| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| import numpy as np |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class FrameCorrwithMixin: |
| def test_corrwith(self): |
| df1 = ps.DataFrame( |
| {"A": [1, np.nan, 7, 8], "B": [False, True, True, False], "C": [10, 4, 9, 3]} |
| ) |
| df2 = df1[["A", "C"]] |
| df3 = df1[["B", "C"]] |
| self._test_corrwith(df1, df2) |
| self._test_corrwith(df1, df3) |
| self._test_corrwith((df1 + 1), df2.A) |
| self._test_corrwith((df1 + 1), df3.B) |
| self._test_corrwith((df1 + 1), (df2.C + 2)) |
| self._test_corrwith((df1 + 1), (df3.B + 2)) |
| |
| with self.assertRaisesRegex(TypeError, "unsupported type"): |
| df1.corrwith(123) |
| with self.assertRaisesRegex(NotImplementedError, "only works for axis=0"): |
| df1.corrwith(df1.A, axis=1) |
| with self.assertRaisesRegex(ValueError, "Invalid method"): |
| df1.corrwith(df1.A, method="cov") |
| |
| df_bool = ps.DataFrame({"A": [True, True, False, False], "B": [True, False, False, True]}) |
| self._test_corrwith(df_bool, df_bool.A) |
| self._test_corrwith(df_bool, df_bool.B) |
| |
| def _test_corrwith(self, psdf, psobj): |
| pdf = psdf._to_pandas() |
| pobj = psobj._to_pandas() |
| # There was a regression in pandas 1.5.0 |
| # when other is Series and method is "pearson" or "spearman", and fixed in pandas 1.5.1 |
| # Therefore, we only test the pandas 1.5.0 in different way. |
| # See https://github.com/pandas-dev/pandas/issues/48826 for the reported issue, |
| # and https://github.com/pandas-dev/pandas/pull/46174 for the initial PR that causes. |
| methods = ["pearson", "spearman", "kendall"] |
| for method in methods: |
| for drop in [True, False]: |
| p_corr = pdf.corrwith(pobj, drop=drop, method=method) |
| ps_corr = psdf.corrwith(psobj, drop=drop, method=method) |
| self.assert_eq(p_corr.sort_index(), ps_corr.sort_index(), almost=True) |
| |
| |
| class FrameCorrwithTests( |
| FrameCorrwithMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.computation.test_corrwith import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |