(w1).alias("res")).sort("key", "v").collect() |
| expected2 = df.select("*", sf.sum("v").over(w2).alias("res")).sort("key", "v").collect() |
| |
| for maxRecords, maxBytes in [(10, 2**31 - 1), (0, 64), (10, 64)]: |
| with self.subTest(maxRecords=maxRecords, maxBytes=maxBytes): |
| with self.sql_conf( |
| { |
| "spark.sql.execution.arrow.maxRecordsPerBatch": maxRecords, |
| "spark.sql.execution.arrow.maxBytesPerBatch": maxBytes, |
| } |
| ): |
| result1 = ( |
| df.select("*", arrow_sum("v").over(w1).alias("res")) |
| .sort("key", "v") |
| .collect() |
| ) |
| self.assertEqual(expected1, result1) |
| |
| result2 = ( |
| df.select("*", arrow_sum_unbounded("v").over(w2).alias("res")) |
| .sort("key", "v") |
| .collect() |
| ) |
| self.assertEqual(expected2, result2) |
| |
| |
| class WindowArrowUDFTests(WindowArrowUDFTestsMixin, ReusedSQLTestCase): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.sql.tests.arrow.test_arrow_udf_window import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |