commit | 2cdf4eb7c20393e47709d02454356981df05040a | [log] [tgz] |
---|---|---|
author | HyukjinKwon <gurwls223@apache.org> | Mon May 18 14:35:02 2020 +0900 |
committer | HyukjinKwon <gurwls223@apache.org> | Mon May 18 14:56:24 2020 +0900 |
tree | 05c02df3d8c7c0b3725aca35262f566ee5105aa7 | |
parent | 88e00c367bccf51a343abae2ef734fa028c46f7b [diff] |
[SPARK-31746][YARN][TESTS] Show the actual error message in LocalityPlacementStrategySuite This PR proposes to show the actual traceback when "handle large number of containers and tasks (SPARK-18750)" test fails in `LocalityPlacementStrategySuite`. **It does not fully resolve the JIRA SPARK-31746 yet**. I tried to reproduce in my local by controlling the factors in the tests but I couldn't. I double checked the changes in SPARK-18750 are still valid. This test is flaky for an unknown reason (see https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/122768/testReport/org.apache.spark.deploy.yarn/LocalityPlacementStrategySuite/handle_large_number_of_containers_and_tasks__SPARK_18750_/): ``` sbt.ForkMain$ForkError: org.scalatest.exceptions.TestFailedException: java.lang.StackOverflowError did not equal null at org.scalatest.Assertions.newAssertionFailedException(Assertions.scala:530) at org.scalatest.Assertions.newAssertionFailedException$(Assertions.scala:529) at org.scalatest.FunSuite.newAssertionFailedException(FunSuite.scala:1560) at org.scalatest.Assertions$AssertionsHelper.macroAssert(Assertions.scala:503) ``` After this PR, it will help to investigate the root cause: **Before**: ``` [info] - handle large number of containers and tasks (SPARK-18750) *** FAILED *** (824 milliseconds) [info] java.lang.StackOverflowError did not equal null (LocalityPlacementStrategySuite.scala:49) [info] org.scalatest.exceptions.TestFailedException: [info] at org.scalatest.Assertions.newAssertionFailedException(Assertions.scala:530) [info] at org.scalatest.Assertions.newAssertionFailedException$(Assertions.scala:529) [info] at org.scalatest.FunSuite.newAssertionFailedException(FunSuite.scala:1560) [info] at org.scalatest.Assertions$AssertionsHelper.macroAssert(Assertions.scala:503) [info] at org.apache.spark.deploy.yarn.LocalityPlacementStrategySuite.$anonfun$new$1(LocalityPlacementStrategySuite.scala:49) [info] at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85) [info] at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83) [info] at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104) [info] at org.scalatest.Transformer.apply(Transformer.scala:22) [info] at org.scalatest.Transformer.apply(Transformer.scala:20) [info] at org.scalatest.FunSuiteLike$$anon$1.apply(FunSuiteLike.scala:186) [info] at org.apache.spark.SparkFunSuite.withFixture(SparkFunSuite.scala:157) [info] at org.scalatest.FunSuiteLike.invokeWithFixture$1(FunSuiteLike.scala:184) [info] at org.scalatest.FunSuiteLike.$anonfun$runTest$1(FunSuiteLike.scala:196) [info] at org.scalatest.SuperEngine.runTestImpl(Engine.scala:286) [info] at org.scalatest.FunSuiteLike.runTest(FunSuiteLike.scala:196) [info] at org.scalatest.FunSuiteLike.runTest$(FunSuiteLike.scala:178) ... ``` **After**: ``` [info] - handle large number of containers and tasks (SPARK-18750) *** FAILED *** (825 milliseconds) [info] StackOverflowError should not be thrown; however, got: [info] [info] java.lang.StackOverflowError [info] at scala.collection.TraversableLike.$anonfun$filterImpl$1(TraversableLike.scala:256) [info] at scala.collection.MapLike$MappedValues.$anonfun$foreach$3(MapLike.scala:256) [info] at scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:877) [info] at scala.collection.MapLike$MappedValues.$anonfun$foreach$3(MapLike.scala:256) [info] at scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:877) [info] at scala.collection.MapLike$MappedValues.$anonfun$foreach$3(MapLike.scala:256) [info] at scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:877) [info] at scala.collection.MapLike$MappedValues.$anonfun$foreach$3(MapLike.scala:256) [info] at scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:877) [info] at scala.collection.MapLike$MappedValues.$anonfun$foreach$3(MapLike.scala:256) [info] at scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:877) [info] at scala.collection.MapLike$MappedValues.$anonfun$foreach$3(MapLike.scala:256) [info] at scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:877) [info] at scala.collection.MapLike$MappedValues.$anonfun$foreach$3(MapLike.scala:256) [info] at scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:877) [info] at scala.collection.MapLike$MappedValues.$anonfun$foreach$3(MapLike.scala:256) ... ``` No, dev-only. Manually tested by reverting https://github.com/apache/spark/commit/76db394f2baedc2c7b7a52c05314a64ec9068263 locally. Closes #28566 from HyukjinKwon/SPARK-31746. Authored-by: HyukjinKwon <gurwls223@apache.org> Signed-off-by: HyukjinKwon <gurwls223@apache.org> (cherry picked from commit 3bf7bf99e96fab754679a4f3c893995263161341) Signed-off-by: HyukjinKwon <gurwls223@apache.org>
Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing.
You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.
Spark is built using Apache Maven. To build Spark and its example programs, run:
./build/mvn -DskipTests clean package
(You do not need to do this if you downloaded a pre-built package.)
More detailed documentation is available from the project site, at “Building Spark”.
For general development tips, including info on developing Spark using an IDE, see “Useful Developer Tools”.
The easiest way to start using Spark is through the Scala shell:
./bin/spark-shell
Try the following command, which should return 1,000,000,000:
scala> spark.range(1000 * 1000 * 1000).count()
Alternatively, if you prefer Python, you can use the Python shell:
./bin/pyspark
And run the following command, which should also return 1,000,000,000:
>>> spark.range(1000 * 1000 * 1000).count()
Spark also comes with several sample programs in the examples
directory. To run one of them, use ./bin/run-example <class> [params]
. For example:
./bin/run-example SparkPi
will run the Pi example locally.
You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, “yarn” to run on YARN, and “local” to run locally with one thread, or “local[N]” to run locally with N threads. You can also use an abbreviated class name if the class is in the examples
package. For instance:
MASTER=spark://host:7077 ./bin/run-example SparkPi
Many of the example programs print usage help if no params are given.
Testing first requires building Spark. Once Spark is built, tests can be run using:
./dev/run-tests
Please see the guidance on how to run tests for a module, or individual tests.
There is also a Kubernetes integration test, see resource-managers/kubernetes/integration-tests/README.md
Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.
Please refer to the build documentation at “Specifying the Hadoop Version and Enabling YARN” for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.
Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.
Please review the Contribution to Spark guide for information on how to get started contributing to the project.